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ALGEBRAIC POINTS ON THE PROJECTIVE LINE

Su-ion Ih

Abstract. Schanuel’s formula describes the distribution of rational poi-
nts on projective space. In this paper we will extend it to algebraic points

of bounded degree in the case of P1. The estimate formula will also give
an explicit error term which is quite small relative to the leading term.
It will also lead to a quasi-asymptotic formula for the number of points

of bounded degree on P1 according as the height bound goes to ∞.

1. Introduction

Given a variety defined over a number field, we are usually interested in the
problem of counting its rational points. According to Northcott’s theorem ([5]),
there are only finitely many points of bounded degree and bounded height. So,
in particular, according as we increase a height bound, we can count the number
of rational points. Then the asymptotic behavior of the counting function
reflects geometric properties of the variety.

Above all, along this line, there is Schanuel’s formula describing the asymp-
totic behavior of the counting function for rational points on projective space.
It states roughly

N
(
Pn(k) : T

)
∼ cTn+1 as T → ∞,

where k is a number field, c > 0 is a constant, and N
(
Pn(k) : T

)
is the number

of k-rational points (on Pn) of height ≤ T with respect to the usual exponential
height relative to k (We will introduce its more precise form in a while).

Motivated by this formula, Batyrev and Manin later formulated their con-
jecture on the distribution of rational points on Fano varieties. It says that on
a Fano variety X defined over a sufficiently large number field k there exists a
Zariski open subset U ⊂ X such that

N
(
U(k),H−KX

: T
)
∼ cT (logT )rank Pic X−1 as T → ∞,

where c > 0 is a constant, H−KX is the exponential height relative to k and
the anticanonical divisor on X, and N

(
U(k), H−KX : T

)
is the number of k-

rational points (on U) of H−KX
-height ≤ T (Note that Pn has Picard group
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of rank 1. And for a more detailed exposition, see [5]). The constant c is more
related to the arithmetic of X while the exponent of log T is to its geometry
(i.e., numerical invariants of X(k)). By the way, the fact is that this conjecture
is not true in its full generality though it has been known to be true for a wide
class of Fano varieties. See, e.g., [2], [3], and [4].

In the above we saw the “precise” asymptotic distribution of rational points.
We may ask whether there is such an asymptotic formula for the number of
algebraic points of bounded degree. This is the main topic of this paper. We
will be only concerned with the projective line P1. And the result will say
something about its quasi-asymptotic formula.

It should be noticed that W. M. Schmidt ([10]), D. Masser, and J. D. Vaaler
([8]) considered the same problem. Our main result below will consider the
result in [10] in the case of P1, with an explicit error term, which has a “smaller”
exponent of T below in particular when n is big, as well as an identification of
the leading coefficient in the estimation of [10] in the case of P1.

This article gives an elementary new proof to both Schmidt’s result above
in the case of P1 and a weaker version of Masser and Vaaler’s result above.
An advantage of this article over the two is that its proof is much simpler
than those of the two, based on a simple geometric analysis of the symmetric
product of the projective line. In particular, it provides us with a geometric
nature behind the numerical result as a by-product, which in turn motivates
us to an expectation or a question of a generalization of the Batyrev-Manin
conjecture, cf. Remark (a) at the end of the article. The main theorem is as
follows.

Theorem 1.0.1. Let k be a number field of degree d (over Q), let n ≥ 2 be
an integer, and let N

(
P1(k, n) : T

)
be the counting function on P1 relative to

the usual (absolute) exponential height, i.e., the number of (algebraic) points
(of P1) of degree ≤ n over k and height ≤ T . And let ϵ > 0. Then we have

n · a(k, n)2−nd(n+1)T dn(n+1) − Oϵ(T dn(n+1)−n+ϵ)

≤ N
(
P1(k, n) : T

)
≤ n · a(k, n)2nd(n+1)T dn(n+1) + O(T dn(n+1)−n),

where

a(k, n) =
hR/w

ζk(n + 1)

(2r1(2π)r2

√
Dk

)n+1

(n + 1)r1+r2−1,

with

h = class number of k,

R = regulator of k,

w = number of roots of unity in k,

ζk = zeta function of k,

r1 = number of real embeddings of k,
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r2 = number of complex embeddings of k,

Dk = absolute value of the discriminant of k/Q.

