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FINITE ELEMENT APPROXIMATION AND
COMPUTATIONS OF BOUNDARY OPTIMAL
CONTROL PROBLEMS FOR THE NAVIER-STOKES
FLOWS THROUGH A CHANNEL WITH STEPS

HyunG-CHUN LEE* AND YONG HUN LEE{}

ABSTRACT. We study a boundary optimal control problem of the
fluid flow governed by the Navier-Stokes equations. The control
problem is formulated with the flow through a channel with steps.
The first-order optimality condition of the optimal control is derived.
Finite element approximations of the solutions of the optimality sys-
tem are defined and optimal error estimates are derived. Finally, we
present some numerical results.

1. Introduction

In past years, there has been an increased interest in mathemati-
cal analyses and computation of control problems for the Navier-Stokes
equations: see {5}, [9], [10], [11] and the references therein.

In this paper we consider the minimization of vorticity in viscous,
incompressible flow. The control problem, which is formulated in Section
2, involves finite-dimensional control input acting through a part of the
boundary as Dirichlet boundary control. Thus we consider the two-
dimensional motion of fluid modeled by the (stationary) Navier-Stokes
equation,

(1.1) —vAu+(u-V)u+Vp=f inQ,
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(1.2) V-u=0 in§,
Q — out-flow
in-low — —-l
r

FIGURE 1. channel flow

confined in a channel €2, depicted in Figure 1. Here u = (u;,us) is
the velocity field, p the pressure, v the kinematic viscosity of the fluid
(v = 1/Re, where Re is the Reynolds number), and f the density of
external forces (in our example, f = 0). The nonlinear term (u - V)u in
(1.1) (often called the convective term), is a symbolic notation for the
vector
3u1 6u1 6u2 6U2
<UI8_.'L‘1 + Uzb—;;, U15{}}—1— + Uza—mz) .

The divergence-free condition in (1.2) is the equation for law of conser-
vation of mass of incompressible flow.

The paper is organized as follows. In the remainder of this section, we
introduce the notation that will be used throughout the paper. Then,
in §2 the optimal control problem is described and the existence and
first-order optimality condition for the optimal control problem are es-
tablished. In §3 we consider finite element approximations and derive
error estimates. Finally we present numerical results in §4.

Now we collect some notations, definitions and introduce basic theory
of the Navier-Stokes equations that we need for our discussion. Let R"
denote the n-dimensional Euclidean space and 2 be a bounded domain
of R™ with a Lipschitz continuous boundary T". Let L?(f2) be the space
of real-valued square integrable functions defined on 2, and let || - ||z
be the norm in this space. We define the Sobolev space H™(S2) for the
nonnegative integer m by

H™Q) := {u € L}(Q) | D € L*(Q), for 0 < |a| < m}
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where D? is the weak (or distributional) partial derivative, and « is a
multi-index. The norm || - ||,, associated with H™({2) given by

lully = { > ID%uliZ

la|<m

Note that H°(Q2) = L?(Q2) and || - |lo = || - ||z2- For the vector-valued
functions, we define the Sobolev space H™(Q) (in all cases, boldface
indicates vector-valued) by

H™(Q) := {u = (uy,u2) | v; € H™(Q), for i = 1,2},

and its associated norm || - ||,, is given by

2
il = > llwilf.:
=1
We also define particular subspaces:
L3Q) = {f e L*(Q): / fdz = 0} :
Q

H2(Q) = {ucH}(Q):u=0o0nT}.

The matrix {du;/dz;} will be denoted Vu. Let a(u,v) : H'(Q) x
H'(Q) — R be the symmetric bilinear form defined by

(1.3) a(u,v) = / Vu:Vvdz, Vu,veH(Q),
Q

where : means the sum of the product of same components of the ma-
trices. Let b(u,p) : H'(Q) x L3(Q) — R be the bilinear form defined
by

(1.4) b(u,p) = — /Q(V - u)pdz, Yu € H(Q),Vp € L3(Q).

The trilinear form ¢ on [H'(2)]? that corresponds to the convective term
is defined by

(1.5) c(u,v,w) = /Q(u - V)v - wdz, Yu,v,w € H'(Q).

