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FEKETE-SZEGO PROBLEM FOR SUBCLASSES
OF STARLIKE FUNCTIONS WITH
RESPECT TO SYMMETRIC POINTS

T. N. SHANMUGAM, C. RAMACHANDRAN, AND V. RAVICHANDRAN

ABSTRACT. In the present investigation, sharp upper bounds of
las — paj| for functions f(z) = z + a22*> + azz® + -+ belonging
to certain subclasses of starlike and convex functions with respect
to symmetric points are obtained. Also certain applications of the
main results for subclasses of functions defined by convolution with
a normalized analytic function are given. In particular, Fekete-
Szegd inequalities for certain classes of functions defined through
fractional derivatives are obtained.

1. Introduction

Let A denote the class of all analytic functions f(z) of the form
0
(1.1) f(z)zz-}—Zakzk (zeA:={zeC:|z| <1})
k=2

and S be the subclass of A consisting of univalent functions. For two
functions f, g € A, we say that the function f(z) is subordinate to g(z)
in A and write f < g or f(z) < g(z) (2 € A), if there exists an analytic
function w(z) with w(0) = 0 and |w(z)| < 1 (2 € A), such that f(z) =
g(w(z)) (# € A). In particular, if the function g is univalent in A, the
above subordination is equivalent to f(0) = ¢g(0) and f(A) C g(A).

Let ¢(z) be an analytic function with positive real part on A with
#(0) = 1, ¢'(0) > 0 which maps the unit disk A onto a region starlike
with respect to 1 which is symmetric with respect to the real axis. Let
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S*(¢) be the class of function f € S for which EJ{Q—SZ < ¢(z), (z € A) and

C(¢) be the class of functions f € S for which 1+ z}c,lé(zi) < ¢(2), (z € A).
These classes were introduced and studied by Ma and Minda {7]. When
#(z) = (1 + Az)/(1 + Bz), (-1 < B < A < 1), the class §*(¢) reduces
to the class $*[A, B] studied by Janowski [6]. See also Silverman and
Silvia [15]. Ma and Minda [7] have obtained the Fekete-Szegt inequality
for the functions in the class C(¢). Since f € C(¢) if and only if zf’ €
S*(¢), we get the Fekete-Szego inequality for functions in the class S*(¢).

Sakaguchi [14] introduced and studied the class S; of starlike func-
tions with respect to symmetric points. The class S (¢) defined below
is the generalization of the class 5.

DEFINITION 1.1. [10] Let ¢(2) = 1+ B1z + Bg2? + B32® + -+« be a
univalent starlike function with respect to 1 which maps the unit disk A
onto a region in the right half plane which is symmetric with respect to
the real axis, and let B; > 0. The function f € A is in the class S} (¢) if

2:/(2) )
7 — 1) 2

The function f € A is in the class Cs(¢) if

2(2f'(2))
e+ i)

When ¢(z) = (1 + Az2)/(1 + Bz), (-1 < B < A < 1), we denote the
subclasses S¥(¢) and Cs(¢) by Si[A, B] and C;[A, B] respectively. For
0<a<l,let S¥a):= Sl - 2a,-1] and Cs(a) := Cs[1 — 2a, —1].

In the present paper, we obtain the Fekete-Szeg6 inequality for func-
tions in the subclasses S (¢) and Cs(¢). Also we give applications of our
results to certain functions defined through convolution (or Hadamard
product) and in particular we consider classes S3(¢) and C2(¢) defined
by fractional derivatives.

To prove our main result, we need the following:

LEMMA 1.2. [7] If p(z) = 14+ c12 + ca2z? + - - - is an analytic function
with positive real part in A, then

—4v+2 if wv<0,
o — v < 2 if 0<wv<1,

qu — 2 if v>1.

When v < 0 or v > 1, the equality holds if and only if p(z) is (1 +
2)/(1 — z) or one of its rotations. If 0 < v < 1, then the equality holds
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if and only if p(2) is (1 + 22)/(1 — 2%) or one of its rotations. If v = 0,
the equality holds if and only if

1 1 \1+z (1 1\1-z
(L, 1 1_Z <A<
p(z) <2+2)\)1—z+<2 2)\)1+z (0<Ars)

or one of its rotations. If v = 1, the equality holds if and only if p(z) is
the reciprocal of one of the functions such that the equality holds in the
case of v = 0.

Also the above upper bound is sharp, and it can be improved as
follows when 0 < v < 1:

ez — v +vja|? <2 (0<v<1/2)

and
lea — vc?[ +(1=-v)a)f<2 1/2<v<).

