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A STABILITY RESULT FOR THE COMPRESSIBLE
STOKES EQUATIONS USING DISCONTINUOUS
PRESSURE

JAE RyoNG KWEON

ABSTRACT. We formulate and study a finite element method for
a linearized steady state, compressible, viscous Navier-Stokes equa-
tions in 2D, based on the discontinuous Galerkin method. Dislike
the standard discontinuous Galerkin method, we do not assume that
the triangle sides be bounded away from the characteristic direction.
The unique stability follows from the inf-sup condition established
on the finite dimensional spaces for the (incompressible) Stokes prob-
lem. An error analysis having a jump discontinuity for pressure is
shown.

1. Introduction

We consider a linearized stationary, barotropic, compressible, viscous
Navier-Stokes system which consists of the momentum equations hav-
ing an elliptic character in velocity and the continuity one having a
hyperbolic nature in pressure. Hence the system is neither elliptic nor
hyperbolic and so of mixed type which has features of each class of equa-
tions. We study a finite element method for the equations. Our purpose
is to apply to a weak formulation of the compressible Stokes problem
the finite element spaces used in searching for the continuous velocity
and discontinuous pressure solution pairs of the incompressible Stokes
problem and to establish a unique existence and some error estimate for
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a proposed method. The equations to be considered are

—pAu —vVdivu+p(w-V)u+Vp=f in Q,
(1.1) divu+sw-Vp=plg inQ,
u=0 onT,

where 2 C R? is an open bounded domain with a smooth boundary I'.
Here u = [u,v] is a velocity vector, p is the pressure; w = [U, V] with is
an ambient flow vector function with zero boundary value w|r = 0 and
P is a pressure of ambient fluid, p = p(P) is a given positive increasing
function that is the density function of pressure, and x = p'(P)/p(P),
¢ (P) = dp/dP. The functions f and g are given functions, and the
numbers p and v are the viscous constants with g > 0 and g > —v.

It is assumed that the coefficients x and p are p = k = 1 for sim-
plicity. Since the ambient velocity vector w is assumed to be zero on
the boundary I', no boundary condition for pressure is imposed on a
portion of I' even though the second equation in (1.1) is the first order
partial differential equation in pressure p. Later the solution pressure p
is required to satisfy the condition of pressure mean zero (p € L(Q2).)
If U > Cy > 0 for a constant Cp, then flows move from left to right and
so specified values for pressure can be assigned on those portions of the
boundary where the ambient velocity vector w points into the region
(see [4, 5]). If the first component U of w is assumed to be nonnegative
on the interior portion of the domain €2, then the directions of flows
can not be reversed in the region of 2 and may oscillate up and down,
depending on the second component V.

Let [u, p] be the solution of (1.1) and [uy, py) the finite element solution
of (2.7). In this note we obtain the following main result: Assume that
the condition (2.9) holds. Then there exists a constant K, not depending
on h such that

_ 1/2
||u—uh|sl+up—phno+(2/ (o} — p7)?w - nl)
KeT, OK_

< st {IV=lo+lp=slo+ (3 [ =579}

+Ch plie, (12 1),

where the infimum is taken over all i € Vj, and p € Q5.
It is well-known that as the choices of the velocity-pressure spaces for
the finite element approximation of the Stokes problem, one scheme is
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to use continuous piecewise polynomial approximations for both veloc-
ity and pressure,; and the other scheme is to use a continuous piecewise
polynomial approximation to the velocity and a discontinuous piece-
wise polynomial approximation to the pressure. The stabilities for the
schemes can be shown by establishing the inf-sup condition (see [7]).
For the former velocity-pressure spaces, it has been shown in [3] that
when the finite dimensional spaces for velocity and pressure satisfy the
inf-sup condition associated with the (incompressible) Stokes system,
the approximate method proposed gives a unique existence of finite ele-
ment solution and also gives an error estimate. However discontinuous
pressure finite element spaces were not included there. In our analy-
sis the continuous finite dimensional space for velocity is applied to the
compressible Stokes problem while the discontinuous finite dimensional
space for pressure is. In doing so, on the basis of the discontinuous
Galerkin method for the neutron transport equation, an integral con-
taining a jump for pressure on the incoming portion (if it exists) of
triangle is added to a usual formulation of the convective derivative of
pressure in the continuity equation (see (2.6)), but it is not assumed
that the triangle sides for a given triangulation be bounded away from
the characteristic direction. The unique existence of the finite element
solution follows from the inf-sup condition shown for the incompressible
Stokes problem.

