Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.3.847

FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS  

Choi, Youngmi (College of Liberal Arts Anyang University)
Kim, Soohyun (Department of Mathematics Ajou University)
Lee, Hyung-Chun (Department of Mathematics Ajou University)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.3, 2014 , pp. 847-862 More about this Journal
Abstract
Finite element approximation solutions of the optimal control problems for stochastic Stokes equations with the forcing term perturbed by white noise are considered. Error estimates are established for the fully coupled optimality system using Brezzi-Rappaz-Raviart theory. Numerical examples are also presented to examine our theoretical results.
Keywords
stochastic Stokes equations; optimal control; white noise;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Choi, H.-C. Lee, and B.-C. Shin, A least-square/penalty method for distributed optimal control problems for Stokes equations, Comput. Math. Appl. 53 (2007), no. 11, 1672-1685.   DOI   ScienceOn
2 R. G. Ghanem and P. D. Spanos, Stochasic Finite Elements: A spectral approach, Springer-Verlag, 1991.
3 V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986.
4 M. D. Gunzburger and L. S. Hou, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control. Optim. 34 (1996), no. 3, 1001-1043.   DOI
5 F. Abergal and R. Temmam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics 1 (1990), 303-325.   DOI
6 R. Temam, Nonlinear Functional Analysis and Navier-Stokes Equations, SIAM, Philadelphia, 1983.
7 L. S. Hou, J. Lee, and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs, J. Math. Anal. Appl. 384 (2011), no. 1, 87-103.   DOI   ScienceOn
8 M. D. Gunzburger, L. S. Hou, and T. P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls, Math. Comp. 57 (1991), no. 195, 123-151.   DOI   ScienceOn
9 M. D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal. 37 (2000), no. 5, 1481-1512.   DOI   ScienceOn
10 H. -C. Lee, Analysis and computational methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations, Adv. Comput. Math. 19 (2003), no. 1-3, 255-275.   DOI
11 H.-C. Lee and Y. Choi, A least-squares method for optimal control problems for a secondorder elliptic systems in two dimensions, J. Math. Anal. Appl. 242 (2000), no. 1, 105-128.   DOI   ScienceOn
12 H.-C. Lee and O. Y. Imanuvilov, Analysis pf optimal control problems for 2D stationary Boussinesq equations, J. Math. Anal. Appl. 242 (2000), 191-211.   DOI   ScienceOn
13 H.-C. Lee and S. Kim, Finite element approximation and computations of optimal dirichlet boundary control problems for the boussinesq equations, J. Korean Math. Soc. 41 (2004), no. 4, 681-715.   과학기술학회마을   DOI   ScienceOn
14 J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971.
15 H. Manouzi, A finite element approximation of linear stochastic PDEs driven by multiplicative white noise, Int. J. Comput. Math. 85 (2008), no. 3-4, 527-546.   DOI   ScienceOn
16 H. Manouzi and L. S. Hou, An optimal control problem for stochastic linear PDEs driven by a Gaussian white noise, 629-636, Numerical Mathematics and Advanced Applications, Springer Berlin Heidelberg, 2008.
17 G. Stefanou, The stochastic finite element method: Past, present, and future, Comput. Methods Appl. Mech. Engrg. 198 (2009), Issues 9-12, 1031-1051.   DOI   ScienceOn
18 R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
19 I. Babuska, R. Tempone, and G. E. Zouraris, Solving elliptic boundary value problems with uncertain coecients by the finite element method: The stochastic formulation, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 12-16, 1251-1294.   DOI   ScienceOn
20 I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal. 42 (2004), no. 2, 800-825.   DOI   ScienceOn
21 F. Brezzi, J. Rappaz, and P. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980), 1-25.   DOI
22 Y. Cao, Z. Chen, and M. Gunzburger, Error analysis of finite element approximations of the stochastic Stokes equations, Adv. Comput. Math. 33 (2010), no. 2, 215-230.   DOI
23 Y. Cao, H. Yang, and L. Yin, Finite element methods for semilinear elliptic stochastic partial differential equations, Numer. Math. 106 (2007), no. 2, 181-198.   DOI
24 P. Ciarlet, Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
25 I. Babuska and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 37-38, 4093-4122.   DOI   ScienceOn
26 P. Ciarlet, Introduction to Numerical Linear Algebra and Optimization, Cambridge, 1989.
27 Y. Choi, H.-C. Lee, and S. D. Kim, Analysis and computations of least-squares method for optimal control problems for the Stokes equations, J. Korean Math. Soc. 46 (2009), no. 5, 1007-1025.   과학기술학회마을   DOI   ScienceOn
28 M. Gunzburger, H.-C. Lee, and J. Lee, Error estimates of stochastic optimal neumann boundary control problems, SIAM J. Numer. Anal. 49 (2011), no. 4, 1532-1552.   DOI   ScienceOn