More notation will be explained in Section 2.2 below. We are not interested
in the case of n = 1, since it reduces to Schanuel’s formula. Note that among
the appearing constants only the Oϵ-constant depends on ϵ (and that the Oϵ-
constant depends on others, too) and that there is no indeterminate constant
in the leading coefficient of the estimation, i.e., that the leading coefficient is
explicit.

Then it is immediate to get the following quasi-asymptotic formula.

Corollary 1.0.2.

2−nd(n+1) + o(1) ≤
N

(
P1(k, n) : T

)
n · a(k, n)T dn(n+1)

≤ 2nd(n+1) + o(1) as T → ∞.

See also Remark (a) at the end of this article.

2. Preliminaries

2.1. A brief review of heights

Unless otherwise stated, by heights we will always mean absolute and log-
arithmic Weil heights. For the general theory of heights we refer to Hindry–
Silverman [5], Lang [7], Silverman [13], and Vojta [14]. Here we will give a brief
survey of the definition and some basic properties we need later.

Definition. For a point P := [x0, x1, . . . , xn] ∈ Pn(Q), we define the (Weil)
height of P to be

hPn(P ) =
1
d
·
∑

v

log
(
max0≤i≤n

{∣∣xi

∣∣dv

v

})
,

where x0, x1, . . . , xn ∈ k (k a number field of degree d over Q), v runs over
(a complete set of) all the primes, finite or infinite, of k so that

∣∣ · ∣∣dv

v
are

normalized (hence satisfying the product formula), and dv is the local degree
of kv over Qv.

Remark. 1. It is independent of the choice of both the homogeneous coordinates
of P and the number field k by the product formula and the contribution of
the factor 1

d , respectively.
2. There is a way called the Weil height machine satisfying various standard

properties such as additivity and the functoriality of heights which is to asso-
ciate a (Weil) height hX,D : X(k) → R to a locally principal divisor D on a
complete variety X defined over a number field k. We do not go into its detail
here except to mention the following.

If D is a very ample divisor on X, then we define hX,D := hPn ◦ φ, where
φ : X ↪→ Pn is an embedding associated to D. In more general, given a locally
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principal divisor D on X, write D as the difference D1 −D2 of two very ample
divisors Di (i = 1, 2) on X. Then we define hX,D := hX,D1 − hX,D2 , where
hX,Di (i = 1, 2) is as before. Properties of the Weil height machine will be
freely used in what follows.

If X is clearly understood from the context, we usually omit X from the
notation of hX,D. We also sometimes use the linear equivalence class of D or
the line bundle OX(D) instead of D in the notation of hX,D. See any reference
mentioned above for details.

3. A height hX,D appearing above is uniquely determined only up to a
bounded function. Thus, for example, the equality of two heights will always
actually mean the equality up to a bounded function. Note the ambiguity of a
bounded function in determining a height does not cause any problem for our
usual purposes.

2.2. Notation, definitions, and conventions

In this section we will make explicit part of the tools and notation we will use
in our subsequent proofs. Unless otherwise stated, by heights we will always
mean absolute and logarithmic ones as above.

Let n ≥ 1 be an integer. Let h (resp. hPn) be the standard height on P1

(resp. Pn) and H (resp. HPn) its corresponding exponential height. And let k
be a number field.

Definition. Let I be an interval in R. Then we write

P1(k, n) := {P ∈ P1(k) : [k(P ) : k] ≤ n},
P1(k, = n) := {P ∈ P1(k) : [k(P ) : k] = n},
P1(k, n : I) := {P ∈ P1(k) : [k(P ) : k] ≤ n and H(P ) ∈ I}, and

P1(k, = n : I) := {P ∈ P1(k) : [k(P ) : k] = n and H(P ) ∈ I}.

We use their similar corresponding notation for higher dimensional projec-
tive spaces. And, in particular, in case n = 1 (resp. I = [0, T ], T a positive
real), we suppress n (resp. replace I by T ) for brevity.

Definition. The counting function of P1(k, n) is

N
(
P1(k, n) : T

)
:= #P1(k, n : T ).

(We can also introduce a similar counting function on an arbitrary variety
(using a different notion of height, in which case we make its used notion
explicit). And we will also use brief notation for the counting function similarly
to the above).