In §2 we introduce a weak formulation for (1.1) and also a discrete
form corresponding to it. A unique stability of the finite element solution
is shown and an error analysis is given.

In this note the Sobolev spaces and norms to be used are given below:
the space H*(Q) is the space of real-valued L? functions on Q so that all
their derivatives up to order k belong to L?(2). We denote by ||u|loo the
L? norm on Q2 and ||ul|q the norm of H*(). Also H} () = {u € HY(Q) :
u=0onT} and H§(Q) = H¥(Q) N H} (). The sup norm is defined by
|t]oo = max lu(x)| and the space L®(Q) is defined likewise. The Sobolev

imbedding theorems to be used occasionally are H%(Q) — L®(f) or
H'(Q) — L*%), and the notation x5 = w - Vx and norm |/x|lo =

xIl5 o + lIxsllé are used and the space Q@ = {g € L&) : [lg]lo < oo}
is defined and also

(u, v)q = /uvdx.
Q
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2. Finite element method

In this section our purpose is to formulate and study a finite element
method for (1.1) on the finite element spaces used in searching for the
continuous velocity and discontinuous pressure finite element solutions
for the (incompressible) Stokes problem, and to show a unique exis-
tence of the discrete solution for a proposed finite element method and
establish some error estimates for it. Several bilinear forms are consid-
ered in order to formulate problem (1.1) into a discrete version. We let
V = H}(Q)N, and M = L}(Q), and Q = {x € M : |xllo < oo}. Note
that ||x|lo < C||Vx||-1 for x € M (see [3]). The momentum equation
in (1.1) can be formulated into a weak form by considering two bilinear
forms a and b

a(u,v) = /,uVu - Vv +vdivudivv +w-Vuvdx, u,veV,
0 .
b(v,x) = /Xdivvdx, veV,xe M,
Q
and the continuity equation in (1.1) by considering a bilinear form ¢
cp,x) = /W-Vpxdx, PEQ XEM
Q
and also define
(f,v) = /fvdx,
Q
(9, x) = /ngdX-

Hence the resulting weak formulation is to find [u,p] € V x @ such that

a(u,v) —b(v,p) = (f,v), WeV,
e(p, x) +b(u,x) = (9, x), Yx € M.

Letting 7 = 1|divw]|e and po = min{p, p + v} and py = p+ |v|, we
have:

(2.1)

LEMMA 2.1. Assume that g > (C?+ p1)vo, where C is the Poincaré
constant. Then problem (2.1) has a unique solution [u,p] € V x M
satisfying kf[ull1 + lIplle < C([Ifllo + llgllo) where k = o — (C* + p)vo-
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Proof. Taking v = u and x = p in (2.1), and using the integration by
parts, and using the fact that ||x|jo < C||Vx|l-1, x € M, we easily have
kllull; + [lpllo < C(|ifllo + llgllo). Next, from the second equation in (1.1)
we have |Ipgllo < (||Vullo+||gllo). A standard argument by Lax-Milgram
lemma show a unique existence of the solution of (2.1). O

For a more regularity result of the solution of (2.1) see [10, 11]. For
convenience we let H = V x M, and define a bilinear form B on H x H
and a linear functional A on H respectively:

29)  Bllwrlv,x]) = a(u,¢) —b(v,p) +c(w;p, x) + b(w, %),
' Alv,x] = (£,v) + (g, x)-

We now try to approximate the solution [u,p] € V x @ of (1.1) by the
finite element method using continuous piecewise elements for velocity
and discontinuous piecewise elements for pressure. We let 7, be a family
of triangles K of a regular triangulation of Q with a mesh size h and
P,(K) the space of ali polynomials on K of degree < I. We also denote
by A; (i=1, 3) the barycentric co-ordinates of K € T,. We now take the
velocities v in the polynomial subspace of (P3(K))?

