DOI QR코드

DOI QR Code

COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS OF BOUNDED TURNING FUNCTIONS ASSOCIATED WITH COSINE HYPERBOLIC FUNCTION

  • Received : 2023.11.21
  • Accepted : 2024.03.15
  • Published : 2024.05.31

Abstract

The aim of this paper is to study a new and unified class 𝓡αCosh of analytic functions associated with cosine hyperbolic function in the open unit disc E = {z ∈ ℂ : |z| < 1}. Some interesting properties of this class such as initial coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman inequality and third Hankel determinant have been established. Furthermore, these results have also been studied for two-fold and three-fold symmetric functions.

Keywords

References

  1. A. Alotaibi, M. Arif, M. A. Alghamdi & S. Hussain: Starlikeness associated with cosine hyperbolic function. Mathematics 8 (2020), 1-16. https://doi.org/10.3390/Math8071118
  2. S. Altinkaya & S. Yalcin: Third Hankel determinant for Bazilevic functions. Adv. Math., Scientific Journal 5 (2016), no. 2, 91-96. https://research-publication.com
  3. M. Arif, M. Raza, H. Tang, S Hussain & H. Khan: Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 17 (2019), 1615-1630. https://doi.org/10.1515/math-2019-0132
  4. K. Arora & S.S. Kumar: Starlike functions associated with a petal shaped domain. Bull. Korean Math. Soc. 59 (2022), no. 4, 993-1010. https://doi.org/10.4134/BKMS.b210602
  5. K.O. Babalola: On H3(1) Hankel determinant for some classes of univalent functions. Ineq. Th. Appl. 6 (2010), 1-7. https://doi.org/10.48550/arxiv.0910.3779
  6. L. Bieberbach: Uber die koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preussische Akademie der Wissenschaften 138 (1916), 940-955.
  7. R. Bucur, D. Breaz & L. Georgescu: Third Hankel determinant for a class of analytic functions with respect to symmetric points. Acta Univ. Apulensis 42 (2015), 79-86. https://doi.org/10.17114/j.aua.2015.42.06
  8. N.E. Cho, V. Kumar, S.S. Kumar & V. Ravichandran: Radius problems for starlike functions associated with sine functions. Bull. Iran. Math. Soc. 45 (2019), 213-232. https://doi.org/10.1007/s41980-018-0127-5
  9. L. De-Branges: A proof of the Bieberbach conjecture. Acta Math. 154 (1985), 137-152. https://doi.org/10.1007/BF02392821
  10. P. Goel & S.S. Kumar: Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 43 (2020), 957-991. https://doi.org/10.1007/s40840-019-00784-y
  11. W. Janowski: Extremal problems for a family of functions with positive real part and for some related families. Ann. Polonic Math. 23 (1971), 159-177. https://doi.org/10.4064/AP-23-2-159-177
  12. A. Janteng, S. A. Halim & M. Darus: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 1 (2007), no. 13, 619-625. https://researchgate.net/publication/268710377 10377
  13. F.R. Keogh & E.P. Merkes: A coefficient inequality for certain families of holomorphic functions. Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.18514/MMN.2016.768
  14. M.G. Khan, W.K. Mashwani, L. Shi, S. Araci, B. Ahmad & B. Khan: Hankel inequalities for bounded turning functions in the domain of cosine hyperbolic function. AIMS Math. 8 (2023), no. 9, 21993-22008. https://doi.org/10.3934/Math.20231121
  15. R.J. Libera & E.J. Zlotkiewiez: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 85 (1982), 225-230. https://doi.org/10.1090/S0002-9939-1982-0652447-5
  16. R.J. Libera & E.J. Zlotkiewiez: Coefficient bounds for the inverse of a function with derivative in P. Proc. Amer. Math. Soc. 87 (1983), 251-257. https://doi.org/10.2307/2043698
  17. W. Ma: Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 234 (1999), 328-329. https://doi.org/10.1006/jmaa.1999.6378