2.3. The symmetric product of P1

The elementary symmetric polynomials in n ≥ 1 variables give rise to a finite
covering (of degree n!) π : (P1)n → Pn. This factors through P(n) := Symn P1,
the nth symmetric product of P1, so that we can write π : (P1)n → P(n) ∼→ Pn.
Note that all the varieties and the morphisms here are defined over Q.
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First, we then have the n-to-1 map

P1(k, = n) → Pn(k), P 7→ π(P (1), . . . , P (n)),

where P (1), . . . , P (n) are the Gal(k/k)-conjugates of P . Note this is not a
surjective map unless n = 1.

Second, since π∗O(1) = O(1, . . . , 1), we then easily see that

(1)
∣∣∣ n∑

i=1

h ◦ πi − hPn ◦ π
∣∣∣ ≤ n ln 2,

where πi : (P1)n → P1 is the ith projection (The fact is that we can also
prove this inequality directly by keeping explicit track of h under π. See [6]
and [12]). For notational simplicity and in order to keep track of the dependence
of the leading coefficient in Theorem 1.0.1 on the bound in (1), we will write
cn := n ln 2 from now on. The fact is that “(−1)·the inner part of the absolute
sign in (1)” has a slightly better upper bound (n−1) ln 2, which would improve
the exponent of 2 of the leading coefficients in Theorem 1.0.1. And yet, for
simplicity we will use cn = n ln 2.

Now let
∑m

i=1 ni = n (m ≥ 1 and ni ≥ 1 for all i = 1, 2, . . . ,m). And
for i = 1, 2, . . . ,m, let Pi ∈ P1(k, = ni) and let P

(1)
i = Pi, P

(2)
i , . . . , P

(ni)
i be

its Gal(k/k)-conjugates. Note
∑ni

j=1 h(P (j)
i ) = nih(Pi). Then it is immediate

from (1) that

(2)
∣∣∣ m∑

i=1

nih(Pi) − hPn ◦ π
(
P

(1)
1 , . . . , P

(n1)
1 , . . . , P (1)

m , . . . , P (nm)
m

)∣∣∣ ≤ cn.

Also note similarly to the above that π
(
P

(1)
1 , . . . , P

(n1)
1 , . . . , P

(1)
m , . . . , P

(nm)
m

)
∈

Pn(k). And conversely, all the points of Pn(k) are of this type.
Though we state (1) and (2) above in terms of the logarithmic height for

convenience, we will use their multiplicative version later.

2.4. Schanuel’s formula

The counting function on a variety has been extensively studied. However,
it is a rare case that we can describe it explicitly or asymptotically. The best
well-known example is Schanuel’s result for the asymptotic formula for the
number of rational points on an arbitrary projective space. Since we will need
it repeatedly in what follows, we introduce it here.

Theorem 2.4.1 (Scahnuel’s formula [5], [7], or [9]). Let k be a number field of
degree d over Q, let n ≥ 1 be an integer, and let N

(
Pn(k) : T

)
be the counting

function of Pn(k). Then we have

N
(
Pn(k) : T

)
=

a(k, n)T d(n+1) + O(T logT ) if d = n = 1,

O(T d(n+1)−1) otherwise,
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where the constant a(k, n) > 0 is the same as given in Theorem 1.0.1 (not only
for n ≥ 2 but also for n = 1).

Notice this formula is usually written in terms of the usual “relative” (not
absolute) height depending on the number field k. And yet, we state it in terms
of the absolute height, since it is more useful for our application.

3. Proof of Theorem 1.0.1

Note that we will keep all the notation introduced before. In particular, k
will always mean a number field of degree d over Q. Further, we have n ≥ 2.

3.1. An upper bound

We first prove the relatively easier part that is the upper bound of the
estimate.
Proposition 3.1.1. Under the same notation as before, we have

N
(
P1(k, n) : T

)
≤ n · a(k, n)2nd(n+1)T dn(n+1) + O(T dn(n+1)−n).

Proof. Write

P1(k, n) =
n∪

m=1

P1(k,= m).

Let P ∈ P1(k, = m). From (1) of Section 2.3 we know that

HPm ◦ π(P (1), . . . , P (m)) ≤ ecmH(P )m,

where cm = m ln 2 and P (1), . . . , P (m) are the Gal(k/k)-conjugates of P .
Hence it follows that (cf. Section 2.3.)

#P1(k, = m : T ) ≤ m · N
(
Pm(k) : ecmTm

)
= m · a(k,m)ecmd(m+1)T dm(m+1) + O(T dm(m+1)−m),

unless d = m = 1. In case d = m = 1, we replace O(T dm(m+1)−m) by
O(T logT ).