(2.3) Po(K) = [Pa(K) @ span{Aideds}]’,
and the pressure g in P;(K). This leads to the following choice of spaces:
Xn = {vih€(C(Q)?:vhlx € Poy(K), VK € T},
Y, = {a& € L*Q): qulx € Pi(K), VK € Tp},
and V, = X, NV, M, =Y, NM, and Q, = Y, N Q. Note that V, C V
and M C M and @, C Q. It is shown in [7, p. 144] that the pair

(V, My) satisfies the uniform inf-sup condition: there exists a constant
[, such that

(2.4) sup {(Aqh div vy dx)/]vhh,n} > Billarlloe, Ygn € M.

VLEV)

We are now going to define a discrete weak formulation corresponding
to (2.1) using the continuous finite dimensional space V), for velocity
and the discontinuous finite dimensional space @, for pressure. On each
triangle K € 7, the discrete formulation of the momentum equation is
usually defined by two bilinear forms

(25) aK(W; Uy, Vh)
= ,u(Vuh, VVh)K + l/(diV up, diVVh)K + (W -Vug, vh)K;
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and by (pn, Vi) = (pn,divvy)k. For defining a weak formulation of con-
tinuity (hyperbolic) equation, we consider for each K € Ty

OK_ = {(z,y) € 0K : (w-n)(z,y) <0},
0K, = {(z,y) € 0K : (w-n)(z,y) > 0},

and define the left and right hand limits ©v~ and u* by
u(x) = li%l_ u(x + s0) and u*(x) = lirgi u(x + sf).
For any K € T; we denote by E(K) the set of its edges and set

£Q) = | J &K).

KET,

Now for edge £ € £(K) we have E = E_ U E, where E_ = ENOK_
and E, = ENOK,. Hence the integral on E is given by

/xhw-n = / x;w-n+/ Xp W N
E -

= —/ XHW'nH‘/E X, |w-n|.

In order to avoid such a situation as above one may assume that the
ambient vector field w be only one sign on each edge E € £(2). Fur-
thermore we known that the ordering of triangles for solving the discrete
problem of the neutron transport equation based on the standard dis-
continuous Galerkin method can be arranged along the directions of the
vector field w on the whole domain 2, and so the discrete problem can
be solved from triangle to triangle (see [2]). Thus, if a suitable condition
on w is not imposed, then the ordering cannot be fixed (quite arbitrary)
in one direction (e.g, from left to right if w = [U, V] with U > 0) because
the directions of the vector field w cannot be predicted.
For K € T, given p, on OK_, we define a bilinear form cx by

(2.6)

(W - Vpr, Xn)x — / [pn]s xaw -n, if 3K_NT =90,
e (Phs Xn) = OK-

(W - Vpn, xa)x, if OK_NT#0
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where [p,]; = p;f —pj, is the jump across the side of triangle. Dislike the
discontinuous Galerkin method of solving the neutron transport equa-
tion, note that the triangle sides are not required to be bounded away
from the characteristic direction, i.e., |[w-n| > ¢, > 0.

Now, using (2.5) and (2.6) the discrete weak formulation for {2.1) can
be formulated by: For each K € Tj, given p, on OK_ (if it exists), find
[up, pr) In Vi x @y such that

2.7) ak (U, Vi) = b (Va, pr) = (£, Vi), Vv, € Po(K),
: ck (Pry Xn) + b (Un, X1n) = (9, xn)k> Yxu € Pi(K).

