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AN UPSTREAM PSEUDOSTRESS-VELOCITY MIXED

FORMULATION FOR THE OSEEN EQUATIONS

Eun-Jae Park and Boyoon Seo

Abstract. An upstream scheme based on the pseudostress-velocity mix-
ed formulation is studied to solve convection-dominated Oseen equations.
Lagrange multipliers are introduced to treat the trace-free constraint and
the lowest order Raviart-Thomas finite element space on rectangular mesh
is used. Error analysis for several quantities of interest is given. Par-
ticularly, first-order convergence in L

2 norm for the velocity is proved.
Finally, numerical experiments for various cases are presented to show
the efficiency of this method.

1. Introduction

We consider the following Oseen equations










αu− ν△u+ b · ∇u+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω is an axis parallel domain in R
2 with Lipschitz continuous boundary

∂Ω. Let f = (f1, f2) and ν > 0 be the given external body force and kinematic
viscosity, respectively. Denote u and p to be the velocity vector and pressure,
respectively. For simplicity, we assume that α > 0 and divb = 0 and b ∈
W 1,∞(Ω)2. Here we use the standard Sobolev spaces.

The Oseen problem occurs as linearized Navier-Stokes equations or often
arises from an iterative procedure such as Picard’s iteration [15]. Generally,
the Oseen equations are convection-dominated and standard centered differ-
ence schemes or piecewise linear approximations produce spurious numerical
oscillations. In the case of convection problem, upwind or upstream weighting
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technique can be used [18]. There are various ways to treat this problem (see,
for example, [2, 5, 6]).

The mixed finite element method has been successfully applied to several
areas of interest, in particular, fluid flows in porous media. This is mainly due
to the fact that the mixed method satisfies local mass conservation property
and provides accurate fluxes whose normal components are continuous across
inter-element boundaries. Mixed methods for linear and nonlinear second order
elliptic problems are studied in [4, 20, 22, 23]. The standard mixed finite ele-
ment method to convection-dominated diffusion problems gives solutions with
spurious oscillations. Hence we need to exploit an upstream weighting scheme
for the convection term in the context of the mixed finite element method. This
idea was developed by Jaffre [16] and by Dawson [12] for the scalar convection-
diffusion problem. The a posteriori error analysis of the upstream weighing
mixed scheme was analyzed in [17]. There, it is shown that the a posteriori er-
ror estimator is not only reliable and efficient, but also computationally robust
for several test problems.

The pseudostress-velocity formulation allows to use the Raviart-Thomas
mixed finite approximation of the Stokes problem [8, 9, 10, 14]. In this pa-
per, we propose and analyze the upstream schemes based on the trace-free
pseudostress and velocity formulation of the Oseen problem. Lagrange mul-
tipliers are introduced to treat the trace-free constraint. We use some of the
ideas presented in [19] to obtain error bounds for velocity and pseudostress
variables on rectangular mesh.

The remainder of this article is organized as follows. The pseudostress-
velocity formulation is derived in the next section. In Section 3, we introduce
the upstream mixed element method for the Oseen problem. The convergence
analysis is given in Section 4. Finally, numerical experiments are presented in
the last section.

2. Pseudostress-velocity formulation

Let us describe some notations and then derive weak formulation. Denote
M2 to be the field of 2× 2 matrix functions.

For vector functions v = (v1, v2)
T and b = (b1, b2)

T , define its gradient
∇v ∈ M2 as a tensor and b · ∇v as a vector:

∇v =











∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y











, b · ∇v =











b1
∂v1
∂x

+ b2
∂v1
∂y

b1
∂v2
∂x

+ b2
∂v2
∂y











.

For a tensor function τ = (τij)2×2, let τ i = (τi1, τi2) denote its ith-row for
i = 1, 2 and define its divergence, normal, and trace by

divτ =

(

divτ 1

divτ 2

)

, n · τ = τn =

(

n · τ 1

n · τ 2

)

, tr τ = τ11 + τ22,
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respectively. Let A : M2 → M2 be a linear map defined by Aτ = τ − 1
2 (tr τ )I,

where I is 2× 2 identity matrix. Introducing the pseudostress variable

σ = ν∇u− p I,(2)

system (1) can be written as
{

κAσ −∇u = 0,

divσ − b · ∇u− αu = −f ,
(3)

where κ = 1/ν. Indeed, notice thatAσ is trace free, hence the incompressibility
constraint divu = 0 is satisfied through divu = tr(∇u) = 0. Also, the pressure

p = −
1

2
trσ

is unique up to a constant. It is clear that the Oseen equations have a unique
solution provided that

∫

Ω p = 0, which implies
∫

Ω

trσ = 0.(4)

So, we use the following function spaces:

H := H(div; Ω) = H(div; Ω)2,

Σ := {τ ∈ H |

∫

Ω

trτ = 0},

V := L2(Ω) = L2(Ω)2,

where H(div; Ω) = {v ∈ L2(Ω)2 | divv ∈ L2(Ω)}. The simple variational
problem of the pseudostress-velocity formulation is to find a pair (σ,u) ∈ Σ×V

such that
{

(κAσ, τ ) + (divτ ,u) = 0, ∀ τ ∈ Σ,

(divσ,v)−G(u,v) = −(f ,v), ∀ v ∈ V,
(5)

where G(u,v) = (b ·∇u,v)+(αu,v). Here, the inner product (σ, τ ) for tensor
functions is

∫

Ω
σ :τ and (u,v) =

∫

Ω
u · v for vector functions. But, this weak

formulation give us difficulties in error analysis and taking the basis for finite
element space of Σ. So, we introduce a Lagrange multiplier to satisfy the trace-
free condition (4). The following weak form is equivalent to (5): Find a pair
(σ,u, ℓ) ∈ H×V × R such that











(κAσ, τ ) + (divτ ,u) + d(τττ , ℓ) = 0, ∀ τ ∈ H,

(divσ,v)−G(u,v) = −(f ,v), ∀ v ∈ V,

d(σσσ, µ) = 0, ∀ µ ∈ R,

(6)

where d(τττ , ℓ) = ℓ
∫

Ω trτττ . We will use the following lemma whose proof can be
found in [4, 7].
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Lemma 2.1. For any τ ∈ Σ, we have

‖trτ‖ ≤ C(‖Aτ‖+ ‖divτ‖−1).

Note that

‖τ‖2 = ‖Aτ‖2 +
1

2
‖trτ‖2,

which, together with Lemma 2.1, implies

‖τ‖ ≤ C(‖Aτ‖+ ‖divτ‖−1) ≤ C(‖Aτ‖+ ‖divτ‖).(7)

3. The upstream mixed element method

Let Rh = {Ri,j : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1} be a quasi-uniform
partition of the domain Ω = (a, b)× (c, d) into a union of rectangle Ri,j :=
[xi, xi+1]× [yj, yj+1] based on axes partitions:

a = x0 < x1 < · · · < xn = b,

c = y0 < y1 < · · · < ym = d.

Let hx
i = xi+1 −xi, h

y
j = yj+1 − yj and its area as |Ri,j | and denote four edges

as follows

exi = {(xi, y) : yj < y < yj+1}, exi+1 = {(xi+1, y) : yj < y < yj+1},

eyj = {(x, yj) : xi < x < xi+1}, eyj+1 = {(x, yj+1) : xi < x < xi+1}.

Let h be the largest mesh size of the rectangluation, i.e., h = maxi,j{h
x
i , h

y
j }.

The partition Rh is quasi-uniform, which means that there exist two constants
C1, C2 such that

C1h
2 ≤ |Ri,j | ≤ C2h

2.

We define mixed finite element space Hh ×Vh ⊂ H×V based on the lowest
Raviart-Thomas space. For Qx

i = Ri−1,j ∪ Ri,j if Ri−1,j or Ri,j exists, define
scalar function φx

i on Qx
i as follows

φx
i (x, y) =























x− xi−1

hx
i−1

if (x, y) ∈ Ri−1,j ,

xi+1 − x

hx
i

if (x, y) ∈ Ri,j ,

0 otherwise.

Similarly, for Qy
j = Ri,j−1 ∪Ri,j if Ri,j−1 or Ri,j exists, define function φy

j on

Qy
j as follows

φy
j (x, y) =























y − yj−1

hy
j−1

if (x, y) ∈ Ri,j−1,

yj+1 − y

hy
j

if (x, y) ∈ Ri,j ,

0 otherwise.
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Then, we define finite element spaces as

Hh : = RT0 = {τ ∈ H(div; Ω) : τ |R ∈ RT0(R), ∀ R ∈ Rh}

= span

{(

φx
i 0
0 0

)

,

(

0 φy
j

0 0

)

,

(

0 0
φx
i 0

)

,

(

0 0
0 φy

j

)}

and

Vh : = span

{(

1
0

)

,

(

0
1

)}

.

Note that each row of tensor function in Hh satisfies the continuity of the
normal component of vector field at interfaces of elements.

For exposition of upstream schemes some notations are in order. We will
represent normal vector as two ways. First, for given edge e of an element
R ∈ Rh we assign a unit normal vector ne, which is the same as the x−direction
or y−direction. Then, given a pair (e, ne) with an interior edge, one can
uniquely define the neighboring elements R+

e and R−
e with common edge e so

that ne points toward R+
e . Second, for given element R a vector n will be

considered ”outward” to an underlying element as in Figure 1.