Also these forms induce the operators
A:HY(Q) - H Q)
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defined by
(Au,v) =a(u,v), VYue HYQ),ve H(Q),
B:HY(Q) — Li(Q)
defined by
(Bu,p) = b(u,p), YueH'(Q),pe Lj(Q),
B: L) - H Q)

defined by
(Bp,u) =b(u,p), Yue Hy(Q),pe LjQ),
and
C:H'(Q) x H(Q) - H Q)
defined by

(C(u,v),w) =c(u;v,w), Vu,v,€ H(Q),w € Hy(Q).

These forms are continuous in the sense that there exist constants C,, C,
and C, > 0 such that

(1.6) la(u,v)] < Cijlull:flvil;, Vu,veHY(Q),
(L7) [o(v, )] < Cillvlhllglle, Vv € H'(Q),Vq € L5(),
and

(18) |c(u,v,w)| < Cc”u”l”V”l”W“h Vu,V,WGHI(Q).

Moreover, we have the coercivity properties

(L.9) la(v,v)| > cllvl3, VvveHY(Q),
and
b(vv(I) 2
(1.10) sup N > ollgllo, Vg€ L3(Q)
0zucH)@) IVIh

for some constants ¢, and ¢, > 0.
Using our notation, the weak form of the Navier-Stokes equations
(1.1)-(1.2) is given as follows:

(1.11) va(u,v) +b(v,p) + c(u,u,v) = {fv), VveHy)

(1.12) b(u,q) = 0, Vge L3(Q)
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with Dirichlet boundary condition
(1.13) u=g onl,

where g satisfies [..g - nds = 0 since Green's formula

/V-usz/g-ndszO.
Q r

Here n is the outward unit normal vector.

2. Optimal control problem and the optimality system

We assume that the in-flow (at £ = 0) as boundary condition, is
parabolic (Poiseuille flow assumption) with u;, = 4z2(1 — 2;). At the
out flow boundary we impose the stress free boundary condition. This
channel flow will happens recirculations in both corners, one in front of
the forward step and the other right after backward step, and a bubble
as soon as the channel narrow. Figure 2 qualitatively illustrate the flow
in the channel with Re = 100.

— out-flow

in-flow —
in F—“ﬁ I‘3

FiGURE 2. channel flow

Our objective is to shape the flow to a regular configuration by means
of controlled injection (or suction) along a portion I'; (the horizontal
boundary facing the recirculation flow), I'; (facing bubble flow) and I's
(the vertical boundary facing the recirculating flow) (see Figure 2). The
regular flow means that the flow has a little recirculation and a little bub-
ble. To do this, we consider the following cost functional corresponding
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to the total vorticity in the flow given by
. 0
(2.14) T(w) = / uy  Ouy

o|0z1 O

2
dq,

where the vorticity
_ aug Bul

W= 8(51 8:1:2 )
This cost functional is motivated by the fact that potential flows (zero
vorticity) are frictionless and incur low energy dissipation.
Now we formulate the optimal control problem as a finite dimensional

constrained minimization in a Hilbert space:

Find (u,p,t) € HY(Q) x L3(Q) x U which

minimizes J(u)
(2.15) subject to va(u,v) +b(v,p) + c(u,u,v) =0, Vv e Hy(Q),

b(u,q) =0, Vge Lj(Q)

u=g,+ Ztigu onT,

=1

where g; € HY2(T') with fr g, -nds = 0 and U is a closed bounded
region in R™. We discuss the Dirichlet boundary control problem and
thus the body force is discarded. The function t-g = > -, tig;,t € U
is the control input and influences the equation only through a part
of boundary T, and the functions g; represent distribution functions of
control input at I'. In our example without loss of generality we assume
that U = [-1,1]™.

Letu=w+a®+37", t,a® with w € Hy(Q), where 1®,0 <4 <m
are the solution of the Stokes equations
(2.16) a(d,v) +b(v,p) =0 and b(i1,q) =0,
for all (v, ¢) € Hy(Q) x L3(2) with the boundary condition ¥ =g, 0<
i < mon T, respectively. Note that @ is unique [6]. Then the problem
(2.15) can be equivalently written as

Find (w,p,t) € Hy(Q) x L3(€2) x U which
minimizes J(u)
(2.17) subject to va(u,v) +b(v,p) + c(u,u,v) =0, Vve H (D)
b(w,q) =0, Vqe Lj(9Q),
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where u = w+ a1 + 37" ¢,2®. In what follows we identify u with the
pair (w,t) whenever u = w+a® +t- @, where @ = col(@®, - - | al™).