If the first component U of the ambient flow vector field w is assumed to
be nonnegative, problem (2.7) can be considered from triangle to triangle
as the discontinuous Galerkin method for solving the neutron transport
equation approximately, but note that the finite element solution u is
required to be continuous on the whole domain . For simplicity, we set

Br([un, prl; [V, xn]) = ax(w;up, vi) — b (Va, pr)
(2.8) +  cx(W;Dn, Xn) + bx (s, Xn),
Aklva, xn] = (£, vi)k + (9, xn)k-

In next lemma we globally show a unique existence of the finite element
solution for (2.7). We let yy = min{u,px + v} and v = 1|divw|e,
and shall denote (-,-) the inner product in L? space and let C be the
Poincaré constant with Cllully < ||Vulle for u € HE (). We assume that
the constant <y, satisfies a condition

(2.9) Yo < min{C 2, 3.},
where £, is the constant in (2.4).

LEMMA 2.2. Assume that the condition (2.9) holds. Then problem
(2.7) has a unique solution [u, ps] € V; x @), and the solution satisfies
the inequality

10)  pIvadi+ e+ 5 Y [ - enl
KeT, K_

< C(IfIIG + llglE),

where C' is a constant not depending on A.
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Proof. For each triangle K € Ty, letting v, = uj and x, = py in (2.8),
one get '

Bk ([un, pr), [un, pa))
= pl|Vu|g ¢ + vldivusl§ x + (ans, un)x

(2.11) +(Phs, Pr)K — / 123F; P;W ‘n
oK.
2 1 2 1 2 4.
> pol|Vunllgk + 5 |upl*w - n — 2 |up}*divw dx
aK_ K

+/W~Vphphdx—/ [pn)sPE W n.
K OK._.

But the bilinear form cx(W;pp, pr) can be estimated by

/w-Vphphdx—/ [prlspf w-n
K 9K

1 1
= —/ pAwW-n— [ph]Jpr-n—~/p§divwdx
2 oK 8K_ 2 K

1 1 -
= 5 [ wfwenl+g [ @irtwen+ [ @piwes
oK. K. OK_

(2.12) —/ Py prlw - n| —l/pidivwdx
oK. 2 K

1 [, _ 1 _ 1 .
= 5%(ph)2W'n+§/ (P?:"ph)2|W'n|—§/pﬁd1vwdx.
K K

Thus it follows from (2.11)-(2.12) that

Bx ([un, pr}, [un, pr])

1 1 _
> ol Vunlly 5 [ w5 [ ufdivwx

1 _ 1 o 1 .
+'f (Ph)QW'rH‘“/ (P}T—Ph)2|W-n|——/p;?ldlvwdx.
2 Jox 2 Jok. 2 Jk
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Now, summing both sides of (2.13) over all triangles K € T, one has

B([uhvph], [uh)ph])
> Y (uoll Vunli? ¢ — vollualld )

Ke’l;,
(2.13) 33 [ wenl = nlmlR
Ke77,
> | Vunlia + 3 / ol lw - 1 = ollpalZa

Keﬁ

where p. = pig—7C?. Next, computing Ag[Vy, x4) of (2.8) and summing
over all triangles and combining with (2.14) one obtains

1 2
pllVarllg o + 5 Z (4] 1w - 0| — ollpalig g
2 KeT, 9

(2.14) < C(Iflleq + gl 0)-

Thus using (2.15) and (2.4) and our assumption, the required inequality
easily follows. A standard argument by Lax Milgram lemma shows a
unique existence of solution of (2.7). a

REMARK. In showing Lemma 2.1, except that w-n < 0 on 0K_
and w-n > 0 on 0K, and w|r = 0 and the condition (2.9), any extra
condition on w was not imposed.

THEOREM 2.3. Assume that the same condition in Lemma 2.1 holds.
Then there is a constant K, not depending on h such that

1/2
@15) = wls +lp=palo+ (3 [ @ = pi)w-n)

KeTy
‘ A ) 12
< Kmf{[lV(u = a)llo + Ifp — Bllo + ( Z / (p—» )2) }
KeT,
+ChYlpllia, (1 21),

where the infimum is taken over all @ € V;, and p € Q.
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Proof. Noting that V), C (H}(£2))? and M, C L3(?), and subtracting
(2.1) from (2.7), we have

