COEFFICIENT INEQUALITIES FOR ANALYTIC FUNCTIONS CONNECTED WITH k-FIBONACCI NUMBERS

Serap Bulut* and Janusz Sokó

Abstract

In this paper, we introduce a new class $\mathcal{R}_{\lambda}^{k}(\lambda \geq 1, k$ is any positive real number) of univalent complex functions, which consists of functions f of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(|z|<1)$ satisfying the subordination condition $$
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z) \prec \frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \quad \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2}
$$

and investigate the Fekete-Szegö problem for the coefficients of $f \in \mathcal{R}_{\lambda}^{k}$ which are connected with k-Fibonacci numbers

$$
F_{k, n}=\frac{\left(k-\tau_{k}\right)^{n}-\tau_{k}^{n}}{\sqrt{k^{2}+4}} \quad(n \in \mathbb{N} \cup\{0\})
$$

We obtain sharp upper bound for the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ when $\mu \in \mathbb{R}$. We also generalize our result for $\mu \in \mathbb{C}$.

1. Introduction

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, \mathbb{C} be the set of complex numbers and

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers.
Assume that \mathcal{H} is the class of analytic functions in the open unit disc

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

Let the class $\mathcal{P}(\beta)$ be defined by

$$
\mathcal{P}(\beta)=\{p \in \mathcal{H}: p(0)=1 \quad \text { and } \quad \Re(p(z))>\beta, z \in \mathbb{U}\} .
$$

In particular, we set $\mathcal{P}(0)=\mathcal{P}$.
For two functions $f, g \in \mathcal{H}$, we say that the function f is subordinate to g in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

*Corresponding author
if there exists a Schwarz function

$$
\omega \in \Omega:=\{\omega \in \mathcal{H}: \omega(0)=0 \quad \text { and } \quad|\omega(z)|<1(z \in \mathbb{U})\}
$$

such that

$$
f(z)=g(\omega(z)) \quad(z \in \mathbb{U}) .
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions f normalized by

$$
f(0)=f^{\prime}(0)-1=0 .
$$

Each function $f \in \mathcal{A}$ can be expressed as

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

We also denote by \mathcal{S} the class of univalent functions in \mathcal{A}.
Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathbb{U}. In fact, the Koebe one-quarter theorem, see [3], ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathcal{A}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function $F=f^{-1}$ is given by
$f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots=: w+\sum_{n=2}^{\infty} A_{n} w^{n}$.
For a function $f \in \mathcal{S}$, the logarithmic coefficients $\delta_{n}(n \in \mathbb{N})$ are defined by

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \delta_{n} z^{n} \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

and play a central role in the theory of univalent functions. The idea of studying the logarithmic coefficients helped Kayumov [11] to solve Brennan's conjecture for conformal mappings. If $f \in \mathcal{S}$, then it is known that

$$
\left|\delta_{1}\right| \leq 1
$$

and

$$
\left|\delta_{2}\right| \leq \frac{1}{2}\left(1+2 e^{-2}\right) \approx 0,635 \ldots
$$

(see [3]). The problem of the best upper bounds for $\left|\delta_{n}\right|$ of univalent functions for $n \geq 3$ is still open.

For $f \in \mathcal{S}$ given by (1), Fekete and Szegö [8] proved a noticeable result that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}3-4 \mu & , \quad \mu \leq 0 \tag{4}\\ 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right) & , \quad 0 \leq \mu \leq 1 \\ 4 \mu-3 & , \quad \mu \geq 1\end{cases}
$$

holds. The result is sharp in the sense that for each μ there is a function in the class under consideration for which equality holds. The coefficient functional

$$
\phi_{\mu}(f)=a_{3}-\mu a_{2}^{2}=\frac{1}{6}\left(f^{\prime \prime \prime}(0)-\frac{3 \mu}{2}\left(f^{\prime \prime}(0)\right)^{2}\right)
$$

on $f \in \mathcal{A}$ represents various geometric quantities as well as in the sense that this behaves well with respect to the rotation, namely

$$
\phi_{\mu}\left(e^{-i \theta} f\left(e^{i \theta} z\right)\right)=e^{2 i \theta} \phi_{\mu}(f) \quad(\theta \in \mathbb{R})
$$

By means of the principle of subordination, we introduce the following class for functions $f \in \mathcal{S}$:

Definition 1.1. Let k be any positive real number and $\lambda \geq 1$. The function $f \in \mathcal{A}$ belongs to the class $\mathcal{R}_{\lambda}^{k}$ if it satisfies the condition that

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z) \prec \tilde{p}_{k}(z) \quad(z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}=\frac{1+\tau_{k}^{2} z^{2}}{1-\left(\tau_{k}^{2}-1\right) z-\tau_{k}^{2} z^{2}} \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
\tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2} \tag{7}
\end{equation*}
$$

Yılmaz Özgür and Sokół [13] showed that the function \tilde{p}_{k} given by (6) belongs to the class $\mathcal{P}\left(\frac{k \sqrt{k^{2}+4}}{2\left(k^{2}+4\right)}\right)$.