2. Fekete-Szego problem

Our main result is the following:

THEOREM 2.1. If f(z) given by (1.1) belongs to S;(¢), then

¢ 1 7 .
5 [Bz - -2‘312_] if p<oy,
B
}las—ua§|S{ 71 if o01<p< oy,
—1[3 —332] if p>o
\ 2 2 9 1 = 02,
where
S 2(By — B1) o 2(Bg + Bq)
1 - B% 9 2 - B% N

The result is sharp.
Proof. For f € S;(¢), let
__ 22f'()
R P =)
From (2.1), we obtain

=1+4+bz+b2®+---.

2a2 = b1 and 2(13 = bg.
Since ¢(z) is univalent and p < ¢, the function

pi(2) = 1+ ¢ (p(2))

=T T ) ezt 4
1— ¢ (p(2)) e
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is analytic and has positive real part in A. Thus we have

p1(z) — 1)
2.2 Z) = —_—
(2.2 o) =0 (2
and from this equation (2.2), we obtain
1
bl = 53101
and
1,0 1.,
by = —31(02 — -2-61) + ZBzcl
Therefore we have
B
(2.3) a3 — paz = Tl {ca —vel},
where

1 By p
= [1- ==+ =By|.
v ~2[ Bl+2 1}

Our result now follows by an application of Lemma 1.2. To show that
these bounds are sharp, we define the functions K4, (n =2,3,...) by

22K (2)
Ky, (2) = Ky, (—2)
and the function F* and G (0 < X < 1) by
A

=¢(z""), Ky,(0)=0=[K,,](0)-1

QZF/(Z) _ z(z+ ) o ,
B - (D (m*) F5\(0)=0=[R](0) -1
and
22G'\(2) o _zz+N) o oy
GAz)—GA(—z)‘QS( Ttz ) GA0) =0=[G:(0) — 1.

Clearly the functions Ky, F), Gy € S3(¢). Also we write Ky := Kgy,. If
u < oy or p > o3, then the equality holds if and only if f is K4 or one
of its rotations. When o1 < p < o9, the equality holds if and only if f
is Ky, or one of its rotations. If 4 = oy then the equality holds if and
only if f is F) or one of its rotations. If 4 = 09 then the equality holds
if and only if f is G or one of its rotations. O

If o1 < p < o9, then, in view of Lemma 1.2, Theorem 2.1 can be
improved.
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THEOREM 2.2. Let f(z) given by (1.1) belongs to Si(¢). Let o3 be
given by o3 := 232/3%. If o1 < u < o3, then
1 B
las = pa3| + =5 [2(B1 — B2) + uBY] oo < .
1
If o3 < u < 09, then

1 B,
lag — ,ua%[ + 2o [2(31 + By) — uBﬂ ]azl2 < -
1

ExaMPLE 2.3. Let —1 < B < A < 1. If f(2) given by (1.1) belongs
to S¥[A, B], then

( B-A 7 ) 1+ B
- Ll < _9|l 1=
. [B+2(A B)] if < 2[,4*3]’
A-B 1+ B 1-B
— 1ua’ o = i <ol _—
(05 —paol < § 3 if Q{A—B}SM‘Z[A—B}’
A-B i - 1-B
k——Z——[B+—2—(A—B)] lfMZZ[A—B]

In particular, if f € S;(a), then
l-o)l-p(l-a)) if p<O,
Jag — a3l < { (1-a) i 0<u<
. 2
~l-a)i-pl-a) i a2
The results are sharp.

Since f € Cs(¢) if and only if zf' € S¥(¢), Theorem 2.1, with an
obvious change of the parameter u, leads to the following Corollary.

COROLLARY 2.4. If f(z) given by (1.1) belongs to Cs(¢), then

(1 3 .
E[Bz—guB%} if p<o,
B
jas —pad < { & if o1 <p<oy
1 3
2By 2uB?| it >
L 6[ 2= g 1] if p> oy,
where
- _ 8(B2— Bi) o _ 8(Ba+ Bi)
YT3T B 0 P 3 BE

The result is sharp.
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EXAMPLE 2.5. If f(z) given by (1.1) belongs to Cs[A, B], then

( B—A 3 81+ B
< -
== [B+8p,(A B)] if < [A B}
A-B 8|1+ 8B 8[1—-B
—ua?l<{ 222 g -2 <p<-|=—=
lag = wa| < | g ! 3{,4—3]—“—3{,4—3]’
A—-B 8|/1-B
B)| if = .
| "6 [B+8(A )]1“ 3[,4—3]
In particular, if f € Cs(«), then
(11—« 3
_2 _ i <
3 [1 4/u(1 a)] if pu<o0,
1l-a .
lag — paj| < 3 if  0<u< gty
l1-a 3 . 8
- [I—Z,u(l—a)] if B2 5a—gy

The results are sharp.

If o1 < p < o9, then, in view of Lemma 1.2, Corollary 2.4 can be

improved.