Figure 1. (a) edge-based normal vector and elements (b)
element-based outward unit normal vector

We define (b · n)+ = max{b · n, 0}, (b · n)− = min{b · n, 0}. For given
element R, (uh)int stands for the trace of uh on ∂R from the interior of R and
(uh)ext is that from the exterior of R. We set the exterior trace on ∂R∩ ∂Ω to
be 0.

Now, we define an upstream mixed finite element approximation of G(u,v)
in (6) as follows:

Gh(u,v) =
∑

R∈Rh

∫

∂R

(

(b · n)+(uh)int + (b · n)−(uh)ext
)

· vh ds+ (αu,v).
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Our upstream mixed finite element approximation of the weak formulation (6)
is to find a pair (σh,uh, ℓh) ∈ Hh ×Vh × R such that











(κAσh, τh) + (divτ h,uh) + d(τh, ℓh) = 0, ∀ τ h ∈ Hh,

(divσh,vh)−Gh(u
h,vh) = −(f ,vh), ∀ vh ∈ Vh,

d(σh, µh) = 0, ∀ µh ∈ R.

(8)

Lemma 3.1. Let ε be the collection of interior edges. Then the bilinear form

Gh(u,v) can be rewritten as follows:

Gh(u,v) =
1

2

∑

e∈ε

∫

e

|b · n | ([u] · [v]) ds+ (αu, v)

+
1

2

∑

e∈ε

∫

e

(b · ne)(uR+
e
+ uR−

e
) · (vR−

e
− vR+

e
) ds, ∀ v ∈ Vh,

where [u] denotes the jump of u on edge e.

Proof. The idea is to rewrite the corresponding sums over the edges. For given
interior edge e and a pre-assigned unit normal vector ne, there are two elements
R+

e and R−
e . We assume that R+

e contribute with the vector n ≡ −ne and R−
e

contribute with the vector n ≡ ne as reference to Figure 1. See [11] for a
complete proof. �

Lemma 3.2. For any v ∈ Vh, the bilinear form Gh(v,v) satisfies:

Gh(v,v) = (αv,v) +
1

2
|||v|||2,

where |||v|||2 =
∑

e∈ε

∫

e

|b · n|([v] · [v]) ds.

Proof. It follows from Lemma 3.1 that

1

2

∑

e∈ε

∫

e

(b · ne)(vR+
e
+ vR−

e
) · (vR−

e
− vR+

e
) ds

=
1

2

∑

e∈ε

∫

e

(b · ne)

[

∣

∣

∣vR−

e

∣

∣

∣

2

−
∣

∣

∣vR+
e

∣

∣

∣

2
]

ds

=
1

2

∑

R∈Rh

∫

∂R

(b · n)v · v ds

=
1

2

∑

R∈Rh

∫

R

divb(v · v) dxdy = 0.

The last identity follows from the incompressibility condition divb = 0. �

Now we are ready to prove unique solvability of our discrete system.

Theorem 3.3. For sufficiently small h, there exists a unique solution (σh, uh,

ℓh) in Hh ×Vh × R for system (8).
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Proof. It is sufficient to prove that the problem has just trivial solution when
f = 0. Selecting τh = σh, vh = uh and µh = ℓh in (8), we get

{

(κAσh,σh) + (divσh,uh) = 0,

(divσh,uh)−Gh(u
h,uh) = 0.

So, we have that

(κAσh,σh) +Gh(u
h,uh) = 0.

Since (κAσh,σh) = κ‖Aσh‖2 and Gh(u
h,uh) = α‖uh‖2 + 1

2 |||u
h|||2, we have

‖Aσh‖ = 0 and ‖uh‖ = 0.

Next, if we choose vh = divσh in second equation of (8), we get from (7)

‖σh‖ = 0.

Finally, from the first equation in (8)

d(τ h, ℓh) = −(κAσh, τh)− (divτ h,uh) = 0.

Choosing τ h ∈ Hh with
∫

Ω trτ h 6= 0, we have ℓh = 0 as required. �

Remark 3.4. If we choose a constant tensor τh = 1
2|Ω|

(

ℓ−ℓh 0

0 ℓ−ℓh

)

, then τ h

belongs to Hh and satisfies that

ℓ− ℓh =

∫

Ω

trτ h.

Noting that Aτ h = 0 and from error equation

(ℓ− ℓh)2 = d(τ h, ℓ− ℓh)

= −(κA(σ − σh), τ h)− (divτh,u− uh)

= −(κ(σ − σh),Aτ h)− (divτh,u− uh) = 0,

we must have ℓ = ℓh.

