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A NONCONFORMING PRIMAL MIXED FINITE ELEMENT

METHOD FOR THE STOKES EQUATIONS

Sungmin Cho and Eun-Jae Park

Abstract. In this article, we propose and analyze a new nonconforming
primal mixed finite element method for the stationary Stokes equations.
The approximation is based on the pseudostress-velocity formulation.
The incompressibility condition is used to eliminate the pressure vari-
able in terms of trace-free pseudostress. The pressure is then computed
from a simple post-processing technique. Unique solvability and optimal
convergence are proved. Numerical examples are given to illustrate the
performance of the method.

1. Introduction

Basic mathematical models in fluid and solid mechanics are expressed in

terms of a set of partial differential equations with the physical unknowns such

as pressure, velocity, stress, and/or an appropriate energy variable. For exam-

ple, the original physical equations for incompressible Newtonian flows induced

by the conservation of momentum and the constitutive law are given by the

stress-velocity-pressure formulation [18]. The name and many of the original

concepts for the mixed methods are originated in solid mechanics where it was

desirable to have simultaneous approximations of certain quantities of inter-

est. For the Stokes equations governing flows of incompressible viscous fluids,

Galerkin mixed methods based on the pressure-velocity formation are well-

understood [19]. The pseudostress-displacement formulation was proposed by

Arnold and Falk [2] for the equations of linear elasticity which does not require

symmetric tensors and hence facilitates the use of Raviart-Thomas mixed finite

elements developed for scalar second order elliptic equations. The pseudostress-

velocity formulation is then exploited to study first-order div least-squares finite

element methods for the Stokes system by Cai, Lee, and Wang [12].
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Primal mixed finite element methods have been studied for diffusion and

heat equations [3, 4, 11, 14, 20, 23, 24]. The method gains popularity thanks

to the following features. First, it has a local mass conservation property

and conserves fluxes node-wise. Nodal fluxes are of interest in some appli-

cations. For example, nodal fluxes are related with nodal forces in structural

mechanics. Moreover, the primal mixed finite element method can resolve layer

structures for solutions to partial differential equations such as semiconductor

device equations, especially drift-diffusion equations [11, 23]. Second, the pri-

mal mixed method provides a softening of the quadratic form associated with

the principal part of model equations and it is a starting point of study of

the method of enhanced assumed strains, which is popular in computational

mechanics [6, 7, 8, 25, 26].

For applications to computational fluid dynamics, finite element methods of

nonconforming type are attractive since they easily fulfil the discrete version

of the inf-sup condition [17, 19]. Another advantage of nonconforming finite

elements is that the unknowns are associated with the element faces so that

each degree of freedom belongs to at most two elements. Various applications of

dual/primal mixed finite element methods can be found in [1, 10, 15, 19, 21, 24].

In this paper, we use the incompressibility condition to eliminate the pressure

variable from the Stokes system which yields the traceless pseudostress condi-

tion. We propose and analyze a nonconforming primal mixed finite element

method for the velocity and pseudostress formulation of the Stokes system.

The pressure is then computed from a simple post-processing technique.

The organization of the remainder of the paper is as follows. In the next

section, we explain the pseudostress-velocity formulation for the Stokes prob-

lem and prove unique solvability of the variational problem appropriate for

primal mixed method. In Section 3, a nonconforming primal mixed procedure

is introduced. In Section 4, we derive optimal order error estimates in L2-norm

on the triangular mesh. Numerical results are given in the last section which

supports our theory developed in this paper.

We finish this section with some notations used in this paper. Let R
2 be

the field of two-dimensional vector space and denote the field of 2 × 2 matrix

functions M2. Throughout the paper, we adopt the convention that a bold

Greek character denotes a matrix in M2 and a bold Latin character in lower

case denotes a vector in R2. For a vector function v = (v1, v2)
t ∈ R2, we define

∇v =

(

∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

)

, divv =
∂v1

∂x
+
∂v2

∂y
,

and for a tensor function τ = (τij)1≤i,j≤2 ∈ M2, we define

divτ =

(

∂τ11
∂x

+ ∂τ12
∂y

∂τ21
∂x

+ ∂τ22
∂y

)

, trτ =

2
∑

i=1

τii.
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The inner-product between vectors and the Frobenius inner-product between

tensors are defined, respectively, by

u · v = u1v1 + u2v2 and σ : τ =
∑

1≤i,j≤2

σijτij .

