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Abstract. In this present work, the authors obtain Fekete-Szegö inequality for

certain normalized analytic function f(z) defined on the open unit disk for which
(1−α)z(Dmλ,µf(z))

′+αz(Dm+1
λ,µ

f(z))′

(1−α)Dm
λ,µ

f(z)+αDm+1
λ,µ

f(z)
(λ ≥ µ ≥ 0, m ∈ N0, α ≥ 0) lies in a region starlike

with respect to 1 and is symmetric with respect to the real axis. Also certain applications

of the main result for a class of functions defined by Hadamard product (or convolution)

are given. As a special case of this result, Fekete-Szegö inequality for a class of func-

tions defined through fractional derivatives is obtained. The motivation of this paper is

to generalize the Fekete-Szegö inequalities obtained by Srivastava et al., Orhan et al. and

Shanmugam et al., by making use of the generalized differential operator Dm
λ,µ.

1. Introduction and Definitions

Let A denote the class of all analytic functions f(z) of the form:

(1.1) f(z) = z +

∞∑
n=2

anz
n

defined on the open unit disk U = {z : z ∈ C and |z| < 1} and let S be the subclass
of A consisting of univalent functions. If the functions f(z) and g(z) are analytic
in U, we say that f(z) is subordinate to g(z), written symbolically as

f ≺ g or f(z) ≺ g(z)
(
z ∈ U

)
.

if there exists a Schwarz function w(z), which (by definition) is analytic in U with
w(0) = 0 and |w(z)| < 1 in U such that f(z) = g(w(z)), z ∈ U.

For two analytic functions f(z) = z +
∑∞
n=2 anz

nand g(z) = z +
∑∞
n=2 bnz

n,
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their convolution (or Hadamard product) is defined by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z).

Let φ(z) be an analytic function with positive real part on U with φ(0) = 1, φ′(0) >
0 which maps the open unit disk U onto a region starlike with respect to 1 which
is symmetric with respect to the real axis. Let S∗(φ) be the class of functions in
f ∈ S for which

zf ′(z)

f(z)
≺ φ(z), (z ∈ U)

and let C(φ) be the class of functions f ∈ S for which

1 +
zf ′′(z)

f ′(z)
≺ φ(z), (z ∈ U) ,

where ≺ denotes the subordination between analytic functions. These classes were
defined and studied by Ma and Minda [3]. They have obtained the Fekete-Szegö
inequality for the functions in the class C(φ). Since f ∈ C(φ) if and only if zf ′ ∈
S∗(φ), we get the Fekete-Szegö inequality for functions in the class S∗(φ). For a
brief history of the Fekete-Szegö problem for the class of starlike, convex and close-
to convex functions, see the recent paper by Srivastava et al. [11].

We define a new fractional differential operator Dn,α
λ,µf as follows

D0
λ,µf(z) = f(z),

(1.2) D1
λ,µf(z) = Dλ,µ (f(z)) = λµz2f ′′(z) + (λ− µ)zf ′(z) + (1− λ+ µ)f(z),

D2
λ,µf(z) = Dλ,µ

(
D1
λ,µf(z)

)
,

...

(1.3) Dm
λ,µf(z) = Dλ,µ

(
Dm−1
λ,µ f(z)

)
,

where λ ≥ µ ≥ 0 and m ∈ N0 = N ∪ {0}.
If f is given by (1.1) then from the definition of the operatorDm

λ,µf(z)it is easy to
see that

(1.4) Dm
λ,µf(z) = z +

∞∑
n=2

[1 + (λµn+ λ− µ)(n− 1)]manz
n.

It should be remarked that the Dn,α
λ,µ is a generalization of many other linear oper-

ators considered earlier. In particular, for f ∈ A we have the following:
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1. Dm
1,0f(z) ≡ Dmf(z) the operator investigated by Salagean [8].

2. Dm
λ,0f(z) ≡ Dm

λ f(z) the operator studied by Al-Oboudi [1].

3. Dm
λ,µf(z) the operator considered for 0 ≤ µ ≤ λ ≤ 1, by Raducanu and Orhan

[6].

Now, by making use of Dm
λ,µ, we define a new subclass of analytic functions.