4. Error analysis

To estimate errors, we define a projection using mean value of integration.
For a given Ri,j and scalar function p(x, y), put

p̄(xi) =
1

hy
j

∫ yj+1

yj

p(xi, y) dy

and define an interpolation πxp for (x, y) ∈ Ri,j

πxp(x, y) = p̄(xi)φ
x
i (x, y) + p̄(xi+1)φ

x
i+1(x, y),

which is piecewise constant in y and piecewise linear in x. Similarly we define
an interpolation πyp(x, y), which is piecewise constant in x and piecewise linear
in y. Define

Πh : H(div;R) −→ RT0(R)
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by

Πhp = (πxp1, πyp2) for p = (p1, p2) ∈ H(div;R).

Then, the projection satisfies the followings
∫

e

(p−Πhp) · n ds = 0 for each edge e ∈ ∂R.(9)

Thus, we extend this projection to tensor σ = ( σ11 σ12
σ21 σ22

) ∈ H, we define Πhσ

as follows

Πhσ
∣

∣

R
=

(

πxσ11 πyσ12

πxσ21 πyσ22

)

.(10)

Then,

Πhσ :=
∑

R∈Rh

Πhσ
∣

∣

R
.

Next, we define a piecewise constant interpolation Phv for v ∈ L2(R) as follows

Phv =
1

|R|

∫

R

v(x, y) dxdy.

So, for u = ( u1
u2

) ∈ L2(Ω), define an interpolation Phu ∈ Vh as follows

Phu =
∑

R∈Rh

(

Phu1

Phu2

)

.(11)

From (9), it is easy to check the validity of the commutativity property

divΠhτ = Phdivτ , ∀ τ ∈ H.

Thus, we obtain convergence results for projections:

Lemma 4.1. For σ ∈ H, we have the following approximation properties

‖σ −Πhσ‖ ≤ Ch‖σ‖1,(12)

‖div(σ −Πhσ)‖ ≤ Ch‖divσ‖1.(13)

Lemma 4.2. For σ ∈ H, the interpolation Πhσ satisfies the followings

(κA(σ −Πhσ), τ ) ≤ κCh‖Aσ‖1‖τ‖, ∀ τ ∈ Hh(14)

and

(div(σ −Πhσ),v) = 0, ∀ v ∈ Vh.(15)

Proof. It follows from Lemma 4.1 and the commuting property AΠhσ =
ΠhAσ that

‖A(σ −Πhσ)‖ ≤ ‖Aσ −ΠhAσ‖ ≤ Ch‖Aσ‖1.

Since v ∈ Vh is constant on R, it follows from the definition of Πhσ that we
have

∫

R

v · (divΠhσ) dxdy =

∫

∂R

v · (n ·Πhσ) ds
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=

∫

∂R

v · (n · σ) ds =

∫

R

v · (divσ) dxdy.
�

Now, for the error analysis, define

ξσ = Πhσ − σh, ξu = Phu− uh, ησ = σ −Πhσ, ηu = u−Phu.

Lemma 4.3. When h is sufficiently small there is a positive constant C inde-

pendent of h such that





∑

ex
i

∣

∣ξu,i,j − ξu,i−1,j

∣

∣

2





1
2

≤ κC‖Aξσ‖+ κCh‖σ‖1,(16)





∑

eyj

∣

∣ξu,i,j − ξu,i,j−1

∣

∣

2





1
2

≤ κC‖Aξσ‖+ κCh‖σ‖1,(17)

where ξ
u
=
(

ξu1

ξu2

)

and ξ
σ
=
(

ξσ11
ξσ12

ξσ21
ξσ22

)

.

Proof. Let Qx
i = Ri−1,j ∪ Ri,j . Selecting τττ =

(

φx
i 0
0 0

)

in (6) and (8) we have
that

κ

∫

Qx
i

(

σ11 −
1

2
trσ

)

φx
i =

∫

Qx
i

∂φx
i

∂x
u1 − ℓ

∫

Qx
i

φx
i(18)

= hy
j (Phu1,i−1,j − Phu1,i,j)− ℓ

∫

Qx
i

φx
i

and

κ

∫

Qx
i

(

σh
11 −

1

2
trσh

)

φx
i =

∫

Qx
i

∂φx
i

∂x
uh
1 − ℓh

∫

Qx
i

φx
i(19)

= hy
j (u

h
1,i−1,j − uh

1,i,j)− ℓh
∫

Qx
i

φx
i .

Note that

κ

∫

Qx
i

(

(σ11 − σh
11)−

1

2
(trσ − trσh)

)

φx
i ≤ κ

∫

Qx
i

|Aσ11 −Aσh
11|

≤ κ

∫

Qx
i

(|Aξσ11
|+ |Aησ11

|) .