We use the standard Sobolev spacesHs(ω) andHs
0 (ω) for s ≥ 0 with associated

norm ‖ · ‖s,ω. We let (·, ·)ω denote the L2(ω) inner product. In the case ω = Ω

the lower index is dropped, e.g., ‖ · ‖s,Ω = ‖ · ‖s and (·, ·)Ω = (·, ·). When

s = 0, we simply write ‖ · ‖0,Ω = ‖ · ‖. We define H−s(ω) := (Hs
0(ω))

∗ as

the dual space of Hs
0(ω). Extending the definitions to vector- and matrix-

valued functions, we let Hs(ω,R2) (or simply [Hs(ω)]2) and Hs(ω,M2) (or

[Hs(ω)]2×2) denote the Sobolev spaces over the set of 2-dimensional vector-

and 2×2 matrix-valued functions, respectively. We still use (·, ·)ω to denote the

L2(ω,R2) and L2(ω,M2) inner product. Also, ‖v‖2L2(ω) := (v,v)ω =
∫

ω
v ·vdx

and ‖τ‖2L2(ω,M2)
:= (τ , τ )ω =

∫

ω
τ : τdx.

2. Pseudostress-velocity formulation

Let Ω be a bounded polygonal domain in R2 with smooth boundary ∂Ω.

Consider the Stokes equations:

(1)







−ν△u+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

where f = (f1, f2)
t is the external body force, ν is the kinematic viscosity of the

fluid, and u = (u1, u2)
t and p are the velocity vector and pressure, respectively.

To obtain the pseudostress-velocity formulation of (1), introduce a new in-

dependent pseudostress tensor

(2) σ = ν∇u− pI,

where I is a 2×2 identity matrix. Taking trace of (2) and using the divergence

free condition give

(3) p = −1

2
trσ.

Also let A : M2 → M2 be the deviatoric operator

(4) Aτττ = τττ − 1

2
tr(τττ )I for all τττ ∈ M2.

We immediately notice that A is a projection onto the trace-free subspace of

M2 and

ker(A) = {fI | f is a scalar function}.
Also, we can easily show that the following properties of the operator A hold,

(Aτ ,σ) = (τ ,Aσ),

(Aτ ,Aτ ) = (Aτ , τ )
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= (τ , τ )− 1

2
(trτ , trτ ),(5)

||Aτ || ≤ ||τ ||.
Then, from (2), (3), and (4), we arrive at κAσσσ = ∇u where κ is 1

ν
. Thus, by

the definition of the pseudostress σ, which is not necessarily symmetric, system

(1) can be rewritten as:

(6)

{

κAσ −∇u = 0 in Ω,

−divσ = f in Ω,

with the same boundary condition. It is well-known that the stationary Stokes

equation has a unique solution provided that the average condition
∫

Ω

p dx = 0,

which, together with (3), implies the trace-free condition
∫

Ω

trσdx = 0.

With the function spaces

L =

{

τ ∈ [L2(Ω)]2×2 :

∫

Ω

trτdx = 0

}

and V =
{

v ∈ [H1
0 (Ω)]

2
}

,

we arrive at the following primal variational formulation for the equation (6):

For given f ∈ [L2(Ω)]2, find {σ,u} ∈ L×V such that

(7)

{

(κAσ, τ )Ω − (τ ,∇u)Ω = 0 ∀ τ ∈ L

(σ,∇v)Ω = (f ,v) ∀v ∈ V.

We will find the following lemmas useful in proving the existence and unique-

ness of problem (7). First, we have from integration by parts:

Lemma 2.1. Let v ∈ V. Then we have
∫

Ω

∇vdx = 0,

∫

Ω

tr(∇v)dx =

∫

Ω

divvdx = 0.

The following is well-known (see, for example, [10], [13]).

Lemma 2.2. For any τ ∈ L, we have

||τ ||0,Ω . ‖Aτ‖0,Ω + ‖divτ‖0,Ω.
Here and throughout the paper, we use the notation X . Y which means

that there exists a generic constant C independent of the mesh parameter h

such that

X ≤ CY.

Theorem 2.3. The variational problem (7) has a unique solution.
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Proof. Define the bilinear form b : L×V → R by

b(τ ,v) = (τ ,∇v)Ω.

