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ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF
REGRESSION FUNCTION UNDER NA ASSUMPTIONS

HAN-YING LIANG AND YAN-YAN Q1

ABSTRACT. Consider the heteroscedastic regression model Y; = g(xz;) +
oi€; (1 <1 <n), where 02 = f(u;), the design points (z;, u;) are known

and nonrandom, and g aild f are unknown functions defined on closed
interval [0, 1]. Under the random errors ¢; form a sequence of NA random
variables, we study the asymptotic normality of wavelet estimators of ¢
when f is a known or unknown function.

1. Introduction

Consider the following heteroscedastic regression model:

(1) Y: = g(x;) + 0i€i, 1 <1< n,

where o7 = f(u;), (z;,u;) are nonrandom design points, and assume 0 <

T <1< <gp=land 0 < yy <u; <+.--<u, =1, Y, are the response
variables, €; are random errors, and f(-) and g(-) are unknown functions defined
on closed interval [0, 1].

It is well known that regression model has many applications in practical
problems, so the model (1) and its special cases have been studied extensively.
For instance, when o7 = 02, the model (1) reduces to the usual nonparametric
regression model, when the errors ¢; are i.i.d. random variables, various es-
timation methods have been used to obtain estimators of g, see Georgiev [9],
Wang [26] and Xue [28]. For the estimator of g under mixing assumptions,
Roussas [20] had found the strong consistency and consistency in quadratic
mean, and Roussas and Tran [23] considered the asymptotic normality.

A wavelet analysis has been used extensively in engineering and technolog-
ical fields, such as signal and image processing, objects are frequently inho-
mogeneous. In order to meet practical demand, since 90’s, some authors have
considered to use wavelet methods in statistics. For instance, Antoniadis et al.
12] and Donoho et al. [7] estimated regression function and density function by
using wavelet technique, respectively. For wavelet approach, it is well known
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that the hypotheses of degrees of smoothness of the underlying function is less
restrictive. Due to this ability to adapt to local features of curves, many au-
thors have applied wavelet procedures to estimate nonparametric models, such
as Antoniadis et al. [2], Hall and Patil [10}, Liang et al. [16], Qian and Cai [18],
Zhou and Yao [29], and so on.

Related to wavelet estimation for model (1) under the case o7 = 02 and
independent errors, see Antoniadis et al. [2] and Xue [28]. Liang et al. [15]
discussed the convergence rates of wavelet estimators of g and f for model (1)
under martingale difference errors; Chen et al. [6] investigated the consistency of
wavelet estimators of g and f for model (1) under negatively associated errors.
But, up to now, there have been no results available related to asymptotic
normality on wavelet estimation for model (1) under negatively associated error
assumptions.

A finite family of random variables {X;,1 < i < n} is said to be negatively
associated (NA) if, for every pair of disjoint subsets A and B of {1,2,...,n},
we have

Cov(fl(Xiai € A)af2(Xij € B)) <0,

whenever f; and fo are coordinatewise increasing and such that the covariance
exists. An infinite family of random variables is NA if every finite subfamily
is NA. The definition of NA random variables was introduced by Alam and
Saxena [1] and carefully studied by Joag-Dev and Proschan [11]. Because of its
wide applications in multivariate statistical analysis and systems reliability, the
notion of NA received considerable attention recently. We refer to Joag-Dev
and Proschan [11] for fundamental properties, Shao [24] for moment equalities,
Shao and Su [25] for the law of the iterated logarithm, Liang [12] as well as
Baek, Kim and Liang |3] for complete convergence, Liang and Baek [13] for
some strong law, and Roussas [21] for the central limit theorem of random
fields. Asymptotic properties of estimates related to NA samples have also
been studied by some authors. See e.g., Cai and Roussas [4], established Berry-
Esseen bounds for a smooth estimate of the distribution function. Roussas [22]
derived asymptotic normality of the kernel estimate of a probability density
function. Liang and Jing [14] discussed the asymptotic properties for estimates
of nonparametric regression models.

In this paper, the unobservable errors ¢; are assumed to be NA random vari-
ables, and we shall investigate the asymptotic normality of wavelet estimators
of g in the model (1) when f is a known or unknown function.

The paper is organized as follows. In Section 2, we introduce estimators and
give main results, and some lammas are stated in Section 3. Proofs of theorems
and lemmas will be provided in Sections 4 and 5, respectively.

2. Main results

Let ¢ be father wavelet with compact support and unit integral of multires-
olution analysis {V,,,m € Z}, where Z is integer set. Since {¢(z — k), k € Z}
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is an orthogonal family of L?(R) and V} is the subspace spanned, if we denote
Omi(x) = 2m/2¢(2m$ — k), ke Z,

then {¢ox, k € Z} is an orthogonal basis of Vy, and {¢mr, k € Z} is an orthog-
onal basis of V,,,. For the more on wavelet see Watler [27].
By ¢, we can define the following Meyer wavelet kernel:

En(z,u)=2"Ey(2™x,2™u), Ey(z,u) Z &z — k)p(u — k).