Since ℓ = ℓh, by subtracting (18) from (19), we have that

|ξu1,i,j − ξu1,i−1,j | ≤ κ
1

hy
j

∫

Qx
i

|Aξσ11
|+ κC

1

hy
j

∫

Qx
i

|Aησ11
|.



276 EUN-JAE PARK AND BOYOON SEO

So, using (a+ b)2 ≤ 2(a2 + b2) and the Hölder inequality,
∑

ex
i

(ξu1,i,j − ξu1,i−1,j)
2

≤ C
∑

ex
i

(

κ2 |Qx
i |

(hy
j )

2

∫

Qx
i

|Aξσ11
|2 + κ2 |Qx

i |

(hy
j )

2

∫

Qx
i

|Aησ11
|
2

)

≤ κ2C‖Aξσ‖
2 + κ2Ch2‖σ‖21.

If we select τττ =
( 0 0
φx
i 0

)

, we have that
∑

exi

(ξu2,i,j − ξu2,i−1,j)
2
≤ κ2C‖Aξσ‖

2 + κ2Ch2‖σ‖21,

which completes the proof of (16). The proof of (17) follows similarly. �

Now we estimate G(u,vh) − Gh(u
h,vh). We assume that u is continuous

in the whole domain for simplicity. Note that for vh ∈ Vh, we have

G(u,vh) =
∑

R

∫

R

(b · ∇u) · vh ds+ (αu,vh)

=
∑

R

∫

∂R

(b · n)u · vh ds+ (αu,vh).

Thus, we find that

G(u,vh) =
∑

Ri,j

∫

∂Ri,j

(b · n)u · vh
i,j ds+ (αu,vh)

=
∑

ex
i

∫

exi

((b1n1)
+ + (b1n1)

−)u · (vh
i−1,j − vh

i,j) ds

+
∑

ey
j

∫

ey
j

((b2n2)
+ + (b2n2)

−)u · (vh
i,j−1 − vh

i,j) ds+ (αu,vh)

and

Gh(u
h,vh)

=
∑

Ri,j

∫

∂Ri,j

(

(b · n)+(uh)int + (b · n)−(uh)ext
)

· vh
i,j ds+ (αuh,vh)

=
∑

ex
i

∫

ex
i

((b1n1)
+uh

i−1,j + (b1n1)
−uh

i,j) · (v
h
i−1,j − vh

i,j) dy

+
∑

eyj

∫

ey
j

((b2n2)
+uh

i,j−1 + (b2n2)
−uh

i,j) · (v
h
i,j−1 − vh

i,j) dx+ (αuh,vh).

Writing u = Phu+ (u−Phu) and using

Phui−1,j + (u−Phui−1,j) = Phui,j + (u−Phui,j),
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we arrive at

G(u,vh)−Gh(u
h,vh)−Gh(ξu,v

h) = (α(u−Phu),v
h)

(20)

+
∑

ex
i

∫

ex
i

(

(b1n1)
+(u−Phui−1,j) + (b1n1)

−(u−Phui,j)
)

· (vh
i−1,j − vh

i,j) dy

+
∑

ey
j

∫

ey
j

(

(b2n2)
+(u−Phui,j−1) + (b2n2)

−(u−Phui,j)
)

· (vh
i,j−1 − vh

i,j) dx.

Lemma 4.4. Under the assumption of Lemma 4.3 we have that

G(u, ξ
u
)−Gh(u

h, ξ
u
)−Gh(ξu, ξ

u
)

≤ κCh‖u‖1‖Aξ
σ
‖+ κCh2‖σ‖1‖u‖1 + αCh‖u‖1‖ξu‖.

Proof. Note that the unit outward normal vector is n = ±(1, 0) on exi and
n = ±(0, 1) on eyj . By definition of projection, for k = 1, 2 the L2-projection
Phuk is constant on Ri,j . So, it follows that
∫

ex
i

(uk − Phuk) dy =
1

hx
i

∫

Ri,j

(uk(xi, y)− uk(x, y)) dxdy ≤

∫

Ri,j

∣

∣

∣

∣

∂uk

∂x

∣

∣

∣

∣

dxdy.

By taking vh = ξu in (20), we have that

∑

ex
i

∫

ex
i

[(b1n1)
+(ui−1,j−Phui−1,j)+(b1n1)

−(ui,j−Phui,j)] · (v
h
i−1,j − vh

i,j) dy

(21)

≤ C
∑

ex
i

(∫

Ri,j

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dxdy
∣

∣

∣ξui,j
− ξui−1,j

∣

∣

∣

)

≤ Ch‖u‖1

[

∑

ex
i

∣

∣

∣
ξ
ui,j

− ξ
ui−1,j

∣

∣

∣

2
]1/2

≤ κCh‖u‖1‖Aξσ‖+ κCh2‖σ‖1‖u‖1.