By Lemma 2.1, for any v ∈ V, we have ∇v ∈ L and

(8) sup
τ∈L

b(τ ,v)

‖τ‖0
≥ b(∇v,v)

‖∇v‖0
= ||∇v||0 & ||v||1.

Define the bilinear form a : [L2(Ω)]2×2 × [L2(Ω)]2×2 → R by

(σ, τ )Ω 7→ (κAσ, τ )Ω.

Let B : L → V′ be a linear continuous operator such that (Bτ ,v) = b(τ ,v).

Then we see

kerB = {τ ∈ L : b(τ ,v) = 0 ∀v ∈ V}
= {τ ∈ L : (τ ,∇v)Ω = 0 ∀v ∈ V}
= {τ ∈ L : divτ = 0}.

It shows that τ ∈ kerB is divergence free and hence Lemma 2.2 implies

(9) ||τ ||20 . ||Aτ ||20 = νa(τ , τ ), ∀τ ∈ kerB.

Now the inf-sup condition (8) and coercivity condition (9) imply that the vari-

ational problem (7) has a unique solution thanks to the theory of saddle point

problems (see [10], [19]). �

Remark 2.4. Theorem 2.3 implies the solution σ belongs to [L2(Ω)]2×2. Indeed,

it follows from the second equation of (7) that σ admits weak divergence and

divσ = −f in Ω.

3. Nonconforming mixed finite element methods

In this section, we shall consider finite dimensional approximation of our

primal mixed variational formulation given by (7). For this, we consider non-

conforming mixed finite elements. Let {Th} be a family of quasi-uniform tri-

angulations of Ω by triangles T of diameter hT . For triangle Tj ∈ Th, let

Γ = ∂Ω, Γj = Γ ∩ ∂Tj, ejk = ekj = ∂Tj ∩ ∂Tk.
Also, we define Eh to be the set of all edges of Th. Given T ∈ Th, we let E(T )
be the set of its edges, and let E(Ω) be the set of all boundary edges of Ω, that

is,

E(Ω) = {e ∈ Eh : e ∈ E(T ) ∩ Γ, T ∈ Th}.
In Section 2, we reviewed a primal mixed finite element method for continuous

elliptic problems. To formulate a primal mixed version of discrete problem by

using nonconforming finite elements, we need a finite element approximation

to the space L and V. Define

(10) Lh =

{

τ ∈ L : τ |T ∈ (P0(T ))
2×2,

∫

Ω

trτ = 0

}

.
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Notice that the space Lh inherits the trace free constraint from the space L.

And define the space Vh as follows:

Vh = {v ∈ V : v|T ∈ (P1(T ))
2, Njk(v) = Nkj(v) for all j 6= k,

Nj(v) = 0 on Γj ⊂ Γ},(11)

where Nj(v) and Njk(v) are the values of v at the midpoint of boundary edge

Γj and interior edge ejk, respectively. And Pl(T ) is the set of polynomials of

total degree l on element T . Vh is indeed the Crouzeix-Raviart finite element

space [17]. Note that degrees of freedom for Crouzeix-Raviart spaces can be

given by

(12)
1

meas(e)

∫

e

vds ∀v ∈ V, ∀e ∈ Eh.

Also, let Bh be an operator on Lh corresponding to B and

(13) kerBh = {τh ∈ Lh :
∑

T

(τh,∇v)T = 0 ∀v ∈ Vh}.

Remark 3.1. If τh ∈ kerBh, it is indeed divergence free and satisfies the normal

flux continuity as in the continuous case. To see this, consider each edge e in

Eh shared by two elements T and T ′ of Th. Denote by τT the value of the

function τ h restricted to the triangle T and denote the jump of normal flux by

[[τh]] := τT · n + τT ′ · n′. Take a test function v in (13) as Crouzeix-Raviart

basis function correspoding to the edge e. Then, by the choice of degrees of

freedom and integration by parts, we easily see that

[[τh]] = 0 on edge e,

which implies that

kerBh ⊂ kerB.

With (10) and (11), we arrive at the nonconforming discretization of primal

mixed formulation of the equation (7): Find {σh,uh} ∈ Lh ×Vh such that

(κAσh, τ )Ω −
∑

T

(∇uh, τ )T = 0 ∀ τ ∈ Lh,(14)

∑

T

(σh,∇v)T = (f ,v)Ω ∀ v ∈ Vh.(15)

We will find the following lemma useful for convergence analysis.