Definition 1.1. Let φ(z) be a univalent starlike function with respect to 1 which
maps the unit disk U onto a region in the right half plane which is symmetric with
respect to the real axis, with φ(0) = 1 and φ′(0) > 0. A function f ∈ A is said to
be in the class Mm,α

λ,µ (φ) if

(1.5)
(1− α)z(Dm

λ,µf(z))′ + αz(Dm+1
λ,µ f(z))′

(1− α)Dm
λ,µf(z) + αDm+1

λ,µ f(z)
≺ φ(z) (α ≥ 0).

If we write Λm,αλ,µ f(z) = {(1 − α)Dm
λ,µ + αDm+1

λ,µ }f(z) then f ∈ Mm,α
λ,µ (φ) ⇔

Λm,αλ,µ f ∈ S∗(φ). Also, we have

(1.6) Λm,αλ,µ f(z) = Ψm,α
λ,µ (z) ∗ f(z),

where

(1.7) Ψm,α
λ,µ (z) = z+

∞∑
n=2

[1 + (λµn+λ−µ)(n− 1)]m[1 +α(λµn+λ−µ)(n− 1)]zn.

The class Mm,α
λ,µ (φ)reduces to the following classes, defined earlier.

1. Mm,α
1,0 (φ) ≡Mα,n(φ) introduced and studied by Orhan et al [4].

2. M0,α
1,0 (φ) ≡Mα(φ) introduced and worked by Shanmugam et al. [9].

3. M0,0
0,0 (φ) ≡ S∗(φ) introduced and investigated by Ma et al. [3].

4. M0,1
0,0 (φ) ≡ C(φ) introduced and studied by Ma et al. [3].

In order to derive our main results, we need the following lemma [3].

Lemma 1.2([3]). If p1(z) = 1 + c1z + c2z
2 + · · · is an analytic functions with

positive real part in U, then

∣∣c2 − vc21∣∣ ≤
 −4v + 2 if v ≤ 0,

2 if 0 ≤ v ≤ 1,
4v − 2 if v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p1(z) is (1 + z)�(1− z)
or one of its rotations. If 0 < v < 1, then the equality holds if and only if p1(z) is
(1 + z2)�(1− z2) or one of its rotations. If v = 0, the equality holds if and only if

p1(z) =

(
1

2
+

1

2
γ

)
1 + z

1− z
+

(
1

2
− 1

2
γ

)
1− z
1 + z

(0 ≤ γ ≤ 1) ,
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or one of its rotations. If v = 1, the equality holds if and only if p1(z) is the
reciprocal of one of the functions such that the equality holds in the case of v = 0.
The above upper bound is sharp. When 0 < v < 1, it can be improved as follows:∣∣c2 − vc21∣∣+ v |c1|2 ≤ 2 (0 < v ≤ 1�2)

and ∣∣c2 − vc21∣∣+ (1− v) |c1|2 ≤ 2 (1�2 < v ≤ 1) .

In the present paper, we obtain the Fekete-Szegö inequality for a more general
class of functions Mm,α

λ,µ (φ) that we defined upper. Also we give applications of our
results to certain functions defined through convolution (or Hadamard product)
and in particular we consider the class Mm,α,γ

λ,µ (φ) of functions defined by fractional
derivatives. The motivation of this paper is to generalize the Fekete-Szegö inequal-
ities obtained by Srivastava et al. [10], Orhan et al [4] and Shanmugam et al. [9].

2. Fekete-Szegö problem

In this section, we will give some upper bounds for the Fekete-Szegö functional∣∣a3 − ηa22∣∣ .
In order to prove our main results we have to recall the following.
Firstly, the following information will be used in the proof of the Theorem 2.1. By
geometric interpretation there exists a function w satisfying the conditions of the
Schwarz lemma such that

(2.1)
z
(

Λmλ,µf(z)
)′

Λmλ,µf(z)
= φ (w(z)) (z ∈ U) .

Secondly, we introduce the following functions which will be used in the discus-
sion of sharpness of our results.