Notice, in any case, that dn(n+1)−n > d(n−1)n. So the contribution from
the points of degree ≤ n−1 can be absorbed into the error term O(T dn(n+1)−n).
Therefore we get the desired inequality. ¤

As a matter of fact, it may also be possible to obtain more or less the leading
power of T of the estimate in Proposition 3.1.1 directly from the usual proof
of Northcott’s theorem.

3.2. Auxiliary results toward a lower bound

It is a little complicated to prove that the upper bound obtained is “essen-
tially” the best one. The problem is that the n-to-1 map introduced at the
beginning of Section 2.3 is not surjective because n ≥ 2.



ALGEBRAIC POINTS ON THE PROJECTIVE LINE 1641

Proposition 3.2.1. Let m ≥ 1 be an integer, and let t > 0 and T ≥ 1 be real
numbers. Then we have∑

P∈P1(k,=m: T )

H(P )−t ≪

T if t ≥ dm(m + 1),

T dm(m+1)−t+1 otherwise.

Proof. By [T ] we mean the integer part of T . Then we observe that∑
P∈P1(k,=m: T )

H(P )−t

= O(1) +
[T ]−1∑
j=1

∑
P∈P1(k,=m: (j,j+1])

H(P )−t +
∑

P∈P1(k,=m: ([T ],T ])

H(P )−t

≤ O(1) +
[T ]−1∑
j=1

j−t · #P1
(
k, = m : (j, j + 1]

)
+ [T ]−t · #P1

(
k, = m : ([T ], T ]

)
≤ O(1) +

[T ]−1∑
j=1

j−t · #P1
(
k, = m : j + 1

)
+ [T ]−t · #P1

(
k,= m : T

)
≤ O(1) +

[T ]−1∑
j=1

j−t ·
{
m · a(k,m)ecmd(m+1)(j + 1)dm(m+1) + O(jdm(m+1)−m)

}
+ [T ]−t · m · a(k,m)ecmd(m+1)T dm(m+1) + O(T dm(m+1)−m)

(from Proposition 3.1.1.)

≤
[T ]−1∑
j=1

O(jdm(m+1)−t) + O(T dm(m+1)−t),

unless d = m = 1. If d = m = 1, we replace

O(jdm(m+1)−m) (resp. O(T dm(m+1)−m))

by O(jlog(j + 1)) (resp. O(T logT )) and we still have exactly the same last
inequality. Therefore it is easy to see, in any case, that the desired inequalities
follow. ¤

Cf. Obviously, we can specify the ≪-constant better. But it is not interesting
for our purpose, since the sum in Proposition 3.2.1 will be absorbed into an
O-error term eventually. And the fact is that we get a slightly better bound in
case m = 1. We will see it in the proof of Lemma 3.2.2 below (Since it is more
convenient to have the above unifying inequalities (though weaker in the case of
m = 1) in our later application, we do not separate it. Furthermore, though we
separate it here, it would not produce a better result in Theorem 1.0.1 (and it
would just make the needed computation more complicated), since Claim 3.3.1
(hence also Lemma 3.2.2) below eventually should deal with all the possible
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partitions of an arbitrary given integer n ≥ 2, i.e., since we would have to make
ϵ > 0 appear for any n ≥ 2 in Theorem 1.0.1 after all).

Now we go toward a lemma. We start with a basic set-up.
Let

∑m
i=1 ni = n where 1 ≤ ni ≤ n − 1 (Recall n ≥ 2). Let T ≥ 1 be a real

number. And let Condition (∗) read

P1 ∈ P1(k, = n1 : T ),

P2 ∈ P1(k, = n2 : n−n1
√

TnH(P1)−n1),

P3 ∈ P1(k, = n3 : n−n1−n2
√

TnH(P1)−n1H(P2)−n2),
...

Pm ∈ P1(k, = nm : nm
√

TnH(P1)−n1H(P2)−n2 · · ·H(Pm−1)−nm−1).

Lemma 3.2.2. Let ϵ > 0. Under the same notation as above, we have∑
P1,...,Pm−1

m−1∏
i=1

H(Pi)−dni(nm+1) ≪ T dn(n−nm)−n+ϵ,

where P1, . . . , Pm−1 in the summation run over all the possible choices satisfy-
ing Condition (∗).