Lemma 3.2. For any wh ∈ Vh, we have the following two properties:
∫

Ω

∇hwh dx = 0,(16)

∫

Ω

tr(∇hwh) dx = 0,(17)

where ∇h denotes the piecewise gradient.
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Proof. The first equation (16) follows from integration by parts. Indeed, we

have
∫

Ω

∇hwh dx =
∑

T∈T

∫

E(T )

wh ⊗ n ds

=
∑

T∈T







∑

e∈ E(Ω)

∫

e

wh ⊗ n ds+
∑

e∈ Eh\E(Ω)

∫

e

wh ⊗ n ds







= 0,

where n is the outer unit normal vector and w⊗n denotes the tensor product

whose ij−th component is wi nj. The last equality follows from the choice

of degrees of freedom for the finite element space Vh and the zero boundary

condition. Next, the second equation (17) follows because the trace operator

is linear and bounded. �

Theorem 3.3. The discrete system (14)-(15) has a unique solution.

Proof. To prove the uniqueness of the solution it is enough to show that σh = 0

and uh = 0 when f = 0. Assuming f = 0 in (15) implies that σh ∈ kerBh.

Taking τ = σh and v = uh leads to (κAσh,σh) = 0 and soAσh = 0. It follows

from Lemma 2.2 and Remark 3.1 that σh = 0 because σh ∈ kerBh is divergence

free. Next, by taking τ = ∇uh in (14), we easily see that uh = 0 thanks to

edge midpoint continuity and the homogeneous boundary condition. �

In the next section, we derive the error estimate for the above finite element

approximation.

4. Error estimates

For the error analysis of nonconforming finite element methods, it is conve-

nient to use mesh-dependent norms and seminorms:

||v||1,h := (
∑

T

|v|21,T )1/2 for T ∈ Th.

Notice that the nonconforming finite element space Vh contains a conforming

finite element subspace Xh ⊂ V of piecewise linear polynomials. We suppose

that the following assumptions on the conforming subspacesXh ⊂ V and Yh ⊂
[L2(Ω)]2×2 of piecewise polynomials of degree 1 and degree 0, respectively, are

fulfilled:

[H1] There is an interpolant P : [H2(Ω)]2 → Xh ⊂ Vh such that for l, with

0 ≤ l ≤ 1 the estimates

|v − Pv|l,T . h2−l
T |v|2,T ∀v ∈ [H2(T )]2,(18)

||v − Pv||0,e . h3/2e |v|2,T ∀v ∈ [H2(T )]2.(19)

[H2] There is a projection Π : [H1(T )]2×2 → Lh satisfying the estimate

||τ −Πτ ||0,T . hT |τ |1,T ∀τ ∈ [H1(T )]2×2.(20)
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Note that the Clement interpolant is an example satisfying [H1] (see [16]).

Next, let ˜Π be an L2(Ω)-orthogonal projection onto Yh. If we define

Πτ := ˜Πτ − 1

2|Ω|

∫

Ω

tr(˜Πτ )I,

then Πτ satisfies the trace-free condition and the assumption [H2] holds.

We note that Πσ − σh does not belong to kerBh and we have difficulty

in applying the saddle point theory in the convergence analysis. To obtain an

element of kerBh, we need to add an appropriate function to it. Similar idea has

been applied, for example, to study unsteady Darcy flows in porous media [5].

Here we present a modified proof to fit in the trace-free pseudostress-velocity

formulation.

Lemma 4.1. Let the exact solution σ belong to V . Then there exists a function

χh, orthogonal to kerBh ⊂ Lh, such that Πσ − σh + χh belong to kerBh and

(21) ‖χh‖0,Ω . h‖σ‖1,Ω.
Proof. Consider the following auxiliary problem of finding χh ∈ Lh such that

b(χh,vh) = b(σh −Πσ,vh) ∀vh ∈ Vh.

The inf-sup theory guarantees a unique existence of such function χh∈(kerBh)
⊥

⊂ Lh so that χh = ∇wh in each T for some wh ∈ Vh and χh is trace-free.

Moreover, we have

‖χh‖0,Ω ≤ sup
vh∈Vh

b(χh,vh)

‖vh‖1,h
= sup

vh∈Vh

b(σh −Πσ,vh)

‖vh‖1,h
.

