• Title/Summary/Keyword: analytic inequalities

Search Result 57, Processing Time 0.021 seconds

A REFINEMENT OF THE THIRD HANKEL DETERMINANT FOR CLOSE-TO-CONVEX FUNCTIONS

  • Laxmipriya Parida;Teodor Bulboaca;Ashok Kumar Sahoo
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.515-521
    • /
    • 2024
  • In our paper, by using different inequalities regarding the coefficients of the normalized close-to-convex functions in the open unit disk, we found a smaller upper bound of the third Hankel determinant for the class of close-to-convex functions as compared with those obtained by Prajapat et. al. in 2015.

FEKETE-SZEGÖ PROBLEM FOR SUBCLASSES OF STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

  • Shanmugam, T.N.;Ramachandram, C.;Ravichandran, V.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.589-598
    • /
    • 2006
  • In the present investigation, sharp upper bounds of $|a3-{\mu}a^2_2|$ for functions $f(z)=z+a_2z^2+a_3z^3+...$ belonging to certain subclasses of starlike and convex functions with respect to symmetric points are obtained. Also certain applications of the main results for subclasses of functions defined by convolution with a normalized analytic function are given. In particular, Fekete-Szego inequalities for certain classes of functions defined through fractional derivatives are obtained.

SOME RESULTS CONCERNED WITH HANKEL DETERMINANT FOR 𝓝 (𝜶) CLASS

  • Atli, Gizem;Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.715-727
    • /
    • 2021
  • In this paper, we give some results an upper bound of Hankel determinant of H2(1) for the classes of 𝓝 (𝜶). We get a sharp upper bound for H2(1) = c3 - c22 for 𝓝 (𝜶) by adding z1, z2, …, zn zeros of f(z) which are different than zero. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained. Finally, the sharpness of the inequalities obtained in the presented theorems are proved.

COEFFICIENT INEQUALITIES FOR ANALYTIC FUNCTIONS CONNECTED WITH k-FIBONACCI NUMBERS

  • Serap, Bulut;Janusz, Sokol
    • Honam Mathematical Journal
    • /
    • v.44 no.4
    • /
    • pp.521-534
    • /
    • 2022
  • In this paper, we introduce a new class 𝓡kλ(λ ≥ 1, k is any positive real number) of univalent complex functions, which consists of functions f of the form f(z) = z + Σn=2 anzn (|z| < 1) satisfying the subordination condition $$(1-{\lambda}){\frac{f(z)}{z}}+{\lambda}f^{\prime}(z){\prec}{\frac{1+r^2_kz^2}{1-k{\tau}_kz-{\tau}^2_kz^2}},\;{\tau}_k={\frac{k-{\sqrt{k^2+4}}}{2}$$, and investigate the Fekete-Szegö problem for the coefficients of f ∈ 𝓡kλ which are connected with k-Fibonacci numbers $F_{k,n}={\frac{(k-{\tau}_k)^n-{\tau}^n_k}{\sqrt{k^2+4}}}$ (n ∈ ℕ ∪ {0}). We obtain sharp upper bound for the Fekete-Szegö functional |a3-𝜇a22| when 𝜇 ∈ ℝ. We also generalize our result for 𝜇 ∈ ℂ.

HORADAM POLYNOMIALS FOR A NEW SUBCLASS OF SAKAGUCHI-TYPE BI-UNIVALENT FUNCTIONS DEFINED BY (p, q)-DERIVATIVE OPERATOR

  • Vanithakumari Balasubramaniam;Saravanan Gunasekar;Baskaran Sudharsanan;Sibel Yalcin
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.461-470
    • /
    • 2024
  • In this paper, a new subclass, 𝒮𝒞𝜇,p,q𝜎 (r, s; x), of Sakaguchitype analytic bi-univalent functions defined by (p, q)-derivative operator using Horadam polynomials is constructed and investigated. The initial coefficient bounds for |a2| and |a3| are obtained. Fekete-Szegö inequalities for the class are found. Finally, we give some corollaries.

COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS OF BOUNDED TURNING FUNCTIONS ASSOCIATED WITH COSINE HYPERBOLIC FUNCTION

  • Gagandeep Singh;Gurcharanjit Singh;Navyodh Singh;Navjeet singh
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • The aim of this paper is to study a new and unified class 𝓡αCosh of analytic functions associated with cosine hyperbolic function in the open unit disc E = {z ∈ ℂ : |z| < 1}. Some interesting properties of this class such as initial coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman inequality and third Hankel determinant have been established. Furthermore, these results have also been studied for two-fold and three-fold symmetric functions.