  18. T.H. MacGregor: Functions whose derivative has a positive real part. Trans. Amer. Math. Soc. 104 (1962), 532-537. https://doi.org/10.1090/s0002-9947-1962-0140674-7
  19. T.H. MacGregor: The radius of univalence of certain analytic functions. Proc. Amer. Math. Soc. 14 (1963), 514-520. https://doi.org/10.1090/S0002-9939-1963-0148891-3
  20. G. Murugusundaramoorthi & N. Magesh: Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant. Bull. Math. Anal. Appl. 1 (2009), no. 3, 85-89. https://www.BMATHAA.org
  21. Ch. Pommerenke: On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
  22. Ch. Pommerenke: Univalent functions, Math. Lehrbucher, vandenhoeck and Ruprecht, Gottingen, 1975.
  23. R.K. Raina & J. Sokol: On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 44 (2015), 1427-1433. https://doi.org/10.15672/HJMS.2015449676
  24. V. Ravichandran & S. Verma: Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Mathematique. 353 (2015), 505-510. https://doi.org/10.1016/j.crma.2015.03.003
  25. M. Raza, A. Riaz, Q. Xin & S.N. Malik: Hankel determinant and coefficient estimates for starlike functions related to symmetric booth Lemniscate. Symmetry 14 (2022), 1-14. https://doi.org/10.3390/sym14071366
  26. M.O. Reade: On close-to-convex univalent functions. Michigan Math. J. 3 (1955-56), 59-62. https://doi.org/10.1307/mmj/1031710535
  27. A. Riaz, M. Raza, M.A. Binyamin & A. Salin: Hankel determinant for a subclass of starlike functions with respect to symmetric points subordinate to the exponential function. Symmetry 15 (2023), no. 8, 1-7. https://doi.org/10.3390/sym15081604
  28. G. Shanmugam, B.A. Stephen & K.O. Babalola: Third Hankel determinant for α-starlike functions. Gulf J. Math. 2 (2014), no. 2, 107-113. https://doi.org/10.56947/gjom.v2i2.202
  29. K. Sharma, N.K. Jain & V. Ravichandran: Starlike functions associated with cardioid domain. Afr. Mat. 27 (2016), 923-939. https://doi.org/10.1007/s13370-015-0387-7
  30. G. Singh & G. Singh: Hankel determinant problems for certain subclasses of Sakaguchitype functions defined with subordination. Korean J. Math. 30 (2022), no. 1, 81-90. https://doi.org/10.11568/kjm.2022.30.1.81
  31. G. Singh, G. Singh & G. Singh: Fourth Hankel determinant for a subclass of analytic functions defined by generalized Salagean operator. Creat. Math. Inform. 31 (2022), no. 2, 229-240. https://doi.org/10.37193/CMI.2022.02.08
  32. G. Singh, G. Singh & G. Singh: Estimate of third and fourth Hankel determinants for certain subclasses of analytic functions. Southeast Asian Bull. Math. 47 (2023), no. 3, 411-424. https://www.seams-bull-math.ynu.edu.cn/archive.jsp
  33. G. Singh, G. Singh & G. Singh: Estimate of fourth Hankel determinant for a subclass of multivalent functions defined by generalized Salagean operator. J. Frac. Cal. Appl. 14 (2023), no. 1, 66-74. https://math-frac.org/Journals/JFCA
  34. J. Sokol & J. Stankiewicz: Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101-105. https://www.researchgate.net/publication/267137022
  35. Y. Sun, M. Arif, K. Ullah, L. Shi & M.I. Faisal: Hankel determinant for certain new classes of analytic functions associated with the activation function. Heliyon 9 (2023), no. 11, 1-14. https://doi.org/10.1016/j.heliyon.2023.e21449
  36. P. Sunthrayuth, N. Iqbal, M. Naeem, Y. Jawarneh & S.K. Samura: The sharp upper bound of the Hankel determinant on logarithmic coefficients for certain analytic functions connected with eight-shaped domain. J. Func. Spaces, Art. Id. 2229960, Vol. 2022, 1-12. https://doi.org/10.1155/2022/2229960
  37. L.A. Wani & A. Swaminathan: Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 44 (2021), 79-104. https://doi.org/10.1007/s40840-020-00935-6