Similarly by taking vh = ξu in (20), we have

∑

ey
j

∫

ey
j

[(b2n2)
+(ui,j−1−Phui,j−1)+(b2n2)

−(ui,j−Phui,j)] · (v
h
i,j−1−vh

i,j) dx

(22)

≤ C
∑

ey
j

(∫

Ri,j

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

dxdy
∣

∣

∣ξui,j
− ξui,j−1

∣

∣

∣

)

≤ κCh‖u‖1‖Aξσ‖+ κCh2‖σ‖1‖u‖1.
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Since ‖u − Phu‖ ≤ Ch‖u‖1, adding the equation (21) and (22), we complete
the proof from (20). �

We are now ready to prove the first order convergence of the velocity and
trace-free pseudostress variables.

Theorem 4.5. For h sufficiently small, there exists a constant C independent

of h such that

‖A(σ − σh)‖ ≤ Ch (‖σ‖1 + ‖u‖1) ,(23)

‖u− uh‖ ≤ Ch (‖σ‖1 + ‖u‖1) .(24)

Proof. Note that σ − σh = ησ + ξσ. Subtracting (8) from (6) and using (15),
we have that











(κAξ
σ
, τ h) + (divτh, ξ

u
) + d(τ h, ℓh − ℓ) = −(κAη

σ
, τ h), ∀ τ h ∈ Hh,

(divξσ ,v
h) +Gh(u

h,vh)−G(u,vh) = 0, ∀ vh ∈ Vh,

d(ξσ, µ
h) = 0, ∀ µh ∈ R.

(25)

Taking τh = ξσ, v
h = ξu and µ = ℓh − ℓ = 0, we have that

{

(κAξσ , ξσ) + (divξσ, ξu) = −(κAησ, ξσ),

(divξ
σ
, ξ

u
) +Gh(u

h, ξ
u
)−G(u, ξ

u
) = 0.

(26)

So, it follows that

(κAξ
σ
, ξ

σ
) +G(u, ξ

u
)−Gh(u

h, ξ
u
) = −(κAη

σ
, ξ

σ
)(27)

≤ κCh‖Aξσ‖‖σ‖1.

Note that from Lemma 3.2,

α‖ξu‖
2 ≤ Gh(ξu, ξu).

Applying (27) and Lemma 4.4, we have that

κ‖Aξσ‖
2 + α‖ξu‖

2 ≤ (κAξσ, ξσ) +Gh(ξu, ξu)

≤
[

(κAξσ, ξσ) +G(u, ξu)−Gh(u
h, ξu)

]

−
[

G(u, ξ
u
)−Gh(u

h, ξ
u
)−Gh(ξu, ξu)

]

≤ κCh‖Aξσ‖‖σ‖1

+ κCh‖u‖1‖Aξσ‖+ κCh2‖σ‖1‖u‖1 + αCh‖u‖1‖ξu‖

≤
1

2
κ‖Aξσ‖

2 +
1

2
α‖ξu‖

2

+ Ch2
(

κ‖σ‖21 + (κ+ α)‖u‖21 + κ‖σ‖1‖u‖1
)

.

Thus,

κ‖Aξσ‖
2 + α‖ξu‖

2 ≤ Ch2
(

κ‖σ‖21 + (κ+ α)‖u‖21 + κ‖σ‖1‖u‖1
)

.
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Therefore, using ‖A(σ−Πhσ)‖ ≤ Ch‖σ‖1 and ‖u−Phu‖ ≤ Ch‖u‖1 and the
triangle inequality, we have

‖A(σ − σh)‖ ≤ Ch(‖σ‖1 + ‖u‖1),

‖u− uh‖ ≤ Ch(‖σ‖1 + ‖u‖1). �

In the next theorem, we prove stability of σh in the H(div; Ω)-norm. Note
that in the scalar convection-diffusion problem, a weaker stability result was
obtained [16]; see also Theorem 3.2 in [17].

Theorem 4.6. For h sufficiently small, there exists a constant C independent

of h such that

‖σ − σh‖H(div;Ω) ≤ C (‖σ‖1 + ‖u‖1) .(28)

Proof. Consider error equation (25). Taking τ h = ξσ, v
h = divξσ and µ =

ℓh − ℓ = 0, we get that
{

(κAξσ , ξσ) + (divξσ, ξu) = −(κAησ, ξσ),

(divξ
σ
,divξ

σ
) +Gh(u

h,divξ
σ
)−G(u,divξ

σ
) = 0.

(29)

Adding two equations in (29) leads to

(κAξσ, ξσ) + (divξσ,divξσ)(30)

= − (κAησ , ξσ)− (divξσ, ξu) +G(u,divξσ)−Gh(u
h,divξσ).