The Fekete-Szegö Problem for a Generalized Subclass of Analytic Functions

  • Deniz, Erhan;Orhan, Halit
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.37-47
    • /
    • 2010
  • In this present work, the authors obtain Fekete-Szeg$\ddot{o}$ inequality for certain normalized analytic function f(z) defined on the open unit disk for which $\frac{(1-{\alpha})z(D^m_{{\lambda},{\mu}}f(z))'+{\alpha}z(D^{m+1}_{{\lambda},{\mu}}f(z))'}{(1-{\alpha})D^m_{{\lambda},{\mu}}f(z)+{\alpha}D^{m+1}_{{\lambda},{\mu}}f(z)}$ ${\alpha}{\geq}0$) lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product (or convolution) are given. As a special case of this result, Fekete-Szeg$\ddot{o}$ inequality for a class of functions defined through fractional derivatives is obtained. The motivation of this paper is to generalize the Fekete-Szeg$\ddot{o}$ inequalities obtained by Srivastava et al., Orhan et al. and Shanmugam et al., by making use of the generalized differential operator $D^m_{{\lambda},{\mu}}$.

Priority Setting for the Healthy City Program in Busan Using the Analytic Hierarchy Process (계층 분석법을 적용한 부산시 건강도시 사업의 우선순위 설정)

  • Yoon, Tae-Ho;Choi, Min-Hyeok;Cheong, Kyu-Seok;Kim, Yun-Hee;Kim, Keon-Yeop;Jung, Baek-Geun
    • Korean Journal of Health Education and Promotion
    • /
    • v.28 no.3
    • /
    • pp.31-42
    • /
    • 2011
  • Objectives: Busan had the highest mortality and the shortest life expectancy at birth among 16 provinces in Korea in 2008 and there were considerable health inequalities within the region. This study was performed to build up a priority setting framework in Healthy City Busan project. Methods: Analytic hierarchy process was used to determine the relative priority weight for different strategic and program dimensions along with the consistency of response. An on-site workshop-based meeting (calculating importance) and online survey (calculating risk) were conducted to obtain data from 8 experts. Results: The results showed that in strategic criteria "active health promotion & diseases prevention" and "building infrastructure for the Health City project" were two most important factors. In program criteria, considering both importance and risk scores, "making a healthy community" and "building community health centers" in disadvantaged areas were a top priority group. In addition, "enacting an ordinance for the Healthy City", "building the infrastructure for health impact assessment" and "making health care safety net for vulnerable population" were also higher priorities group. Conclusions: Our findings suggest that the Healthy City project in Busan should be focused on strengthening health equity and building infrastructure for sustainability of the project.

ON THE FEKETE-SZEGO PROBLEM FOR CERTAIN ANALYTIC FUNCTIONS

  • Kwon, Oh-Sang;Cho, Nak-Eun
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.265-271
    • /
    • 2003
  • Let $CS_\alpha(\beta)$ denote the class of normalized strongly $\alpha$-close-to-convex functions of order $\beta$, defined in the open unit disk $\cal{U}$ of $\mathbb{C}$${\mid}arg{(1-{\alpha})\frac{f(z)}{g(z)}+{\alpha}\frac{zf'(z)}{g(z)}}{\mid}\;\leq\frac{\pi}{2}{\beta}(\alpha,\beta\geq0)$ such that $g\; \in\;S^{\ask}$, the class of normalized starlike unctions. In this paper, we obtain the sharp Fekete-Szego inequalities for functions belonging to $CS_\alpha(\beta)$.

  • PDF

On a Class of Spirallike Functions associated with a Fractional Calculus Operator

  • SELVAKUMARAN, KUPPATHAI APPASAMY;BALACHANDAR, GEETHA;RAJAGURU, PUGAZHENTHI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.953-967
    • /
    • 2015
  • In this article, by making use of a linear multiplier fractional differential operator $D^{{\delta},m}_{\lambda}$, we introduce a new subclass of spiral-like functions. The main object is to provide some subordination results for functions in this class. We also find sufficient conditions for a function to be in the class and derive Fekete-$Szeg{\ddot{o}}$ inequalities.