Corresponding to the function Ψm,α
λ,µ (z) defined by (1.7), we also consider the

function Ψm,α
λ,µ (z)(−1) given by

Ψm,α
λ,µ (z)(−1)

= z +

∞∑
n=2

1

[1 + (λµn+ λ− µ)(n− 1)]m[1 + α(λµn+ λ− µ)(n− 1)]
zn,

(2.2)

where inverse is taken with respect to Hadamard product.
Using standard procedure it can be deduce that f ∈Mm,α

λ,µ if and only if

f(z) = Ψm,α
λ,µ (z)(−1) ∗

{
z exp

(∫ z

0

φ(w(t))− 1

t
dt

)}
for some function w(z) satisfying the conditions of the Schwarz Lemma.
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Define the function G in U by

(2.3) G(z) =
1

z

[
Ψm,α
λ,µ (z)(−1) ∗

{
z exp

(∫ z

0

φ(ξ)− 1

ξ
dξ

)}]
.

Also we consider the following extremal function

K(z, θ, τ)

=Ψm,α
λ,µ (z)(−1) ∗ zexp

(∫ z

0

[
φ

(
eiθξ(ξ+τ)

1+τξ

)
−1

]
dξ

ξ

)
(0≤θ≤2π; 0≤τ≤1) .

(2.4)

Note that K(z, 0, 1) = zG(z) defined by (2.3) and K(z, θ, 0) is an odd function.

Theorem 2.1. Let α ≥ 0, φ(z) = 1 + B1z + B2z
2 + · · · . If f(z) given by (1.1)

belongs to the class Mm,α
λ,µ (φ), then

(2.5)
∣∣a3 − ηa22∣∣

≤


B2

2Am2 [1+α(A2−1)]−
ηB2

1

A2m
1 [1+α(A1−1)]2

+
B2

1

2Am2 [1+α(A2−1)] if η ≤ σ1;
B1

2Am2 [1+α(A2−1)] if σ1 ≤ η ≤ σ2;

− B2

2Am2 [1+α(A2−1)] +
ηB2

1

A2m
1 [1+α(A1−1)]2

− B2
1

2Am2 [1+α(A2−1)] if η ≥ σ2,

where

σ1 :=
A2m

1 [1 + α(A1 − 1)]2
{

(B2 −B1) +B2
1

}
2Am2 [1 + α(A2 − 1)]B2

1

,

σ2 :=
A2m

1 [1 + α(A1 − 1)]2
{

(B2 +B1) +B2
1

}
2Am2 [1 + α(A2 − 1)]B2

1

and

(2.6) A1 := [1 + (2λµ+ λ− µ)] ; A2 := [1 + 2 (3λµ+ λ− µ)] ,

(λ ≥ µ ≥ 0,m ∈ N0).

Each of the estimates in (2.5) is sharp for the function K(z, θ, τ) given by (2.4).

Proof. For f(z) ∈Mm,α
λ,µ (φ), let

(2.7) p(z) =
(1− α)z(Dm

λ,µf(z))′ + αz(Dm+1
λ,µ f(z))′

(1− α)(Dm
λ,µf(z)) + α(Dm+1

λ,µ f(z))
= 1 + b1z + b2z

2 + · · · .

From (2.6), we obtain

Am1 [1+α(A1−1)]a2 = b1 and 2Am2 [1+α(A2−1)]a3 = b2+2A2m
1 [1+α(A1−1)]2a22.
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Since φ(z) is univalent and p ≺ φ, the function

p1(z) =
1 + φ−1(p(z))

1− φ−1(p(z))
= 1 + c1z + c2z

2 + · · ·

is analytic and has positive real part in U. We also have

(2.8) p(z) = φ

(
p1(z)− 1

p1(z) + 1

)
,

and thus, we get

b1 = 1
2B1c1 and b2 = 1

2B1(c2 − 1
2c

2
1) + 1

4B2c
2
1.

Hence, we have

(2.9) a3 − ηa22 =
B1

4Am2 [(1− α) + αA2]

{
c2 − vc21

}
,

where

v :=
1

2

(
1− B2

B1
+

2ηAm2 [1 + α(A2 − 1)]−A2m
1 [1 + α(A1 − 1)]2

A2m
1 [1 + α(A1 − 1)]2

B1

)
.