On the other hand, the subordination (5) may be written as a linear differential equation

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=\tilde{p}_{k}(w(z)) \quad(z \in \mathbb{U}) \tag{8}
\end{equation*}
$$

for some $w \in \Omega$. Therefore, the solution of (8)

$$
f(z)=\frac{1}{\lambda} z^{\frac{\lambda-1}{\lambda}} \int_{0}^{z} t^{\frac{1-\lambda}{\lambda}} \tilde{p}_{k}(w(t)) \mathrm{d} t
$$

gives one-to-one correspondence between classes Ω and $\mathcal{R}_{\lambda}^{k}$.

For $k=1$, the class $\mathcal{R}_{\lambda}^{k}$ reduces to the class \mathcal{R}_{λ} which consists of functions $f \in \mathcal{A}$ defined by (1) satisfying

$$
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z) \prec \tilde{p}(z)
$$

where

$$
\tilde{p}(z):=\tilde{p}_{1}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}, \quad \tau:=\tau_{1}=\frac{1-\sqrt{5}}{2} .
$$

For more details please refer to $[4,5,6,9,10,14,15,16,17,18]$.
For $\lambda=1$, the class $\mathcal{R}_{\lambda}^{k}$ reduces to the class $\mathcal{R}\left(\tilde{p}_{k}\right)$ which consists of functions $f \in \mathcal{A}$ satisfying

$$
f^{\prime}(z) \prec \tilde{p}_{k}(z) \quad(z \in \mathbb{U}),
$$

where \tilde{p}_{k} is given by (6). In particular, we get the class $\mathcal{R}_{1}^{1}=\mathcal{R}(\tilde{p})$. The classes $\mathcal{R}\left(\tilde{p}_{k}\right)$ and $\mathcal{R}(\tilde{p})$ are introduced by Sumalatha et al. [19].

Definition 1.2. [7] For any positive real number k, the k-Fibonacci sequence $\left\{F_{k, n}\right\}_{n \in \mathbb{N}_{0}}$ is defined recurrently by

$$
F_{k, n+1}=k F_{k, n}+F_{k, n-1} \quad(n \in \mathbb{N})
$$

with initial conditions

$$
F_{k, 0}=0, \quad F_{k, 1}=1
$$

Furthermore $n^{\text {th }} k$-Fibonacci number is given by

$$
\begin{equation*}
F_{k, n}=\frac{\left(k-\tau_{k}\right)^{n}-\tau_{k}^{n}}{\sqrt{k^{2}+4}} \tag{9}
\end{equation*}
$$

where τ_{k} is given by (7).
For $k=1$, we obtain the classic Fibonacci sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}_{0}}$:

$$
F_{0}=0, \quad F_{1}=1, \quad \text { and } \quad F_{n+1}=F_{n}+F_{n-1} \quad(n \in \mathbb{N})
$$

Yılmaz Özgür and Sokół [13] showed that the coefficients of the function $\tilde{p}_{k}(z)$ defined by (6) are connected with k-Fibonacci numbers. This connection is pointed out in the following theorem.

Theorem 1.3. [13] Let $\left\{F_{k, n}\right\}_{n \in \mathbb{N}_{0}}$ be the sequence of k-Fibonacci numbers defined in Definition 1.2. If

$$
\begin{equation*}
\tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}:=1+\sum_{n=1}^{\infty} \tilde{p}_{k, n} z^{n} \tag{10}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\tilde{p}_{k, 1}=k \tau_{k}, \quad \tilde{p}_{k, 2}=\left(k^{2}+2\right) \tau_{k}^{2}, \quad \tilde{p}_{k, n}=\left(F_{k, n-1}+F_{k, n+1}\right) \tau_{k}^{n} \quad(n \in \mathbb{N}) \tag{11}
\end{equation*}
$$

The main purpose of this paper is to obtain Fekete-Szegö inequalities for functions belonging to the class $\mathcal{R}_{\lambda}^{k}$. For this purpose, we need the following lemmas:

Lemma 1.4. [3] Let $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in \mathcal{P}$. Then

$$
\left|c_{n}\right| \leq 2 \quad(n \in \mathbb{N})
$$

Lemma 1.5. [12] If $p \in \mathcal{P}$ with $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$, then

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq \begin{cases}-4 \nu+2 & , \quad \nu \leq 0 \\ 2 & , \quad 0 \leq \nu \leq 1 \\ 4 \nu-2 & , \quad \nu \geq 1\end{cases}
$$

When $\nu<0$ or $\nu>1$, equality holds true if and only if $p(z)$ is $\frac{1+z}{1-z}$ or one of its rotations. If $0<\nu<1$, then equality holds true if and only if $p(z)$ is $\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $\nu=0$, then the equality holds true if and only if

$$
p(z)=\left(\frac{1}{2}+\frac{1}{2} \eta\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \eta\right) \frac{1-z}{1+z} \quad(0 \leq \eta \leq 1)
$$

or one of its rotations. If $\nu=1$, then the equality holds true if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds true in the case when $\nu=0$.

Although the above upper bound is sharp, in the case when $0<\nu<1$, it can be further improved as follows:

$$
\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2} \leq 2 \quad\left(0<\nu \leq \frac{1}{2}\right)
$$

and

$$
\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2} \leq 2 \quad\left(\frac{1}{2}<\nu \leq 1\right) .
$$

Lemma 1.6. [1] If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and

$$
p(z) \prec \tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \quad \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2},
$$

then we have

$$
\left|p_{2}-\gamma p_{1}^{2}\right| \leq k\left|\tau_{k}\right| \max \left\{1,\left|k^{2}+2-\gamma k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\} \quad \text { for all } \gamma \in \mathbb{C}
$$

The above estimates are sharp.
Lemma 1.7. [2] If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and

$$
\begin{equation*}
p(z) \prec \tilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}=1+\sum_{n=1}^{\infty}\left(F_{k, n-1}+F_{k, n+1}\right) \tau_{k}^{n} z^{n} \tag{12}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left|p_{n}\right| \leq\left(F_{k, n-1}+F_{k, n+1}\right)\left|\tau_{k}\right|^{n} \quad(n \in \mathbb{N}) \tag{13}
\end{equation*}
$$

The result is sharp.

2. Main results

In this section, we firstly give the upper bound of the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ of functions $f \in \mathcal{R}_{\lambda}^{k}$ given by (1) when $\mu \in \mathbb{R}$.

Theorem 2.1. If the function f given by (1) is in the class $\mathcal{R}_{\lambda}^{k}$, then we have

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq \begin{cases}\frac{(1+\lambda)^{2}\left(k^{2}+2\right)-\mu(1+2 \lambda) k^{2}}{(1+\lambda)^{2}(1+2 \lambda)} \tau_{k}^{2} \quad, \quad \mu \leq \frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{(1+2 \lambda) k^{2} \tau_{k}} \\
\frac{k\left|\tau_{k}\right|}{1+2 \lambda} & , \quad \frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{(1+2 \lambda) k^{2} \tau_{k}} \leq \mu \leq \frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{(1+2 \lambda) k^{2} \tau_{k}} \\
\frac{\mu(1+2 \lambda) k^{2}-(1+\lambda)^{2}\left(k^{2}+2\right)}{(1+\lambda)^{2}(1+2 \lambda)} \tau_{k}^{2} \quad, \quad \mu \geq \frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{(1+2 \lambda) k^{2} \tau_{k}}\end{cases} \\
& \text { If } \frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{(1+2 \lambda) k^{2} \tau_{k}} \leq \mu \leq \frac{(1+\lambda)^{2}\left(k^{2}+2\right)}{(1+2 \lambda) k^{2}}, \text { then } \\
& \quad\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{(1+2 \lambda) k^{2} \tau_{k}}\right)\left|a_{2}\right|^{2} \leq \frac{k\left|\tau_{k}\right|}{1+2 \lambda}
\end{aligned}
$$

Furthermore, if $\frac{(1+\lambda)^{2}\left(k^{2}+2\right)}{(1+2 \lambda) k^{2}} \leq \mu \leq \frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{(1+2 \lambda) k^{2} \tau_{k}}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{(1+2 \lambda) k^{2} \tau_{k}}-\mu\right)\left|a_{2}\right|^{2} \leq \frac{k\left|\tau_{k}\right|}{1+2 \lambda}
$$