To estimate (30), using the relation

G(u,vh) =
∑

R

∫

∂R

(b · n)u · vh ds+ (αu,vh)

=
∑

R

∫

∂R

((b · n)+u+ (b · n)−u) · vh ds+ (αu,vh),

we have

G(u,vh)−Gh(u
h,vh) = (α(u− uh),vh)

+
∑

R

∫

∂R

(b · n)+(u− (uh)int) · vh ds

+
∑

R

∫

∂R

(b · n)−(u− (uh)ext) · vh ds

= (α(u− uh),vh) + I + II.

Note that vh is a constant vector with support R.

I =
∑

R

∫

∂R

(b · n)+(u− (uh)int) · vh ds

≤ C
∑

R

|vh|

∫

∂R

|u− uh| ds
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≤ C
∑

R

|vh|h1/2

(∫

∂R

|u− uh|2 ds

)1/2

≤ Ch−1/2
∑

R

(h|vh|)
(

‖u− uh‖0,∂R
)

≤ Ch−1/2

(

∑

R

h2|vh|2
)1/2(

∑

R

‖u− uh‖20,∂R

)1/2

.

By the trace theorem(c.f., [3]) and Theorem 4.5,

I ≤ Ch−1/2‖vh‖0

(

∑

R

‖u− uh‖0,R‖u− uh‖1,R

)1/2

≤ Ch−1/2

(

‖u− uh‖0‖u‖1

)1/2

‖vh‖0

≤ C(‖σ‖1 + ‖u‖1)‖v
h‖0.

Similarly, we get
II ≤ C(‖σ‖1 + ‖u‖1)‖v

h‖0.

Thus, taking vh = divξσ,

|G(u,divξ
σ
)−Gh(u

h,divξ
σ
)| ≤ C (‖σ‖1 + ‖u‖1) ‖divξσ‖0.

Therefore, we get the following estimate from (7) and (30)

‖ξ
σ
‖2
H(div;Ω) = ‖ξ

σ
‖2 + ‖divξ

σ
‖2

≤ C(‖Aξ
σ
‖2 + ‖divξ

σ
‖2)

≤ C
(

‖Aησ‖‖ξσ‖+ ‖ξu‖‖divξσ‖+ (‖σ‖1 + ‖u‖1) ‖divξσ‖
)

≤ C
(

‖Aησ‖+ ‖ξu‖+ ‖σ‖1 + ‖u‖1

)

‖ξσ‖H(div;Ω).

By the triangle inequality

‖σ − σh‖H(div;Ω) ≤ ‖ησ‖H(div;Ω) + ‖ξσ‖H(div;Ω) ≤ C (‖σ‖1 + ‖u‖1) . �

5. Numerical results

In this section, we perform various numerical experiments to test the up-
stream scheme based on the pseudostress-velocity formulation. All experiments
were run in Matlab (see [1]).

5.1. Example 1

We solve Oseen equations (1) in the unit square Ω = (0, 1)2 with α = 2 and
b = (2, 3)T . The function f is determined by the following exact solution,

u =





π sin(πx)2 sin(2πy)

−π sin(2πx) sin(πy)2



 , p(x, y) = cos(πx) cos(πy).
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By the definition of the pseudostress in (2), we have

σ = ν∇u− p I

=

(

νπ2 sin(2πx) sin(2πy)− p(x, y) 2νπ2 sin2(πx) cos(2πy)
−2νπ2 cos(2πx) sin2(πy) −νπ2 sin(2πx) sin(2πy)− p(x, y)

)

.

Partition the domain Ω = (0, 1)2 by uniform rectangular elements Ri,j =
(ih, jh) for i, j = 0, 1, . . . , n with h = 1/n. When n = 32, Figure 2 shows the
exact vector field of velocity and contours of pressure, respectively. If we write

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2. Exact vector field of velocity and contours of pressure

the pseudostress σ and velocity u as

σ =
M
∑

j=1

ΣjΨj , u =
N
∑

j=1

Ujφj ,

where M = 4n(n+1), N = 2n2. The discrete weak form (8) has the following
matrix form:





B CT ET

C −G 0
E 0 0









Σ
U
ℓ



 =





0
−F
0





Note that rank(B) = M − 1 and G is positive definite by Lemma 3.2. If we
choose ν smaller, the Oseen equations become more convection-dominated. The
table 1 displays the L2-norm errors of Aσ and velocity u and their convergence
orders (C.O.) compared with L2-norm and H(div; Ω)-norm errors for σ. From
the table we confirm our theory presented in this paper.