If η ≤ σ1, then, according to Lemma 1.2, we get∣∣a3 − ηa22∣∣ =
B1

4Am2 [1 + α(A2 − 1)]

×
∣∣∣∣c2−c21[12

(
1−B2

B1
+

2ηAm2 [1+α(A2 − 1)]−A2m
1 [1+α(A1−1)]2

A2m
1 [1+α(A1−1)]2

B1

)]∣∣∣∣
(2.10)

and thus,

∣∣a3 − ηa22∣∣ ≤ B2

2Am2 [1 + α(A2 − 1)]
− ηB2

1

A2m
1 [1 + α(A1 − 1)]

2 +
B2

1

2Am2 [1 + α(A2 − 1)]
,

which is the fist assertion of (2.5).
Next, if η ≥ σ2, by applying Lemma 1.2, we get

∣∣a3 − ηa22∣∣ ≤ − B2

2Am2 [1 + α(A2 − 1)]
+

ηB2
1

A2m
1 [1 + α(A1 − 1)]

2 −
B2

1

2Am2 [1 + α(A2 − 1)]

which is the third assertion of (2.5).
If σ1 ≤ η ≤ σ2, by using again Lemma 1.2, we obtain∣∣a3 − ηa22∣∣ ≤ B1

2Am2 [1 + α(A2 − 1)]
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which is the second part of the assertion (2.5).
We now obtain sharpness of the estimates in (2.5).

If η < σ1 or η > σ2, then equality holds in (2.5) if and only if equality holds in
(2.10). This happens if and only if c1 = 2 and c2 = 2. Thus w(z) = z. It follows
that the extremal function is of the form K(z, 0, 1) defined by (2.4) or one of its
rotations.
If η = σ2, the equality holds if and only if |c2| = 2.In this case, we have

1

2

(
1− B2

B1
+

2ηAm2 [1 + α(A2 − 1)]−A2m
1 [1 + α(A1 − 1)]2

A2m
1 [1 + α(A1 − 1)]2

B1

)
= 0.

Therefore the extremal function f is K(z, π, τ) or one of its rotations.
Similarly, η = σ1 is equivalent to

p1(z) =
1 + τ

2

(
1 + z

1− z

)
+

1− τ
2

(
1− z
1 + z

)
(0 < τ < 1; z ∈ U) .

Thus the extremal function is K(z, 0, τ)or one of its rotations.
Finally if σ1 ≤ η ≤ σ2, then equality holds if |c1| = 0 and |c2| = 2. Equivalently, we
have

h(z) =
1 + τz2

1− τz2
(0 ≤ τ ≤ 1; z ∈ U) .

Therefore the extremal function f is K(z, 0, 0) or one of its rotations. The proof of
Theorem 2.1 is now completed. 2

Remark 2.2.

1. For µ = 0, λ = 1 in Theorem 2.1, we get the results obtained by Orhan et
al.[4].

2. For µ = m = 0, λ = 1 in Theorem 2.1, we obtain the results obtained by
Shanmugam et al. [9].

Remark 2.3. If σ1 ≤ η ≤ σ2, then, in view of Lemma 1.2, Theorem 2.1 can be
improved. Let σ3 given by

σ3 :=
A2m

1 [1 + α(A1 − 1)]2
{
B2

1 +B2

}
2Am2 [1 + α(A2 − 1)]B2

1

.

If σ1 ≤ η ≤ σ3, then∣∣a3 − ηa22∣∣
+

A2m
1 [1+α(A1−1)]2

2Am2 [1+α(A2−1)]B2
1

[
B1−B2+

2ηAm2 [1+α(A2−1)]−A2m
1 [1+α(A1−1)]2

A2m
1 [1+α(A1−1)]2

B2
1

]
|a2|2

≤ B1

2Am2 [1 + α(A2 − 1)]
.
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If σ3 ≤ η ≤ σ2, then∣∣a3 − ηa22∣∣
+

A2m
1 [1+α(A1−1)]2

2Am2 [1+α(A2−1)]B2
1

[
B1+B2−

2ηAm2 [1+α(A2−1)]−A2m
1 [1+α(A1−1)]2

A2m
1 [1+α(A1−1)]2

B2
1

]
|a2|2

≤ B1

2Am2 [1 + α(A2 − 1)]
,

where A1 and A2 are given by (2.6).