To estimate the right-hand side, consider each edge e in Eh shared by two

elements T and T ′ of Th. Denoting by v̄e the common mean value of the

function vh|T and vh|T ′ on e, and by σ̄e · n the mean value of σ · n. Then, it
follows from the orthogonality of the projection Π, (15) and Remark 2.4 that

b(Πσ − σh,vh) = b(σ − σh,vh)

=
∑

T∈Th

{(σ,∇vh)T − (f ,vh)T }

=
∑

T∈Th

{

−(divσ + f ,vh)T +

∫

∂T

(σ · n)vh ds

}

=
∑

e∈Eh

∫

e

(σ · n)[[vh]]ds

=
∑

e∈Eh

(

∫

e

(σ · n− σ̄e · n)(vh|T − v̄e)ds

+

∫

e

(σ · n′ − σ̄e · n′)(vh|T ′ − v̄e)ds
)

,

where [[vh]] denotes the jump of vh on edge e.
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By using the affine transformation that maps a reference element T̂ onto T

and a generalized Bramble-Hilbert lemma, we have that
∣

∣

∣

∣

∫

e

(σ · n− σ̄e · n)(vh|T − v̄e)ds

∣

∣

∣

∣

. h‖σ̂ · n− σ̄e · n‖1,T̂ ‖v̂h − v̄e‖1,T̂

. h |σ̂ · n|1,T̂ |v̂h|1,T̂

. h‖σ‖1,T‖vh‖1,T .
In the last inequality we use the switching back to T argument. A similar

calculation on T ′ and summing these estimates on e then complete the proof

of (21). �

Now we are in a position to prove the main theorem of this section.

Theorem 4.2. Let the exact solution σ and u belong to [H1(Ω)]2×2 and

[H1
0 (Ω)]

2 ∩ [H2(Ω)]2, respectively. Then, the error estimates for the method

(14) and (15) hold:

‖σ − σh‖0,h . h|σ|1,Ω
‖u− uh‖1,h . h(|u|2,Ω + ‖σ‖1,Ω).

Proof. First, we start with estimating ||σ−σh||. Using the projection operator

Π defined in (20), we have

||σ − σh||0,T ≤ ||Πσ − σh||0,T + ||σ −Πσ||0,T .
From Lemma 4.1, we can choose a function χh ∈ (kerBh)

⊥ such that Πσ −
σh + χh ∈ kerBh. It follows that

‖Πσ − σh‖0,Ω ≤ ‖Πσ − σh + χh‖0,Ω + ‖ − χh‖0,Ω
and the first term in the right-hand side can be estimated as follows: For

simplicity, letting σ̃ = Πσ − σh + χh, we have

‖Πσ − σh + χh‖20,Ω . ||A(Πσ − σh + χh)||20,Ω
= (A(Πσ − σh − σ + σ + χh), σ̃)Ω

= (A(Πσ − σ + χh), σ̃)Ω + (A(σ − σh), σ̃)Ω

≤ ||Πσ − σ + χh||0,Ω‖σ̃‖0,Ω +
∑

T

ν(∇(u − uh), σ̃)T

≤ (‖Πσ − σ‖0,Ω + ‖χh‖0,Ω)‖σ̃‖0,Ω
. h(|σ|1,Ω + ‖σ‖1,Ω)‖σ̃‖0,Ω.

Here,
∑

T (∇(u − uh), σ̃)T = 0 follows in view of the fact σ̃ ∈ kerBh ⊂ kerB.

Collecting the above estimates leads to the desired result for the pseudostress

variable with Lemma 4.1.

Next, for the interpolation operator P : [H2(Ω)]2 → Xh defined in (18), we

have

||∇(u− uh)||0,T ≤ ||∇(Pu− uh)||0,T + ||∇(u− Pu)||0,T .
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To estimate the first term, take τ = ∇hω where ω = Pu−uh. Then
∫

Ω trτ = 0

by Lemma 3.2 and we have

||∇h(Pu− uh)||0,Ω ≤ sup
τ∈Lh

∑

T

(∇(Pu− uh), τ )T

||τ ||0,Ω
.