5.2. Lid-driven cavity flow

The next problem is that of lid-driven flow in a square cavity. This is
a classic test problem used in fluid dynamics, known as dirven-cavity flow.
Our aim here is to check the performance of the scheme with b = 0. We
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Table 1. Errors and Convergence Orders

N ‖A(σ − σh)‖ C.O. ‖u− uh‖ C.O. ‖σ − σh‖ C.O. ‖σ − σh‖H(div;Ω) C.O.

ν = 1
4 5.7847 ∗ 1.0800 ∗ 6.1823 ∗ 62.0662 ∗
8 2.9490 0.97 0.5726 0.92 3.2408 0.93 34.1748 0.86
16 1.4605 1.01 0.2892 0.99 1.6213 1.00 17.9315 0.93
32 0.7203 1.02 0.1445 1.00 0.8061 1.01 9.3534 0.94
64 0.3566 1.01 0.0722 1.00 0.4016 1.01 4.9647 0.91

ν = 0.1
4 1.0358 ∗ 1.3760 ∗ 1.4094 ∗ 10.8401 ∗
8 0.6717 0.62 0.8410 0.71 1.2398 0.19 8.3898 0.37
16 0.3947 0.77 0.4760 0.82 0.8637 0.52 6.2219 0.43
32 0.2186 0.85 0.2573 0.89 0.5193 0.73 4.3634 0.51
64 0.1165 0.91 0.1349 0.93 0.2873 0.85 2.9226 0.58

ν = 0.01
4 0.1373 ∗ 1.5516 ∗ 0.7004 ∗ 2.7386 ∗
8 0.1085 0.34 0.9647 0.69 0.7285 -0.06 3.2025 -0.23
16 0.0747 0.54 0.5536 0.80 0.6578 0.15 3.4616 -0.11
32 0.0454 0.72 0.3014 0.88 0.4600 0.52 3.0307 0.19
64 0.0264 0.78 0.1587 0.93 0.2718 0.76 2.6118 0.21

ν = 0.001
4 0.0145 ∗ 1.5820 ∗ 0.7041 ∗ 2.3247 ∗
8 0.0136 0.09 1.0003 0.66 0.7023 0.00 2.3364 -0.01
16 0.0141 −0.05 0.5879 0.77 0.6734 0.06 2.3478 -0.01
32 0.0112 0.34 0.3195 0.88 0.5388 0.32 2.0837 0.17
64 0.0071 0.66 0.1655 0.95 0.3180 0.76 1.4674 0.51

impose no-slip boundary conditions, that is, u1(x, 1) = 1 for −1 < x < 1 and
u1(−1, 1) = u1(1, 1) = 0. We solve the following Stokes equations with uniform
mesh.

{

−△u+∇p = 0 in (−1, 1)× (−1, 1),

div u = 0 in (−1, 1)× (−1, 1).

We plot exponentially spaced streamlines to illustrate the Moffatt eddies in
the bottom corners. These streamlines are computed from the pseudostress
solution by solving the following Poisson equation numerically subject to a
zero Dirichlet boundary condition.

−∇2φ =
∂u2

∂x
−

∂u1

∂y
:= ω,(31)

where φ is a scalar stream function and ω is the vorticity (see [13, 21]). Because
our method is based on the pseudostress-velocity formulation we calculate the
pseudostress directly. Since

κAσ = ∇u =

(

∂u1

∂x
∂u1

∂y
∂u2

∂x
∂u2

∂y

)

,
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Figure 3. Contours of the stream function with exponentially distributed

we can use more accurate approximation of ω from the computed pseudostress
so that we shall solve equation (31) more efficiently.

5.3. Oseen flow over a step

The final test problem is an Oseen flow over a backward facing step.
{

− 1
Re△u+ b · ∇u+∇p = 0 in Ω,

div u = 0 in Ω.
(32)

The domain Ω is L-shape as Figure 4. The Reynolds number Re is 100 and we
impose a constant left-to-right wind b = (1, 0) for y ≥ 0 and b = (0, 0) for
y < 0. Inflow velocity is u1(−1, y) = y(1− y) for 0 < y < 1. Outflow boundary
condition is

{

−p+ 1
Re

∂u1

∂x = 0,
∂u2

∂x = 0.
(33)

This condition is equivalent to σn = 0. The other boundary velocities are all
zero. All above conditions are depicted in Figure 4.

✲ ✲ ✲ ✲ ✲ ✲ ✲

✲ ✲ ✲ ✲ ✲ ✲ ✲

✲ ✲ ✲ ✲ ✲ ✲ ✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

b=(1,0)

b=(0,0)

Figure 4. Domain and boundary conditions
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We compute the approximation solution of equations (32) with pseudostress-
velocity formulation involving our upstream method. From the velocity com-
puted already, the streamlines are plotted by Matlab automatically.
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Figure 5. The streamlines when Re is 100
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