Each of these results is sharp.
Proof. If $f \in \mathcal{R}_{\lambda}^{k}$, then by the principle of subordination, there exists a Schwarz function $\omega \in \Omega$ such that

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=\tilde{p}_{k}(\omega(z)) \quad(z \in \mathbb{U}) \tag{14}
\end{equation*}
$$

where the function \tilde{p}_{k} is given by (10). Therefore, the function

$$
\begin{equation*}
g(z):=\frac{1+\omega(z)}{1-\omega(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{15}
\end{equation*}
$$

is in the class \mathcal{P}. Now, defining the function $p(z)$ by

$$
\begin{equation*}
p(z)=(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=1+p_{1} z+p_{2} z^{2}+\cdots \tag{16}
\end{equation*}
$$

it follows from (14) and (15) that

$$
\begin{equation*}
p(z)=\tilde{p}_{k}\left(\frac{g(z)-1}{g(z)+1}\right) . \tag{17}
\end{equation*}
$$

Note that

$$
\omega(z)=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots
$$

and so

$$
\begin{equation*}
\tilde{p}_{k}(\omega(z))=1+\frac{\tilde{p}_{k, 1} c_{1}}{2} z+\left[\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tilde{p}_{k, 1}+\frac{1}{4} c_{1}^{2} \tilde{p}_{k, 2}\right] z^{2}+\cdots . \tag{18}
\end{equation*}
$$

Thus, by using (15) in (17), and considering the values $\tilde{p}_{k, j}(j=1,2)$ given in (11), we obtain

$$
\begin{equation*}
p_{1}=\frac{k \tau_{k}}{2} c_{1} \quad \text { and } \quad p_{2}=\frac{k \tau_{k}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\left(k^{2}+2\right) \tau_{k}^{2}}{4} c_{1}^{2} . \tag{19}
\end{equation*}
$$

On the other hand, a simple calculation shows that

$$
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=1+(1+\lambda) a_{2} z+(1+2 \lambda) a_{3} z^{2}+\cdots,
$$

which, in view of (16), yields

$$
\begin{equation*}
p_{1}=(1+\lambda) a_{2} \quad \text { and } \quad p_{2}=(1+2 \lambda) a_{3} . \tag{20}
\end{equation*}
$$

Thus, we obtain

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{1}{1+2 \lambda}\left[p_{2}-\mu \frac{(1+2 \lambda)}{(1+\lambda)^{2}} p_{1}^{2}\right] \\
& =\frac{1}{1+2 \lambda}\left[\frac{k \tau_{k}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\left(k^{2}+2\right) \tau_{k}^{2}}{4} c_{1}^{2}-\mu \frac{(1+2 \lambda) k^{2} \tau_{k}^{2}}{4(1+\lambda)^{2}} c_{1}^{2}\right] \\
& =\frac{k \tau_{k}}{2(1+2 \lambda)}\left(c_{2}-\nu c_{1}^{2}\right),
\end{aligned}
$$

where

$$
\nu=\frac{1}{2}-\frac{(1+\lambda)^{2}\left(k^{2}+2\right)-\mu(1+2 \lambda) k^{2}}{2(1+\lambda)^{2}} \frac{\tau_{k}}{k} .
$$

The assertion of Theorem 2.1 now follows by an application of Lemma 1.5.
To show that the bounds asserted by Theorem 2.1 are sharp, we define the following functions:

$$
K_{\tilde{p}_{k, n}}(z) \quad(n \in \mathbb{N} \backslash\{1\}),
$$

with

$$
K_{\tilde{p}_{k, n}}(0)=0=K_{\tilde{p}_{k, n}}^{\prime}(0)-1,
$$

by

$$
\begin{equation*}
(1-\lambda) \frac{K_{\tilde{p}_{k, n}}(z)}{z}+\lambda K_{\tilde{p}_{k}, n}^{\prime}(z)=\tilde{p}_{k}\left(z^{n-1}\right), \tag{21}
\end{equation*}
$$

and the functions $F_{\eta}(z)$ and $G_{\eta}(z)(0 \leq \eta \leq 1)$, with

$$
F_{\eta}(0)=0=F_{\eta}^{\prime}(0)-1 \quad \text { and } \quad G_{\eta}(0)=0=G_{\eta}^{\prime}(0)-1,
$$

by

$$
(1-\lambda) \frac{F_{\eta}(z)}{z}+\lambda F_{\eta}^{\prime}(z)=\tilde{p}_{k}\left(\frac{z(z+\eta)}{1+\eta z}\right)
$$