Now, it follows that
∑

T

(∇(Pu− uh), τ )T =
∑

T

(∇(Pu− u), τ )T +
∑

T

(∇(u− uh), τ )T

= (∇(Pu− u), τ )Ω + (A(σ − σh), τ )Ω

≤ (||∇(Pu− u)||0,Ω + ||A(σ − σh)||0,Ω)||τ ||0,Ω
≤ (||∇(Pu− u)||0,Ω + ||σ − σh||0,Ω)||τ ||0,Ω
. (h|u|2,Ω + h‖σ‖1,Ω)||τ ||0,Ω,

which completes the proof of the theorem. �

5. Numerical experiments

In this section we demonstrate the numerical behavior of the proposed

method (14) and (15) for some test examples. To compute numerical solutions

of the Stokes equations in the domain Ω = (0, 1)×(0, 1), we use the nonconform-

ing (P1)
2 finite elements for the velocity approximation and (P0)

2×2 elements

for the stress approximation. All computations were written in MATLAB and

errors were measured in the L2 norm.

Example 1 (Smooth polynomial solution). The right-hand side and the bound-

ary conditions for the Stokes problem are chosen such that

u(x, y) = (x2(1− x)2y(1− y)(1− 2y), −y2(1− y)2x(1 − x)(1 − 2x))

p(x, y) = y − x

is the exact solution.

In Tables 1 and 2 we display various errors for stress, pressure, and velocity

where h denotes the mesh size.

Table 1. Convergence rates of σ and p for Example 1

1/h ||σ − σh||0,Ω convergence order ||p− ph||0,Ω convergence order

4 0.1076 . 0.0652 .

8 0.0530 1.0205 0.0311 1.0705

16 0.0262 1.0173 0.0151 1.0421

32 0.0130 1.0091 0.0151 1.0421
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Table 2. Convergence rates of ∇u and u for Example 1

1/h ||∇u−∇uh||0,Ω convergence order ||u− uh||0,Ω convergence order

4 0.0553 . 0.0042 .

8 0.0297 0.8974 0.0012 1.8232

16 0.0152 0.9657 0.0003 1.9376

32 0.0077 0.9888 0.0001 1.9792

Each table confirms that the convergence order of σ, p, and ∇u converges 1

with the L2 norm as proved in Section 3. The right side of Table 2 suggests that

the velocity error measured in the L2 norm is of the second order as expected.

Example 2 (Trigonometric smooth function). Consider the Stokes equations

with the exact solution given by

u(x, y) = (sinπx2 sin 2πy, − sinπy2 sin 2πx)

p(x, y) = cosπx cosπy.

As we see from Tables 3 and 4, we have similar results as in Example 1 for the

trigonometric function.

Table 3. Convergence rates of σ and p for Example 2

1/h ||σ − σh||0,Ω convergence order ||p− ph||0,Ω convergence order

4 2.5143 . 0.6498 .

8 1.2460 1.0128 0.2847 1.1906

16 0.6209 1.0049 0.1340 1.0872

32 0.3101 1.0017 0.0656 1.0308

Table 4. Convergence rates of ∇u and u for Example 2

1/h ||∇u−∇uh||0,Ω convergence order ||u− uh||0,Ω convergence order

4 2.3403 . 0.0836 .

8 1.1792 0.9889 0.0214 1.9634

16 0.5913 0.9958 0.0055 1.9620

32 0.2959 0.9988 0.0014 1.9858

Example 3 (Lid-driven cavity flow). Consider the lid-driven cavity flow prob-

lem in a square cavity [−1, 1]× [−1, 1] with the lid moving from left to right.

We impose leaky boundary conditions, that is, {y = 1;−1 ≤ x ≤ 1 | u1 = 1}.
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The incompressibility condition implies that there exists a scalar stream

function ψ : Ω → R, uniquely defined up to an additive constant, such that

(22) u1 =
∂ψ

∂y
, u2 = −∂ψ

∂x
.

We deduce that

(23) −∇2ψ =
∂u2

∂x
− ∂u1

∂y
= ω,

where ω is the two-dimensional (scalar) vorticity variable that acts in a direction

orthogonal to the xy plane. In order to illustrate the Moffatt eddies (small

counter-rotating recirculations) in the bottom corners, we plot exponentially

spaced streamlines in Figure 1 (right) as in [22].

As it can be seen in Figure 1 (left), the Stokes driven-cavity flow pressure

solution is anti-symmetric about the vertical centerline and pressure is zero on

this centerline.
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Figure 1. Pressure plot (left) and exponentially distributed

streamlines (right)
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