DEFINITION 2.1. We define the admissibility set

Ua = {ui=(w,t) e H}Q)xU|u=w+a®+5 ta", and
=1

there exists p € L(2) and so that u satisfies the (2.17)}.

DEFINITION 2.2. We define an optimal solution (w*,t*) to be one for
which J(u*) < J(u) for any (w,t) € Uyq4.

Now we state the existence result which can be found in the literature,
for example, [5] and [10].

PROPOSITION 2.3. There exists an optimal solution (w*,t*) for our
control problem.

Assume that u := (w,t) € Hj(Q) x U is a local solution of (2.17)
and that t € int(U). Let G : Hy(2) x L3(Q) x U — Hy'(Q) x LZ(Q) be
defined as follows: G(w,p,t) = (£, z) if and only if

{ va(w,v) + c(u,u,v) + b(v,p) = (f,v), ¥vecH} Q)
b(w,q) = (2,9), Vg € LE(Q),

where (f,v) = —a(z,v) and z = 1 +t- 4. Thus the constraints (2.17)
can be expressed as G(w,p,t) = (£, 0).

Given u € H'(2), the operator §'(u) € L(H}(Q)x L{(Q)xU; Hy ' () x
L3(Q)) may be defined as follows: G'(u)(y,r,s) = (£, %) if and only if

va(y,v) +c(y,u,v) + c(u,y,v) +s- (c(,u,v) +c(u, @, v))

+b(v,r) = (£, v) —vs-ali,v), Vv e H{Q)

b(y,q) = (Z,9), Vg € L3(Q),
where (£ v) = —a(@®,v). It follows from [13] that if the G’(u), which
is the Fréchet derivative of G at (w,t) is surjective, then the regular

point condition is satisfied and hence there exists a Lagrange multiplier
(d, ¢) € Hy(Q) x L2(Q) satisfying the Euler equations

J'(u)(y,r,8) + (G (u)(y,7s),(d, 9)) =0,
for all (y,r,s) € Hy(Q) x L(Q) x U.
But, by the similar technique in [5] and [9], we can easily have the
following results.
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PROPOSITION 2.4. For u € H(Q), the operator G'(u) from Hy(Q) x
L3(Q) x U into Hy'(Q) x L&(Q) is surjective.

Now, we obtain the first-order necessary conditions for optimality:

(2.18) va(w,v) + c(u,u,v) + b(v,p) = (£, v), ¥v € Hy(Q),
' b(w,q) =0, Vg€ L§(Q),

va(d,e) + c(e,u,d) + c¢(u,e,d) + b(e, @)
(2.19) +(Vx(Vxu),e)=0, VeeHy),
b(d,r) =0, VreLXQ),

(2.20) va(a®,d) + c(®, u,d) + ¢(u, 0, d)
' HV x (Vxu),a®) =0, i=1,...,m.

3. Finite element approximations

In this section we investigate a finite element discretization of the
optimality system and an estimation of the approximation error. First,
we choose a family of finite dimensional subspaces V* ¢ H'(Q), S* C
L2(Q). We let VA = V* N Hy(Q) and S = S* n LE().

We may choose any pair of subspaces V" and S” that can be used for
finding finite element approximations of solutions of the Navier-Stokes
equations. Thus concerning these subspaces we make the following stan-
dard assumptions which are exactly those employed in well-known finite
element methods for the Navier-Stokes equations. First, we have the
approximation properties: there exist an integer k and a constant C,
independent of h, v and ¢, such that for each m =1,2,...,k,

(3.21)  inf . Iv—vii < Ch™|V|lms1, YveH™(Q),

Vhe
and

(3.22) inf, llg—q"lle < Ch™|lglim, Vg€ H™(S)N L),
q 0
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next, we assume the inf-sup condition, or Ladyzhenskaya-Babuska-Brezzi
condition: there exists a constant C, independent of k, such that
v b(vh, g
(3.23) inf sup 2V 0) S
TS L Y P

This condition assures the stability of finite element discretizations of
the Navier-Stokes equations.

