Browse > Article
http://dx.doi.org/10.4134/CKMS.c200313

SOME RESULTS CONCERNED WITH HANKEL DETERMINANT FOR 𝓝 (𝜶) CLASS  

Atli, Gizem (Department of Mathematics Amasya University)
Ornek, Bulent Nafi (Department of Computer Engineering Amasya University)
Publication Information
Communications of the Korean Mathematical Society / v.36, no.4, 2021 , pp. 715-727 More about this Journal
Abstract
In this paper, we give some results an upper bound of Hankel determinant of H2(1) for the classes of 𝓝 (𝜶). We get a sharp upper bound for H2(1) = c3 - c22 for 𝓝 (𝜶) by adding z1, z2, …, zn zeros of f(z) which are different than zero. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained. Finally, the sharpness of the inequalities obtained in the presented theorems are proved.
Keywords
Fekete-Szego functional; Julia-Wolff lemma; Hankel determinant; analytic function; Schwarz lemma; angular derivative;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0   DOI
2 Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X   DOI
3 Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-02770-7   DOI
4 J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lith. Math. J. 58 (2018), no. 2, 212-218. https://doi.org/10.1007/s10986-018-9397-0   DOI
5 T. Akyel and B. N. Ornek, Some remarks on Schwarz lemma at the boundary, Filomat 31 (2017), no. 13, 4139-4151. https://doi.org/10.2298/fil1713139a   DOI
6 T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338   DOI
7 M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 2, 85-89. https://doi.org/10.1112/jlms/s1-8.2.85   DOI
8 G. M. Goluzin, Geometrical theory of functions of a complex variable (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
9 M. Mateljevic, Rigidity of holomorphic mappings & Schwarz and Jack lemma, In press. http://doi.org/10.13140/RG.2.2.34140.90249.   DOI
10 M. Mateljevic, N. Mutavdcz, and B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma, ResearchGate. http://doi.org/10.13140/RG.2.2.25744.15369   DOI
11 A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class $\mathcal{U}(λ), Comput. Methods Funct. Theory 13 (2013), no. 4, 613-634. https://doi.org/10.1007/s40315-013-0045-8   DOI
12 B. N. Ornek, Some remarks of the Caratheodory's inequality on the right half plane, Commun. Korean Math. Soc. 35 (2020), no. 1, 201-215. https://doi.org/10.4134/CKMS.c180469   DOI
13 P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, J. Class. Anal. 12 (2018), no. 2, 93-97. https://doi.org/10.7153/jca-2018-12-08   DOI
14 P. R. Mercer, An improved Schwarz lemma at the boundary, Open Math. 16 (2018), no. 1, 1140-1144. https://doi.org/10.1515/math-2018-0096   DOI
15 J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.2307/1997533   DOI
16 M. Obradovic and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis (Munich) 25 (2005), no. 3, 183-188. https://doi.org/10.1524/anly.2005.25.3.183   DOI
17 M. Obradovic and S. Ponnusamy, On the class U, In Proceedings of the 21st Annual Conference of the Jammu Mathematical Society and a National Seminar on Analysis and its Application, pp. 11-26, 2011.
18 B. N. Ornek and T. Duzenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018), 1149-1153.   DOI
19 H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910X521643   DOI
20 V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N.Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39   DOI
21 B. N. Ornek and T. Duzenli, Schwarz lemma for driving point impedance functions and its circuit applications, Intern. J. Circuit Theory Appl. 47 (2019), 813-824.   DOI