We now construct the wavelet estimator of g (also see Antoniadis et al. [2])
when f(-) is known:

i:Y/ (x, s)ds,

where A; = [s;_1, s;] are a partition of interval [0, 1] with z; € A; for 1 <17 < n.
Under f(-) is unknown, the wavelet estimator of ¢ is defined by

ZY/ m (T, 8)ds,

where Y;= g(z;) + 6nici, 62, = fo(u:) and

T

Ful) = S G @0))? [ Bmlu,s)ds.

i=1 B;

here B; = [s;_1,s;] are another partition of interval [0,1] with u; € B; for
1 <1 <n.

In order to list some restrictions for ¢ and g, we give two definitions here.
Definition 1.1. A father wavelet ¢ is said to be g-regular (S;,q € N) if for

29| < Cp(1 + |z|)~?, where Cy is a

any | < ¢, and for any integer k, one has |

generic constant depending only on k.

Definition 1.2. A function space H 7 (v € R) is said to be Sobolev space with

order v, i.e., if h € HY then [ |h(w)[2(1 + w?)Ydw < oo, where h is the Fourier
transform of h.

Now we list the following some assumptions.
(A1) g() € HY, v >3/2;
(A.2) ¢(-) € Sq, g > 7. Let ¢(-) satisfy Lipschitz condition of order 1 and
@(€) — 1] = O(€) as € — 0, where ¢ is the Fourier transformation

of ¢;
(A.3) maxlgign(si — Si-—l) — O(n‘l);
(A.4) 0 < mp <minjcicn f(u;) <maxici<n flus) < My < oo;
(A5) H(n) = MaXi<i<n |S«,; — 81— "N -1 = O(?’L 1);
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(A.6) The errors {¢;}, as modelled in (1.1), satisfy the following condi-
tions:
() v(a) = U 35515 lco¥(ex, €5)] — 0 as g — oo
(ii) The spectral density function f(w) of {¢;} satisfies 0 < C; <
fw) < Cy < o for we (—mn,n];
(A7) f(-)e HY,~ > 3/2. |

Remark 2.1. Conditions (A.1)-(A.3) were used by Xue [28] and Qian et al. [19];
Condition (A.1-A.4) also were assumed in Chen et al. [5] and Liang et al. [15];
(A.5) is somewhat weaker than the “asymptotic equidistance” assumption of
Gasser and Miiller [8] in which H(n) = O(n?%) for some § > 1.

Remark 2.2. In (A.6) (i), v(gq) — 0 can easily be achieved. For example:

(i) If v(1) < oo (which is usually the case, cf. e.g. Roussas [22]), then
v(q) — 0 as ¢ — oc. |

(ii) For a stationary sequence, Cai and Roussas [4] use the covariance co-
efficient: v'(n) := 32 |cov(er,e;41)]'/3 and v/(1) < oo. In this case,
we have |cov(er, ej11)| = o(j77). Hence

v(g) = ZICOV (e1,€541)] = O ZICOV 61»63+1)|1/3 %) =07

j=q

In the sequel, assume that {¢;} are identically distributed, and negatively
associated random variables with Fe; = 0. C and ¢ stand for positive constants
whose value may change at different places. Denote by z(™ = [2™mz]/2™ for
z € |0,1], here [z] denotes integer part no more than z; :

A% = Var(} _oie; / Ep ('™ 5)ds).
i=1 Ay |

Our results are as follows.

Theorem 2.1. Suppose that (A.1)-(A.6) are satisfied, and that 2™ /n — 0 and
2™ /m — oo, If Ee? < 00, then |

(90 (&™) = g(a™))/A, =4 N(0,1), € [0,1].

Theorem 2.2. Suppose that (A.1)-(A.7) are satisfied, and that 2°™/n — 0
and 2°™ /n — oo. If Ee2 = 1 and Ee} < oo, then

(u(2™) — g(z™))/ Ay g N(0,1), z € [0,1].

Remark 2.3. Since the proofs of Theorems 2.1 and 2.2 relate to estimate a
bound below of A,, we choose the dyadic points z{™) of order m of z (see
Antoniadis et al. [2]) in the conclusions of Theorems 2.1 and 2.2. If we assume a
bound below for A, ™ can be replaced by x. Moreover, the exact estimation
- of A, is not necessary in the proofs, so it is not necessary to discuss whether
Theorems 2.1 and 2.2 are valid for the boundary points, 0 and 1, here. When
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related to the exact estimation of A,, the points in interior and boundary of
[0, 1] need to be considered, respectively.
3. Some lemmas

Lemma 3.1 (Walter [27], or Antoniadis et al. [2]). Under the condition of
(A.2), we have

(i) sup, [ |Em(@,u)|du < C; (i) supueoq) [Em(z,u)| = O(2™).