COROLLARY 2.6. Let f(z) given by (1.1) belongs to Cs(¢). Let o3
be given by o3 := %g%.
1

Ifop < u < o3, then

8 1 3 1. ., B

2 2 2 1

- Z— |By—By+ =uB <21

las ,uazl—l-gB% _ 1 2+8u 1] las]® < 5
If o3 < u < 09, then

81 3 | By

- B — ZuB? 21

|a3 ua2|+332 1+B2 8,u 1- |a2| =%

3. Applications to functions defined by fractional derivatives

For two analytic functions f(z) = z 4+ Y oo san2™ and g(z) = z +
Y o 5 gn2™, their convolution (or Hadamard product) is defined to be
the function (f*g)(2) given by (f*9)(2) = 2+ ney gnanz". For a fixed
g € A, let S7(¢) be the class of functions f € A for which (f*g) € Si(¢)
and CY(¢) be the class of functions f € A for which (f * g) € Cs(¢).
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DEFINITION 3.1 (see [9, 8]; see also [17, 18]). Let f(z) be analytic
in a simply connected region of the z-plane containing the origin. The
fractional derivative of f of order X is defined by

1 d[F
D} - d¢ (0<X<1),
where the multiplicity of (2—¢)~ is removed by requiring that log(z—¢)
is real for z — { > 0.

Using the above Definition 3.1 and its known extensions involving
fractional derivatives and fractional integrals, Owa and Srivastava [9]
introduced the operator Q* : A — A defined by

(@)(z) =T - NDIf(2), (A#£2,3,4,...).
The classes S2(¢) and C2(4) consist of functions f € A for which Q*f €
Sz(¢) and QA f € Cy(¢) respectively. The class S2(¢) is the special case
of the class S7(¢) and the class C(¢) is the special case of the class
C{(¢) when

B

Since f € S§(¢) (C4(¢)) if and only if f * g € S¥(¢) (Cs()), we obtain
the coefficient estimates for functions in the classes S7(¢) and C3(¢),
from the corresponding estimates for functions in the classes S*(¢) and
Cyl(9).

Applying Theorem 2.1 for the function (f * g)(z) = z + gaa22% +
gsasz3 + -+, we get the following theorem after an obvious change of
the parameter u:

THEOREM 3.2. Let g(z) = 2+ 3 oo 5 gn2" (9o > 0). If f(z) given by
(1.1) belongs to S?(¢), then

(1 Kg3 .
% (B 2 231) if p<or,
B
las — pa2| < { = if o1 <pu<Loy,
293
1 g3 ) .
By, - —B if > 02,
L 293 < 2 2 1 ,LL = 02
where
295 (B2 — B1) _2g5 (B2 + By)
g] = —— o e - 7

——5—", O3:= ,
g3 B? 93 B?
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The result is sharp.
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COROLLARY 3.3. Let g(z) = 2+ > ooy gn2™ (gn > 0). If f(2) given

by (1.1) belongs to C3(¢), then

(1 3 1193 1o :
— | By— =——-B f <
693 ( 2 g g% 1 1 H = o1,
|a—a2|<J£1— if o1<pu<eo
3 — MHdo| & 6g3 1> B 02,
1 3 HG3 o .
—— | By—-—=-B f >
{ 693 ( 2 8 g% 1 1 H =z o2,
where ) .
o1 = %(32—31) P 8&(324‘31)
'35 BT T3 B
The result is sharp.
Since -
Fn+1I'2-X)
Q)‘ — n
we have
T3T((2-)) 2
.2 = =
(32) PETTEN T 2o
and
_rare-x 6
(3:3) B=TFEZN @ NGoN
For g and g3 given by (3.2) and (3.3), Theorem 3.2 reduces to the
following:
THEOREM 3.4. Let A < 2. If f(z) given by (1.1) belongs to S2(¢),
then
(@-NB-N[, 32-N ]
2-X(B-X
laz — pa3| < < %‘_)Bl if oy < p < oy,

. 12
where
oy = 4(3 - \) (By — By)
3(2-2 B

_(2=0B-Y [BZ ~

72 =500

3(2 - \)
43— N)

uBi"] if u > o,

48— (B2 + B1)
Bf
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For gy and g3 given by (3.2) and (3.3), Corollary 3.3 reduces to the
following:

COROLLARY 3.5. Let A < 2. If f(z) given by (1.1) belongs to C(¢),
then

(@=NB-N[, 92-N o] . _
36 B: = o= nHBi| Hrson
2 — - A
lag — pa2| < 4 (———)\%3——)31 ifoy < p < oy,
VEDNICEDY 9(2-)) 2l .
A S S - "’ B fu>
{ 36 B: ~ oo nyrBi| HHzon
where
L _AB-NB:-B) 43N (B: 1 By)
YT e-N B TP (@-N B
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