Proof. We use induction on n ≥ 2. For n = 2, we have the only possibility that
m = 2 and that n1 = n2 = 1 and Condition (∗) then reads

P1 ∈ P1(k : T ) (and P2 ∈ P1(k : T 2H(P1)−1)).

Thus we see that (as in the proof of Proposition 3.2.1)∑
P1∈P1(k: T )

H(P1)−2d

≤ O(1) +
[T ]−1∑
j=1

j−2d · #P1
(
k : (j, j + 1]

)
+ [T ]−2d · #P1

(
k : ([T ], T ]

)
= O(1) +

[T ]−1∑
j=1

j−2d ·
{
a(k, 1)(j + 1)2d − a(k, 1)j2d + O(j2d−1))

}
+ [T ]−2d ·

{
a(k, 1)T 2d − a(k, 1)[T ]2d + O(T 2d−1))

}
≤ O(1) +

[T ]−1∑
j=1

O(j−1) + O(T−1)

≤ O(T ϵ) ≤ O(T 2d−2+ϵ), as desired,

unless d = 1. In case d = 1, we replace O(j2d−1) (resp. O(T 2d−1), O(j−1),
O(T−1)) by O(jlog(j + 1)) (resp. O(T logT ), O(j−1log(j + 1)), O(T−1logT )).
Then we still have exactly the same last two inequalities.
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We assume the desired inequality is true up to n−1 (for all possible partitions
of the integers ≤ n − 1). We first observe that

n−n1−n2
√

TnH(P1)−n1H(P2)−n2

= (n−n1)−n2

√(
n−n1

√
TnH(P1)−n1

)n−n1

H(P2)−n2 , etc.

Then we see that∑
P1,...,Pm−1

m−1∏
i=1

H(Pi)−dni(nm+1)

=
∑
P1

{
H(P1)−dn1(nm+1)

∑
P2,...,Pm−1

m−1∏
i=2

H(Pi)−dni(nm+1)
}

≤
∑
P1

{
H(P1)−dn1(nm+1) · O

(
n−n1

√
TnH(P1)−n1

d(n−n1)(n−n1−nm)−(n−n1)+ϵ)}
(by induction hypothesis)

≤ Tn{d(n−n1−nm)−1+ ϵ
n−n1

} · O
( ∑

P1

H(P1)
−n1{d(n−n1+1)−1+ ϵ

n−n1
}
)
.

Now apply Proposition 3.2.1 to get∑
P1∈P1(k,=n1: T )

H(P1)
−n1{d(n−n1+1)−1+ ϵ

n−n1
}

≪

{
T if n1{d(n − n1 + 1) − 1 + ϵ

n−n1
} ≥ dn1(n1 + 1),

T dn1(n1+1)−n1{d(n−n1+1)−1+ ϵ
n−n1

}+1 otherwise.

It is easy to prove that the addition of n{d(n − n1 − nm) − 1 + ϵ
n−n1

} to
1 (resp. dn1(n1 + 1) − n1{d(n − n1 + 1) − 1 + ϵ

n−n1
} + 1) is at most dn(n −

nm)−n+ ϵ. Therefore the desired inequality follows and the proof is complete
by induction. ¤

Remark. The induction step of the above proof works even in case m = 2, in
which case we notice that

∑
P2,...,Pm−1

∏m−1
i=2 H(Pi)−dni(nm+1) can be replaced

by 1 and clearly that

1 ≤ O
(

n−n1
√

TnH(P1)−n1
d(n−n1)(n−n1−nm)−(n−n1)+ϵ)

.

However, there is an alternative way to deal with this case. Let us see it briefly.
If m = 2, then we have only two possibilities; (i) n1 = 1 and n2 = n − 1, and
(ii) n1 = n − 1 and n2 = 1. In the former, we follow the preceding proof of
the case n = 2 step by step correspondingly and get

∑
P1∈P1(k: T ) H(P1)−nd ≪

T ϵ. On the other hand, in the latter, we instead use Proposition 3.2.1 to get∑
P1∈P1(k,=n−1: T ) H(P1)−2(n−1)d ≪ T d(n−1)(n−2)+1 by noticing n ≥ 3. It is
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then easy to see in both cases that
∑

P1
H(P1)−dn1(n2+1) ≪ T dn(n−n2)−n+ϵ as

desired, too.

3.3. A lower bound

Now we are ready to prove the lower bound and we will finish the proof of
Theorem 1.0.1.