(2.16) > Br([un — 6, ps = B, [Va, xa])
KeTy

= Y B(lu—1t,p -, [va xal),
KeT,

where @ and p are arbitrary elements in V, and M}, respectively. Now
taking v, = up, — 4 and x, = pp — P in (2.17) and using the definition
(2.8) of Bk, one can estimate the right hand side of (2.17) as follows:
CK(p _ﬁ’Ph _ﬁ)

= [o-paor-Pax= [ p-slsmn-p)'wen

K oK
( using the integration by parts )
= —(p—5(pn —Po)k — /K(ph —P)(p — p) divwdx

@17)  + (p—f?)'(ph—ﬁ)'W'n+/ (=5 (- w-n
oK. OK_

= (-, (o - Do)k — /K (oh — $)(p — P) divw dx

+ [ @-p-sliweon+ § @-p) (n—p) w-n
oK. oK
Now the first and second terms in (2.18) are estimated by

~(p—p,(pn — D)ok — /K(ph —p)(p — p) divwdx
W ll1,00llPn — Bl [P — Bllo.x
CHlpllkllpn — Pllix
(2.18) ( using the inverse inequality ||Vunlox < Ch™ usllox )
Ch™pllixlpn — Bllo,x
_ ali2 C h2(l—1) 2 v, 0
ellpn — Bllox + Cle) Ipllik, Ve > 0.

IA A

IA A



Compressible flows

Next the third term of (2.18) is estimated by

(2.19>/3K (0 —9) o - Flyw - n

< of n-aiwenf+cl / (o —§)P, Ve > 0.

Hence, combining (2.18)-(2.20), one has

ex(p=pos— 7)< clpn =l +5 | fpn =i
e2)  + COF s+ [ 1p-p)F
+ ng(p —pY {pr—p)"W-n, Ve >0,V6 > 0.
Furthermore we have

(2.21) brg(u —4,pr — p) — bx(uy —4,p — P)
< €llpn — plls & + SV (ur — Q) «
+C(llp — Bllox + [[V(u - d)llox), Ve >0, V6 >0,
(2.22) ag(a—0,u, — 1)
< €el|V(up — W)§ ¢ + C)IV(u— D)}, Ve > 0.

169

Thus putting together (2.21)-(2.23), and the right hand side of (2.17) is

estimated by

BK([u - ﬁ9p_ﬁ]a [uh - ﬁaph "ﬁ])

< €|V(u, —0)|  + bllpn — Blls x + 61 /ax [pr — Pl5|w - n
(223) + ]4 (p—9)(ps— )" w-n
K

+ 06 8,81 wha) IV - Dk + [ 1(2-5)F)
0K ..
+ C(8) K Yp|l,x, Ve >0,V >0, V6, > 0.
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Furthermore the left hand side of (2.17) is bounded below in the following
ways:
BK([uh - li\l;ph - ﬁ]: [uh - ﬁaph _ﬁ])
" 1 N
> jlV(u = 8l § -0 Pwen
oK

1 1
@20 5 [lw-idvwaxt 34 (Gn-prPwon
2 Ji 2 Jok

1 < 1 N2 1
+-2-/ [Ph—P]ilw-nl—-5/(ph—p)2d1vwdx.
OK_ K

Since b(py —p, vi) = a(u — @, v;) —a(u—10,v) +b(p—p, v4), and using
(2.4), one has

(2.25) Bellon — Dllog
< CV(up —d)loe + C([V(a — )]0,k + [lp — Bllog)-

Finally, noting that
Z f px w-n=0
K, JOK

and combining (2.24)-(2.25) and summing its resulted inequality over all
triangles, one has

N 1 R
wl Vi = 8)lia+3 5 [ [pu-l’iwen

KeT,
< €lV(un = d)[5e + (vo +0)llps — Bli5 0

(226)  +4. ) /aK_ [ ~ ] |w - |

KeT,
+C(IV=0lEa+lp-5Ra+ > [ 10-5F)
: K€7;, OK_
+ Ch* D pllk, Ve >0, V6 >0, V6, > 0.

Finally using (2.26)-(2.27) and the triangle inequality, and our assump-
tion, the inequality (2.16) easily follows since &1 € Vj, and p € M}, were
arbitrary. 0
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