Proof. If σ1 ≤ η ≤ σ3, we have∣∣a3 − ηa22∣∣+ (η − σ1) |a2|2

=
B1

4Am2 [1 + α(A2 − 1)]

∣∣c2 − vc21∣∣+ (η − σ1)
B2

1

4A2m
1 [1 + α(A1 − 1)]2

|c1|2

=
B1

4Am2 [1 + α(A2 − 1)]

∣∣c2 − vc21∣∣
+

(
η − A2m

1 [1 + α(A1 − 1)]2[B2
1 −B1 +B2]

2Am2 [1 + α(A2 − 1)]B2
1

)
B2

1

4A2m
1 [1 + α(A1 − 1)]2

|c1|2

=
B1

2Am2 [1 + α(A2 − 1)]

[
1

2

∣∣c2 − vc21∣∣x
+

1

2

(
2ηAm2 [1 + α(A2 − 1)]B2

1 −A2m
1 [1 + α(A1 − 1)]2[B2

1 −B1 +B2]

2A2m
1 [1 + α(A1 − 1)]2B1

)
|c1|2

]

=
B1

2Am2 [1 + α(A2 − 1)]

{
1

2

[∣∣c2 − vc21∣∣+ v |c1|2
]}

≤ B1

2Am2 [1 + α(A2 − 1)]
.

Similarly, if σ3 ≤ η ≤ σ2, we can write∣∣a3 − ηa22∣∣+ (σ2 − η) |a2|2

=
B1

4Am2 [1 + α(A2 − 1)]

∣∣c2 − vc21∣∣+ (σ2 − η)
B2

1

4A2m
1 [1 + α(A1 − 1)]2

|c1|2

=
B1

4Am2 [1 + α(A2 − 1)]

∣∣c2 − vc21∣∣
+

(
A2m

1 [1 + α(A1 − 1)]2[B2
1 +B1 +B2]

2Am2 [1 + α(A2 − 1)]B2
1

− η
)

B2
1

4A2m
1 [1 + α(A1 − 1)]2

|c1|2

=
B1

2Am2 [1 + α(A2 − 1)]

[
1

2

∣∣c2 − vc21∣∣
+

1

2

(
A2m

1 [1 + α(A1 − 1)]2[B2
1 +B1 +B2]− 2ηAm2 [1 + α(A2 − 1)]B2

1

2A2m
1 [1 + α(A1 − 1)]2B1

)
|c1|2

]
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=
B1

2Am2 [1 + α(A2 − 1)]

{
1

2

[∣∣c2 − vc21∣∣+ (1− v) |c1|2
]}

≤ B1

2Am2 [1 + α(A2 − 1)]
.

Thus, the proof of Remark 2.3 is completed. 2

3. Applications to functions defined by fractional derivatives

For fixed g ∈ A, let Mm,α,g
λ,µ (φ) be class of functions f ∈ A for which (f ∗ g) ∈

Mm,α
λ,µ (φ).

In order to introduce the class Mm,α,γ
λ,µ (φ), we need the following:

Definition 3.1([5]). Let f(z) be analytic in a simply connected region of the
z-plane containing the origin. The fractional derivative of f of order γ is defined by

Dγ
z f(z) =

1

Γ(1− γ)

d

dz

∫ z

0

f(ζ)

(z − ζ)γ
dζ(0 ≤ γ < 1),

where the multiplicity of (z− ζ)γ is removed by requiring that log(z− ζ) is real for
z − ζ > 0.

Using the above Definition 3.1 and its known extensions involving fractional
derivatives and fractional integrals, Owa and Srivastava [5] introduced the operator
Ω : A→ A defined by

Ωγf(z) = Γ(2− γ)zγDγ
z f(z) (γ 6= 2, 3, 4, · · · ).

The class Mm,α,γ
λ,µ (φ) consists of functions f ∈ A for which Ωγf ∈ Mm,α

λ,µ (φ). Note

that M0,0
0,0 (φ) ≡ S∗(φ) and Mm,α,γ

λ,µ (φ) is the special case of the class Mm,α,g
λ,µ (φ)

when

(3.1) g(z) = z +

∞∑
n=2

Γ(n+ 1)Γ(2− γ)

Γ(n+ 1− γ)
zn.

Let

g(z) = z +

∞∑
n=2

gnz
n(gn > 0).

Since Dm
λ,µf(z) ∈ Mm,α,g

λ,µ (φ) if and only if Dm
λ,µf(z) ∗ g(z) ∈ Mm,α

λ,µ (φ), we obtain

the coefficient estimate for functions in the class Mm,α,g
λ,µ (φ), from the corresponding

estimate for functions in the class Mm,α
λ,µ (φ).

Applying Theorem 2.1 for the function

Dm
λ,µf(z) ∗ g(z) = z +

∑∞
n=2 [1 + (λµn+ λ− µ)(n− 1)]

m
angnz

n

= z + [1 + (2λµ+ λ− µ)(n− 1)]
m
a2g2z

2 + · · · .