Once the approximating subspaces have been chosen, we seek u* ¢
V", pt € Sk, d"* € V*, and ¢" € SP such that
(3.24)va(w", v") + c(u”, ut, vh) + b(vh, p*) = (£, vh), Wvh e VI
(3.25) bwh,¢") =0, Vg"e Sk,
(3.26) va(d® e") + c(e, uh,d") + c(u*, e, d") + b(e", 4")

+(V x (Vxu),e)=0, Ve"e V"
(3.27) bd*r*) =0, vrt e Sh
(3.28) va(i®,d") + ¢(@®, ut, d*) + c(u”, a®, d*)
HV x(Vxu),i® =0, i=1,...,m.

We concern ourselves with questions related to the accuracy of finite
element approximations in this section. The error estimate makes use
of the results of [3] and [6] concerning the approximation of a class of .

nonlinear problems. Here for the sake of completeness, we will state the
relevant results specialized to our needs.

"The nonlinear problems considered in [3] and [6] are of the type
(3.29) FOL) =9+ TGO 9) =0

where T' € L(Y; X), G is a C? mapping from A x X into Y, where X
and Y are Banach spaces and A is a compact interval of R. We say
that {(A,%(})) : A € A} is a branch of solutions of (3.29) if A — ¥())
is a continuous function from A into X such that F(A,4()\)) = 0. The
branch is called a nonsingular branch if we also have that D, F(), ()
is an isomorphism from X into X for all A € A. (DyF(-,-) denotes the
Frechet derivative of F'(-,-) with respect to the second argument).

Approximations are defined by introducing a subspace X* ¢ X and
an approximating operator T" € L(Y; X"). Then, we seek y* € X*
such that

(3.30) F'Oyhy = 9" + TG\, 9 = 0.
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We will assume that there exists another Banach space Z, contained in
Y, with continuous imbedding, such that

(3.31) DyG(\,9) e L(X;Z), VAeAandVy € X.
Concerning the operator 7", we assume the approximation properties
(3.32) lim |(T* = T)y|lx =0, VyeY

h—0
and
(3.33) lim IT" — Tl cez,x) = O.

Note that (3.31) and (3.33) imply that the operator D,G(A, ¥) € L(X; X)
is compact. Moreover, (3.33) follows from (3.32j whenever the imbed-
ding Z C Y is compact.

Now we can state the first result of [3] and [6] that used in the sequel.

THEOREM 3.1. Let X and Y be Banach spaces and A a compact
subset of R. Assume that G is a C? mapping from A x X into Y
and that D?G is bounded on all bounded sets of A x X. (D*G rep-
resents second Fréchet derivative of G) Assume that (3.31)-(3.33) hold
and {(\,9())); A € A} is a branch of nonsingular solutions of (3.29).
Then, there exists a neighborhood O of the origin in X and for h < hg
small enough, a unique C? function A € A — ¥"(\) € X" such that
{0\, ¥"(\); X € A} is a branch of nonsingular solutions of (3.30) and
PP(A) — ¥()) € O for all A € A. Moreover, there exists a constant
C > 0, independent of h and A, such that

(334) ") —vMNlx < CHT" =TGN HM)lix, VA€A.

For the second result, we have to introduce two other Banach spaces
H and W, such that W € X C H, with continuous imbeddings, and
assume that

for all w € W, the operator D,G(\, w) may be
(3.35) extended as a linear operator of L(H;Y),

and the mapping w — DyG(A, w) is continuous from W onto L(H;Y).
We also suppose that

. h_ —
(3.36) || 7% = Tl qv;m = 0.

Then we may state the following additional result.
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THEOREM 3.2. Assume the hypotheses of Theorem 3.1 and also as-
sume that (3.35) and (3.36) hold. Assume in addition that

for each A € A,y(\) € W and the function
(3.37) A — () is continuous from A into W

and
(3.38) for each A € A, Dy, F(A,%())) is an isomorphism of H.

Then, for h < h, sufficiently small, there exists a constant C, indepen-
dent of h and A, such that

1" (%) = dWle < CIHT" = TIGAvN)|x
(3.39) + ") =M%, YAEA
We begin by recasting the optimality system (2.18)-(2.20) and its

discretization (3.24)-(3.28) into a form that fits into the framework. Let
A = 1/v; thus A is the Reynolds number. Let

X = H'(@) x L3(Q) x H(Q) x L§(®),
Y =H Q) x H(Q),
= 132(9) x L¥*(@),
X = V" x St x V" x Sk
Note that Z C Y with a compact imbedding.