Lemma 3.2. Let {an;, 1 <i<n,n>1} be an array of real numbers satisfying
S ad = 0(1) and maxj<;<n |ani| — 0 as n — oo. Assume that (A.6) (i)
holds and Ee} < oo. If Var(}_ .| ani€;) — 1, then > i | ani€;i —a N(0,1).

Proof. See the proof of Theorem 2.7 in Liang and Jing [14]. O

Lemma 3.3 (Shao [24]). Let {X;,7 > 1} be a sequence of NA random variables
with EX; = 0 and BE|X;|P < oo for some p > 1. Then, there exists constant

Cp > 0 such that Emaxi<k<n | Zle XiP<C Y0 EIX;P for 1<p<2.
Lemma 3.4. Under the assumptions of Theorem 2.2, we have

sup |fu(u) — f(w)| = O@2~™ + 1) + 0p(27 /).

0<u<1

The proof of Lemma 3.4 will be given in Section 5.

4. Proofs of main results

Proof of Theorem 2.1. We write
(2) 9n () = 9(&) = [9n (&) — E 9 (@)] + [E 90 (2) — g(a)):

We first prove that
(95 (™) = E 9 ™))/ Ay —q N(0,1).

Note that g, () — E 9. (x) = Y. ,0i€ [, Em(z,s)ds. So, according to
Lemma 3.2, we need only to verify that

(3) supz / ™ $)ds/A,)? < oo;

(4) lim max |o; / E, (2™, s)ds/A,| — 0.
Ay

n—oo 1<¢1<n

From the assumptions of this theorem, it follows

A2 Var( Zakek / ('™, 5)ds)

f ’Z(Tk/ s)dse™ " |*dw,
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which yields from (A.6)(ii) that

which yields (3). In addition, it is easy to see that

ot / B ™. )ds)? = 13" 0? [ ER @™ 9)ds
i =1 i

1
— 8;-1)2E2 (™), gM) — g(sz' — 5;1)E2, (™, )

<Z

(where both &, 1) and £, (2) belong to A;)

1
- ~(EL@E,67) — BL™.6)).

Note that the number of terms contributing to the above sum is of order
O(n2™™), sup, , EZ (z,s) = O(2°™) and

B (@,67) = En (e, 6)
= 2°"|E3(2™x,2m¢®) — B} (2mx,2mE )| = 0(2%™n Y.
Therefore, from (A.4)—(A.5) we have

f (z(™), 5)ds) __Z /E2 ('™, s)ds

= O(n—l)nz-m (H(n)22m + 0(23mn-2))

= 0o(2™n"1) + O(2*™n"2).
In view of (5) and (6), from (A.4) we find

(6)

A2 > cnt | E2(z™), s)ds+ o(n"12™)

n 0 m
1
(7) > Cn_122m/ E2(2mz(™ 2™5)ds + o(n~12™) = Cn~12™,
0 .

According to Lemma 3.1, from (7) we get

maxi<i<n 10; E.. x(m),s ds om

1<i<n | fgz ( ) |SC 2.0 as n— oo,
n n |

i.e., (4) holds.
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Next, according to 2™ /n — 0 and 2°™ /n — oo we need only to verify from
(7) that

(8) sup E g, (z) — g(z)| = 02" +n7 ).

Eiu@) =9 = (Y [ Bnlowgeiti= [ Bulzno@

A /0 B (@ w)g(u)du — (z)] = Iny(z) + Lna(z).

Since condition (A.1) follows that g(-) is continuous and differentiable from
Antoniadis et al. [2], g(-) satisfies Lipschitz condition of order 1 on [0,1].
Hence, by Lemma 3.1, we obtain that

sup |In1(z)| = SupiZ/A Ep(z,u)g(xi) — g(uw)]du| = O(n™).
x A ;
From the proof of Theorem 3.2 in Antoniadis et al. [2], we have
sup [In2(x)| = O(27™).
Thus, (8) is verified. Therefore, Theorem 2.1 is proved. [
Proof of Theorem 2.2. Obviously

G(z) ~ g(2)  Gul@)— 9n (@)  In (2) — g(2)
2 N W
From Theorem 2.1, it suffices to show that
(10) Gn(2)= 95 (2)]/An = 0p(1).