Proof of the lower bound in Theorem 1.0.1. First recall Condition (∗) and con-
sider all the points (P (1)

1 , . . . , P
(n1)
1 , P

(1)
2 , . . . , P

(n2)
2 , . . . , P

(1)
m , . . . , P

(nm)
m ) satis-

fying Condition (∗). Next we consider all the possible partitions of n =
∑m

1=1 ni

(1 ≤ ni ≤ n − 1, i = 1, . . . , n − 1, and m ≥ 2) and collect all such possible
corresponding n-tuples. We call the resulting set S.

Claim 3.3.1. Let ϵ > 0. Then we have

#π(S) ≪ T dn(n+1)−n+ϵ.

Proof. We have

#π(S) ≤
∑

Partitions in (∗)

∑
P1,...,Pm−1

#{Pm’s}

≤
∑

Partitions in (∗)

∑
P1,...,Pm−1

O
((

Tn
m−1∏
i=1

H(Pi)−ni

) 1
nm

·dnm(nm+1))
(from Proposition 3.1.1)

=
∑

Partitions in (∗)

T dn(nm+1) · O
( ∑

P1,...,Pm−1

m−1∏
i=1

H(Pi)−dni(nm+1)
)

≪
∑

Partitions in (∗)

T dn(nm+1) · T dn(n−nm)−n+ϵ

(from Lemma 3.2.2)

=
∑

Partitions in (∗)

T dn(n+1)−n+ϵ

≪ T dn(n+1)−n+ϵ,

where
∑

Partitions in (∗) means “sum over all possible partitions of n in (∗)”.
Therefore we get the desired inequality. ¤

On the other hand, it follows from (2) of Section 2.3 that

e−cn
∏m

i=1 H(Pi)ni ≤ HPn ◦ π
(
P

(1)
1 , . . . , P

(n1)
1 , P

(1)
2 , . . . , P

(n2)
2 , . . . , P

(1)
m , . . . , P

(nm)
m

)
.

Thus it is easy to see (cf. Section 2.3) that

Pn(k : e−cnTn) ⊂ π(S) ∪
{
π(Q(1), . . . , Q(n)) : Q ∈ P1(k, = n : T )

}
(As a matter of fact, this is a disjoint union).
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Note that

#Pn(k : e−cnTn) = a(k, n)e−cnd(n+1)T dn(n+1) + O(T dn(n+1)−n)(3)
(from Theorem 2.4.1 with n ≥ 2).

So we get (cf. Section 2.3)

n−1 · #P1(k, = n : T ) = #
{
π(Q(1), . . . , Q(n)) : Q ∈ P1(k, = n : T )

}
≥ #Pn(k : e−cnTn) − #π(S)

≥ a(k, n)e−cnd(n+1)T dn(n+1) − O(T dn(n+1)−n+ϵ)
(from Claim 3.3.1 and (3) just above),

i.e., #P1(k, = n : T ) ≥ n · a(k, n)e−cnd(n+1)T dn(n+1) − O(T dn(n+1)−n+ϵ).

Therefore we have, in particular,

N
(
P1(k, n) : T

)
≥ n · a(k, n)e−cnd(n+1)T dn(n+1) − O(T dn(n+1)−n+ϵ).

Finally, note that cn = n ln 2. Then this proves the lower bound of the estimate
in Theorem 1.0.1 and finishes the whole proof of the theorem. ¤

Remarks.
(a) It is natural to ask about a possible generalization of the Batyrev-Manin

conjecture (cf. the introduction to the paper) to algebraic points of
bounded degree on Fano varieties of dimension ≥ 2: For all n ≤ dimX −
1,

N
(
U(k, n),H−KX : T

)
∼ cT dn(logT )rank Pic X−1 as T → ∞

under the same notation as before, however, with the distinction that
H−KX

is the absolute exponential height associated to the anticanonical
divisor on X. Of course, this would not be expected to be valid in general
because of a counterexample ([2]) to the Batyrev-Manin conjecture. So
the question is to what extent it could be true; e.g., whether it is the
case at least for the cases where the Batyrev-Manin conjecture has been
proven to be true.

(b) As should be noticed in the proof of Theorem 1.0.1, “most” of the points
of P1(k, n : T ) come from P1(k, = n : T ), i.e., exactly the same inequali-
ties in Theorem 1.0.1 are also true of #P1(k,= n : T ).

Acknowledgments. The author would like to thank the referee for his or her
various valuable comments.
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