Let the operator T € L(Y : X) be defined as the following: T((,7n) =
(4,p,d, ¢) for (¢,n) € Y and (8,p,d,4) € X if and only if

(3.40) a(W,v) + b(v,p) = (¢, V), Vv € HY(Q),
(3.41) b(w,q) =0, Vg€ L3(Q),
(3.42) a(d, e) + ble, §) = (n,e), Ve € H:(Q),
(3.43) b(d,r) =0, Vre L),
(3.44) a(@®,d) = (n,d), 1<i<m

Note that this system is weakly coupled. Analogously, the operator
Th € L(Y : X" is defined as follows: T"((,n) = (&", 7", d ¢h) for
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(¢,n) € Y and (ii*, p", q" ,&") € X" if and only if

(3.45) a(Wh, vh) + b(vh, ) = (¢h,vh), Wt e VP,
(3.46) b(wh ¢") = 0 Vgt € Sh(Q),

(347)  a(d ") +ofeh¢) = (e, Ve € VP,
(3.48) b(d , Ty =0, vrt e SE(Q),
(3.49) a(@®,d") = (pr,d"%, 1<i<m.

This system is weakly coupled as the system (3.40)-(3.44).

Let A denote a compact subset of R. Next we define the nonlinear
mapping G : A x X — Y as follows: G(A, (u,p,d, ¢)) = ({,n) for X € A,
(u,p,d,¢) € X and ((,n) € Y if and only if

(¢, v) = Ac(u,u,v) — A {f,v), Vv € H(Q),
(n,e) = =Ac(e,u,d) — Ac(u,e,d) — (V x (V x u),e), Ve € H(Q).

It is easily seen that the optimality system (2.18)-(2.20) is equivalent
to

(3.50) (W, Ap,d, A8) + T G(A, (u,Ap,d,A¢)) =0
and that the discrete optimality system (3.24)-(3.28) is equivalent to
(3.51) (u", Ap", d* Ag") + T" G(), (", Ap",d*, A ¢")) = 0

Thus we have recast our continuous and discrete optimality problems
into a form that enables us to apply Theorem 3.1 and 3.2.

REMARK. It can be shown that for almost all values of the Reynolds
number, i.e., for almost all data and values of the viscosity v, that the
optimality system (2.18)-(2.20), or equivalently, of (3.50), is nonsingu-
lar, i.e., is locally unique. Thus, it is reasonable to assume that the
optimality system has branches of nonsingular solutions.

In order to apply the previous theorems, we need to estimate the
approximation properties of the operator T".

PROPOSITION 3.3. The problem (3.40)-(3.44) has a unique solution
belonging to X. Assume that (3.21)-(3.23) hold. Then, the problem
(3.45)- (3.49) has a unique solution belonging to X". Let (1,7, d, ¢) and
(@h, p", d ,¢~5h) denote the solutions of (3.40)-(3.44) and (3.45)-(3.49),
respectively. Then, we also have that

- - L -z
(3.52) Jla—a"l + 15— 5"l +lld—d [l + |6 — ¢"[lo = 0
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as h — 0. If, in addition, (8,5,d,%) € H™(Q) x H™() N L3(Q) x
H™(Q) x H™(Q) N L(Q), then there exists a constant C, independent
of h, such that

L .. <~ xh -
(3.53) [[a— &l + 15 — 5"llo + ld — d" [l + || — ¢"]lo
< CR™([allmsr + 1Bllm + dllmsr + [[6]lm)-
Proof. First, it is well known [6] that the two Stokes problems (3.40)-
(3.41) and (3.42)-(3.43) have a unique solution (ii,$) and (d, @) be-

longing to H'(2) xL2(Q), respectively. Also, the discrete Stokes prob-
lems (3.45)-(3.46) and (3.47)-(3.48) have a unique solution (ii", 5*) and

(&h, ¢") belonging to V* x S*((), respectively. Moreover, we have that
6 — @l + 15— B0 — 0
and
~ ~h ~ ~
fld~d [l +l¢ ~ ¢"[lo = 0
as h — 0, and if in addition (&,5) € H™(Q) x H™(Q) U LZ() and

(d, 9) € H™(Q) x H™(Q) U LZ(Q), we have that
18 — @l + 15 — 5*llo < CA™(|ltllms1 + ||5]|m)

and

~ ~h ~ ~ ~ -~
ld = d"lly + 116 = ¢"llo < CR™(|dllm1 + [ llm)-
O

Using this proposition and Theorem 3.1, we are led to the following
result.