We get the following Theorem 3.2 after an obvious change of the parameter η :
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Theorem 3.2. Let g(z) = z +
∑∞
n=2 gnz

n (gn > 0), and let the function φ(z) be
given by φ(z) = 1 +

∑∞
n=1Bnz

n. If Dm
λ,µf(z) defined by (1.4) belongs to the class

Mm,α,g
λ,µ (φ), then

|a3 − ηa2|

≤



1
g3

[
B2

2Am2 [1+α(A2−1)]−
ηg3B

2
1

A2m
1 [1+α(A1−1)]2g22

+
B2

1

2Am2 [1+α(A2−1)]

]
if η ≤ σ∗1 ;

1
g3

[
B1

2Am2 [1+α(A2−1)]

]
if σ∗1 ≤ η ≤ σ∗2 ;

1
g3

[
− B2

2Am2 [1+α(A2−1)] +
ηg3B

2
1

A2m
1 [1+α(A1−1)]2g22

− B2
1

2Am2 [1+α(A2−1)]

]
if η ≥ σ∗2 ,

where A1 and A2 are given by (2.6) and

σ∗1 :=
g22A

2m
1 [1 + α(A1 − 1)]2

{
(B2 −B1) +B2

1

}
2g3Am2 [1 + α(A2 − 1)]B2

1

,

σ∗2 :=
g22A

2m
1 [1 + α(A1 − 1)]2

{
(B2 +B1) +B2

1

}
2g3Am2 [1 + α(A2 − 1)]B2

1

.

The result is sharp.

Since

(ΩγDm
λ,µf)(z) = z +

∞∑
n=2

Γ(n+ 1)Γ(2− γ)

Γ(n+ 1− γ)
[1 + (λµn+ λ− µ)(n− 1)]

m
zn,

we have

g2 :=
Γ(3)Γ(2− γ)

Γ(3− γ)
=

2

2− γ
and

g3 :=
Γ(4)Γ(2− γ)

Γ(4− γ)
=

6

(2− γ)(3− γ)
.

For g2 and g3 given by above equalities, Theorem 3.2 reduces to the following.

Theorem 3.3. Let g(z) = z +
∑∞
n=2 gnz

n, (gn > 0) and let the function φ(z) be
given by φ(z) = 1 +

∑∞
n=1Bnz

n and α ≥ 0. If Dm
λ,µf(z) defined by (1.4) belongs to

the class Mm,α,g
λ,µ (φ), then

|a3 − ηa2| ≤

(2−γ)(3−γ)
6

[
B2

2Am2 [1+α(A2−1)]−
3(2−γ)ηB2

1

2(3−γ)A2m
1 [1+α(A1−1)]2 +

B2
1

2Am2 [1+α(A2−1)]

]
if η ≤ σ∗∗1 ;

(2−γ)(3−γ)
6

[
B1

2Am2 [1+α(A2−1)]

]
if σ∗∗1 ≤ η ≤ σ∗∗2 ;

(2−γ)(3−γ)
6

[
− B2

2Am2 [1+α(A2−1)] +
3(2−γ)ηB2

1

2(3−γ)A2m
1 [1+α(A1−1)]2−

B2
1

2Am2 [1+α(A2−1)]

]
if η ≥ σ∗∗2 ,
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where A1 and A2 are given by (2.6) and

σ∗∗1 :=
(3− γ)A2m

1 [1 + α(A1 − 1)]2
{

(B2 −B1) +B2
1

}
3(2− γ)Am2 [1 + α(A2 − 1)]B2

1

,

σ∗∗2 :=
(3− γ)A2m

1 [1 + α(A1 − 1)]2
{

(B2 +B1) +B2
1

}
3(2− γ)Am2 [1 + α(A2 − 1)]B2

1

.

The result is sharp.

Remark 3.4. When α = 0, λ = 0 = µ, B1 = 8�π2 and B2 = 16�3π2, Theorem
3.3 reduces to a result of Srivastava and Mishra [10, Theorem 8, p. 64 ] for a class
of which Ωγf(z) is a parabolic starlike function (see [2], [7]).

Acknowledgement. Authors would like to thank the referee for thoughtful com-
ments and suggestions.
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