In view of (A.3) and Lemmas 3.1 and 3.3 we have

> T
(11’<n?écn|26%/ m(x, 8)ds| > K+/2 /n)

< K22m Z(/ En(z,s)ds)*Ee;

= 0(—=) = of1 K —
§K22m &lzakxn/ E., a:s|ds/ B (z, s)|ds = ( ) o(1) as 00,

l.e.,

k
(11) max 1Zei[4_3m(x,s)ds| — 0,(\/37 ).

1<k<n
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When n is large enough, we know from Lemma, 3.4 and Condition (A.4) that

(12) 0 < my < min fn(u%) < max fn(ui) < M| < o0, in Probability.
1<i<n 1<i<n

In order to estimate |, (z) — g(z)| we need the following the Abel Inequality
(see P.32, Theorem 1 of Mitrinovic [17]): Let Ai, As,...,An; B1,Ba,..., By
(By > By > -+ > B, > 0) be two sequences of real numbers, and let S; =

k .
Zizl Ai, Ml = NN <k<n Sk and M2 = maXji<k<n Sk. Then

(13) ByM; <) ApBi < Bi M.

k=1
Hence, for any real number Gy, Hx (1 <
assume Hy > Hy > --- > H,. Let Qs =
Applying (13) we have

< n), without loss of generality,

k
Hi—H,, 1<s<n-1, @, =0.

(14) D GrHil <1D_GrQxl+|D_ GrHa| <5 max |Hi| max |> Gl
k=1 k=1 k=1 o T k=1

Hence, on applying (14), and from Lemma 3.4, (A.4), (7) and (11)-(12) we
obtain that

gn(T)— Nn C N .
|g ( )A: (.’L‘)l < Z: 121%Xn |0'n11 — 0'3'| . lrsngé(n | ;ei -/A% Em(a:, s)dsl
2 k
< Osuplsu/\ﬁnlfn(u) —f(U)| ‘ I<Ilkaé( | Ei/ Em(:v, S)dS'
An(\ falw)+/Flw) =T = A
= 0,(27™ 4+ n"t +2™/Vn) = 0,(1).
Therefore, (10) is verified. O
5. Proof of Lemma 3.4
We write
Faw) = w) = Yo/ F)es + @)= G @) [ (s 5)ds = f(u)
- [g ) [ Bnu,s)ds = )]
(15)

+23 "V Flw)ealo@)- G (@) /B Enn(u, )ds

+2 (9(@i)= In (2:))? L Enm(u, 5)ds

= Lp1(u) + 2Lp0(u) + Laz(u).
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By Ee? = 1, we have

T

Zf (u;)e / (u, s)ds — f(u)

=1
n

:Zf(u%-) Ee/E usds+qu@/E (u, s)ds — f(u)]

i=1 i=1
= Lp11(u) + Lpia(u).

Similarly to the estimate for (8), we can obtain that supyc,<q |Lni2(u)| =
O(2=™ +n~1). We write

L ( Zf (u;)] (6?)2]/8. Ep(u,s)ds

1 B:
Zf Us / m(ua S)ds + Z f(ui)nz / Em(ua S)ds
=1 B;
= L'.Ezll)l( )+ Lyy (w),
where o = max(a,0), a; = max((—a),0). Then, according to the NA prop-

erty, both {&,¢ > 1} and {7;,7 > 1} are sequences of NA random variables,
and

B(€}) < 00, E(rf) <00 by B(el) < oo
Hence, in view of (14), (A.3)-(A.4) and Lemmas 3.1 and 3.3 we can obtain that

(1 m
sup |L, < (C su max/ E,.(u,s)lds- max i| = 0,(2
,Sup | i (W) Sup max | [Em(u, s)lds - max | E ﬁ€| /vVn).
Similarly supg<,<; |Ln11(u)[ = 0,(2™/+/n), and we also have

sup |g(z)— 9n ()|
0<z<1

< sup |9n (z) — E 9, (z)| + sup |E 9n (x) — g(z)]

0<z<1 0<z<1
(16) = sup | Zcrzez / E(z,s)ds| + 02 ™ +n™1)
0<z<1 ‘

=1

< m —1
002131:21 112?J<xn/i |En(z, s)|ds max. |Zam| + O(2™ )

= 0,(2™/v/n) +0(2"™ +n71).
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Therefore, by using (16) we can obtain that

k
sup |Lp2(u)| < C sup lg(x)— gn sup |/ (u, s)ds| max |Zai€il
1=1

0<u<1 0<x2<1 O<u<1

1<k<n

= 0@ ™ + 1Y) + 0,27 /Vn);

sup |Lnz(u)] < C sup [g(z)— gn sup Z /E u, s)ds|

0<u<i 0<z<1 0<u<1 4

=0Q2 ™™ +n71) +0,(2™/v/n).

Put the estimations for L,i(u), Ln2(u), Lyns(u) into (15), the conclusion is
proved.
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