Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.1.267

AN UPSTREAM PSEUDOSTRESS-VELOCITY MIXED FORMULATION FOR THE OSEEN EQUATIONS  

Park, Eun-Jae (Department of Mathematics and Department of Computational Science and Engineering Yonsei University)
Seo, Boyoon (Department of Mathematics Yonsei University)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.1, 2014 , pp. 267-285 More about this Journal
Abstract
An upstream scheme based on the pseudostress-velocity mixed formulation is studied to solve convection-dominated Oseen equations. Lagrange multipliers are introduced to treat the trace-free constraint and the lowest order Raviart-Thomas finite element space on rectangular mesh is used. Error analysis for several quantities of interest is given. Particularly, first-order convergence in $L^2$ norm for the velocity is proved. Finally, numerical experiments for various cases are presented to show the efficiency of this method.
Keywords
pseudostress-velocity formulation; upstream scheme; mixed finite element; Oseen equations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control, Comput. Methods Appl. Math. 5 (2005), no. 4, 333-361.
2 M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6, 2544-2566.   DOI   ScienceOn
3 S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
4 F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
5 A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199-259.   DOI   ScienceOn
6 E. Burman, M. A. Fernandez, and P. Hansbo, Continuous interior penalty finite element method for Oseen's equations, SIAM J. Numer. Anal. 44 (2006), no. 3, 1248-1274.   DOI   ScienceOn
7 Z. Cai and G. Starke, First-order system least squares for the stress-displacement formulation: linear elasticity, SIAM J. Numer. Anal. 41 (2003), no. 2, 715-730.   DOI   ScienceOn
8 Z. Cai, C. Tong, P. S. Vassilevski, and C. Wang, Mixed finite element methods for incompressible flow: Stationary Stokes equations, Numer. Methods Partial Differential Equations 26 (2010), no. 4, 957-978.
9 Z. Cai and Y.Wang, Pseudostress-velocity formulation for incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids 63 (2010), no. 3, 341-356.   DOI   ScienceOn
10 C. Carstensen, D. Kim, and E.-J. Park, A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem, SIAM J. Numer. Anal. 49 (2011), no. 6, 2501-2523.   DOI   ScienceOn
11 S. H. Chou, Mixed upwinding covolume methods on rectangular grids for convection-diffusion problems, SIAM J. Sci. Comput. 21 (1999), no. 1, 145-165.   DOI   ScienceOn
12 C. Dawson, Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations, SIAM J. Numer. Anal. 35 (1998), no. 5, 1709-1724.   DOI   ScienceOn
13 J. Jaffre, Elements finis mixtes et decentrage pour les equations de diffusion-convection, Calcolo 23 (1984), 171-197.
14 H. Elman, D. Silvester, and A.Wathen, Finite Elements and Fast Iterative Solvers: With applications in incompressible fluid dynamics, Oxford University Press, New York, 2005.
15 G. Gatica, A. Marquez, and M. A. Sanchez, Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 17-20, 1064-1079.   DOI   ScienceOn
16 V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1986.
17 D. Kim and E.-J. Park, A posteriori error estimators for the upstream weighting mixed methods for convection diffusion problems, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 6-8, 806-820.   DOI   ScienceOn
18 P. Lesaint and P. A. Raviart, On a finite element method for solving the neutron trasport equation, Mathematical Aspect of Finite Elements in Partial Differential Equations, Ed. Carl de Boor, Academic Press, 1974, 89-123.
19 Z. Li, Convergence analysis of an upwind mixed element method for advection diffusion problems, Appl. Math. Comput. 212 (2009), no. 2, 318-326.   DOI   ScienceOn
20 F. A. Milner and E.-J. Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem, Math. Comp. 64 (1995), no. 211, 973-988.   DOI   ScienceOn
21 S. Norburn and D. Silvester, Stabilised vs. stable mixed methods for incompressible flow, Comput. Methods Appl. Mech. Engrg. 166 (1998), no. 1-2, 131-141.   DOI   ScienceOn
22 P. A. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.
23 E.-J. Park, Mixed finite element methods for nonlinear second order elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 3, 865-885.   DOI   ScienceOn