THEOREM 3.4. Assume that A is a compact interval of R and that
there exists a branch {(X,%()\) := (u,p,d,$)) € A x X} of nonsingu-
lar solutions of the optimality system (2.18)-(2.20). Assume that the
finite element spaces V" and S" satisfy the conditions (3.21)-(3.23).
Then, there exists a neighborhood O of the origin in X and, for h < hy
small enough, a unique branch {(A, y*()) := (uh,p, d", ¢")) € A x X*}
of solutions of the discrete optimality system (3.24)-(3.28) such that
Y*(A) = ¥(X) € O for all X € A. Moreover,

(354)  [[4"(N) = »Mlx = lu" = ull + [lo" - pllo
+[d" —dfli +[l¢" — ¢llo — 0
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as h — 0, uniformly in A € A. If, in addition, (u,p,d, $) € H"*}(Q) x
H™(Q)NLE(Q) x H™H(Q) x H™(Q)NL2(Q) for A € A, then there exists
a constant C, independent of h, such that
(3.55)  Jlu—u*i +[lp = p*llo + ld — @™l + ll¢ — ¢*Ilo

< CA™([[aM|lm+1 + [P lm + 1M lmt1 + | (X))

uniformly in A € A.

Proof. Clearly, G is a C* polynomial map from Rx X into Y. There-
fore, using (1.6)-(1.8), it is easily shown that D2G(), ) is bounded on all
bounded sets of X. Now, given (u,p,d, ) € X, a direct computation
yields that (¢, 7) € Y satisfies

(57 'f]) = D¢G()\, (U,Py d, ¢)) (V7 q,¢€, T)

for (v,q,e,r) € X if and only if

(¢, %) = Ae(u,v,¥) + Ac(v,u,¥), V¥ € H(Q)

(na é) =-A C(é, v, d) —A C(é, u, e) —A C(V, e, d)

-Xc(u,e,e) — J"(u)(e), Ve € H(Q).
Thus, it follows from (1.6)-(1.8) that Dy,G(A, (u,p,d, ¢)) € L(X,Y). On
the other hand, since (u,p,d, ¢) € X and (v,q,e,r) € X, by the Sobolev
imbedding theorem, u, v, d, e € L%(Q) and du/dz;, Ov/0z;, du/dz; and
ou/0x; € L*(Q) for j = 1,2. Then it follows that ({,7) € Z and that
for (uapad,¢) €X
DyG(), (u,p,d,9)) € L(X, Z).

Next, we turn to the approximation properties of the operator 7. From
Proposition 3.3, we have that (3.32) holds. Since the imbedding of Z
into Y is compact, (3.33) follows from (3.32), and the (3.54) follows from
Theorem 3.1. Also from Proposition 3.3, we may conclude that there
exists a constant C, independent of h, such that

T = THGE $(M)lix < CR™([ullmsr + [Pllm + ldllmsr + [|]]m)-

Then (3.55) follows from Theorem 3.1. O
Now, using Theorem 3.2 we derive an estimate for the error of u”* and

d" in the L*(Q)-norm. Since G(),())) does not depend on p or ¢, we

redefine X = H'(Q) x H'(Q) and X* = V* x V", Y and Z remain as
before.
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THEOREM 3.5. Assume the hypotheses of Theorem 3.4. Then there
exists a constant C, independent of h such that
[[u® — ullo + [|d* — dilo
< CR™ Y2 (JlaW) s + 1PN llm + 1) e + (6N 1)
Proof. We must verify that (3.35)-(3.38) hold in our setting; then
the approximation properties (3.21) and the results of Theorem 3.2 and

Theorem 3.4 easily leads to the conclusion.
In similar method with [9], we can verify (3.35)-(3.38). O

REMARK. By other means, it can be shown [12] that actually
[l — ullo + ||a" - dlfo
< CR™ ([ i1 + [l + 1A [l + [N lm)-

4. Numerical results

The optimality system of equations (2.18)-(2.20) consists of three
groups of equations: the state equations for (w,p), the adjoint state
equation for (d, ¢, u), and the optimality condition for (u,d). We may
construct iterative methods, i.e., to iterate among the three groups of
equations so that at each iteration we are dealing with a smaller size
system of equations. A simple gradient method is given as follows:

1) choose an initial t(®;

2) for each n > 1,

solve for (w(™, p()) from the state equation with t(~1)

(4.56)
va(w®),v) + cu®, ut,v) + b(v, p) = £ v), Vv € HY(®),
b(w™ q) =0, Vg € L3(%),

and

solve (d™, 7(™) from the adjoint state equation
(4.57)

va(d™, e) + c(e,u™,d™) + c(u™, e, d™) + b(e, p™)
+HV x (VxuM)e)=0, VeeHy(Q),

bd™,r) =0, Vre L),
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and
solve for t(™ from the optimality condition

(458) va(@®,d™) + ¢(@®, u®, d™) + c(u™, a®, d™)
' HV X (Vxu™), a®)y =0, i=1,...,m

where u™ = w® + 6@ 4 ¢. @

Now we discuss numerical solution of the optimal control problem. To
carry out the computation we discretized the problem using the finite
element method. We use the Taylor-Hood finite element, that is, the
piecewise quadratic element for the velocity and the bilinear element for
the pressure defined on the uniform parallelogram grid with horizontal
mesh size 0.0625 and vertical mesh size 0.03125 for the finite element
method. .

Since the equations (4.56) is a nonlinear equations, we use the New-
ton’s method based on exact Jacobian. Let us denote the finite element
spaces by V* ¢ H(Q) and S* ¢ L2(Q) for velocity and pressure, respec-
tively. The approximation problem for (4.56)-(4.58) is given as follows:

i) Initialize u”), t©.
For eachn=1,...,
ii) Solve state equation using previous solution u

Find w{" € Vi, pi™ € S, such that

(n—1)
B .

(4.59)
va(w™, v;,) + c(uﬁl"'l), ugz"), Vi) + c(ug") — ugn_l), uﬁl"_l), Vi)
+b(vh,p§l")) =, va), Vvi € Vy,
b(wgn),qh) =0, Vgn € Ss.

iii) Solve adjoint equation using previous solution uﬁl").
Find d{” € V2, %{™ € S, such that

+ c(ep, uﬁl"), dg")) + c(u,g"), e, d;l")) + b(ep, ,(z"))
HV x (Vxu™) e) =0, Ve, eV,
b(d™,r) =0, Vry € Sh.
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iv) Find t{" € U such that

(4.61) va(@®,d"”) + c(@®, u”, ") + c(uy”, a, di")
' +{V x (V x uﬁl")), a®) =0, for 1=1,2

where (f,v) = —a(z,v) and z = @ +t- . At each Newton’s iteration,
we solve the linear system of equations by Gaussian eliminations for
banded matrices. Since quadratic convergence of Newton’s method is
valid only within a contraction ball, we normally first perform a few
(usually 3 or 4 times) simple successive iterations and then switch to the
Newton’s method. The simple successive iterations are defined by

(4.62)

( (n—-1)

va(w® vp) + (™ 0™ vi) + b(vi, B$™) = En,va), YVi € Vi,
b(wgzn): Qh) 0’ th € Sha

va(d™, ey) + c(en, ul”, d™) + c(u™, es, d) + ben, )
\ +(V x (V x u(")),eh) =0, Ve, €V,

b(d™,ry) =0, Vry € Sh,

(u(z) d(n)) +c(u(') u(n) d(ﬂ)) ( (n) a® d(n))
{ +{V x (V x u‘n)),um) =0, for i = 1,2.

In the case of the uncontrolled Navier-Stokes equations, the solution
is unique for a small Reynold numbers and the simple successive approx-
imations converges globally and linearly (See [7}).

In our computation, we take the Reynolds number to be 100(v =
1/100) and the three holes at (0.875, 0), (1.125, 0.5) and (2, 0.375) with
the size 0.0625 and @@, 6V and a® to be the solutions of auxiliary
Stokes problems. We obtain the optimal control ¢; = —2.018(suction),
to = —1.480(suction) and t3 = —0.5901(suction) after 10 Newton itera-
tions.

Figure 3 gives the uncontrolled and controlled flows. Figure 4 shows
the blow-up of the uncontrolled and controlled flows at the corner of the
backward-facing-step. Finally, figure 5 shows the enlargement of the un-
controlled and controlled flows at the corner of the forward-facing-step.
All computations in this paper were carried out on the SUN UltraSparc
2 workstation at Ajou University.
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