and

$$
(1-\lambda) \frac{G_{\eta}(z)}{z}+\lambda G_{\eta}^{\prime}(z)=\tilde{p}_{k}\left(-\frac{z(z+\eta)}{1+\eta z}\right)
$$

respectively. Then, clearly, the functions $K_{\tilde{p}_{k, n}}, F_{\eta}, G_{\eta} \in \mathcal{R}_{\lambda}^{k}$. We also write

$$
K_{\tilde{p}_{k}}=K_{\tilde{p}_{k, 2}}
$$

If $\mu<\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{(1+2 \lambda) k^{2} \tau_{k}}$ or $\mu>\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{(1+2 \lambda) k^{2} \tau_{k}}$, then the equality in Theorem 2.1 holds if and only if f is $K_{\tilde{p}_{k}}$ or one of its rotations. When

$$
\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{(1+2 \lambda) k^{2} \tau_{k}}<\mu<\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{(1+2 \lambda) k^{2} \tau_{k}}
$$

the equality holds if and only if f is $K_{\tilde{p}_{k, 3}}$ or one of its rotations. If $\mu=$ $\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{(1+2 \lambda) k^{2} \tau_{k}}$, then the equality holds if and only if f is F_{η} or one of its rotations. If $\mu=\frac{(1+\lambda)^{2}\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{(1+2 \lambda) k^{2} \tau_{k}}$, then the equality holds if and only if f is G_{η} or one of its rotations.

If the function f given by (1) is in the class $\mathcal{R}_{\lambda}^{k}$, then from (19), (20) and Lemma 1.4, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{k\left|\tau_{k}\right|}{1+\lambda} \tag{22}
\end{equation*}
$$

and using the bound for $\left|a_{3}-\mu a_{2}^{2}\right|$ with $\mu=0$ we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left(k^{2}+2\right) \tau_{k}^{2}}{1+2 \lambda} \tag{23}
\end{equation*}
$$

For the general case, if we consider (16), then we get

$$
a_{n}=\frac{p_{n-1}}{1+(n-1) \lambda}
$$

Therefore using Lemma 1.7, we get following result.
Theorem 2.2. If the function f given by (1) is in the class $\mathcal{R}_{\lambda}^{k}$, then we have

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{F_{k, n-2}+F_{k, n}}{1+(n-1) \lambda}\left|\tau_{k}\right|^{n-1} \quad(n \geq 2) \tag{24}
\end{equation*}
$$

Equality holds in (24) for the function

$$
\tilde{f}_{k, \lambda}(z)=\frac{1}{\lambda} z^{\frac{\lambda-1}{\lambda}} \int_{0}^{z} t^{\frac{1-\lambda}{\lambda}} \tilde{p}_{k}(t) \mathrm{d} t
$$

where the function \tilde{p}_{k} is given by (10).
Now, we give the upper bound of the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ of functions $f \in \mathcal{R}_{\lambda}^{k}$ given by (1) when $\mu \in \mathbb{C}$.

Theorem 2.3. If the function f given by (1) is in the class $\mathcal{R}_{\lambda}^{k}$, then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{1+2 \lambda} \max \left\{1,\left|k^{2}+2-\mu \frac{1+2 \lambda}{(1+\lambda)^{2}} k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

for all $\mu \in \mathbb{C}$. The result is sharp.
Proof. Let the function $f \in \mathcal{A}$ given by (1) be in the class $\mathcal{R}_{\lambda}^{k}$. Define the function $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ by

$$
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=p(z)
$$

where $p(z) \prec \tilde{p}_{k}(z)$ and $\tilde{p}_{k}(z)$ is defined by (6). Considering the equalities in (20), for any $\mu \in \mathbb{C}$, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{1}{1+2 \lambda}\left|p_{2}-\mu \frac{(1+2 \lambda)}{(1+\lambda)^{2}} p_{1}^{2}\right|
$$

Now, by Lemma 1.6, this equality implies that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{1+2 \lambda} \max \left\{1,\left|k^{2}+2-\mu \frac{(1+2 \lambda)}{(1+\lambda)^{2}} k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

This evidently completes the proof of theorem.
Theorem 2.4. Let $f \in \mathcal{R}_{\lambda}^{k}$ be given by (1) be univalent and its inverse f^{-1} has the coefficients of the form (2). Then we have

$$
\left|A_{2}\right| \leq \frac{k\left|\tau_{k}\right|}{1+\lambda}
$$

and

$$
\left|A_{3}\right| \leq \frac{k\left|\tau_{k}\right|}{1+2 \lambda} \max \left\{1,\left|k^{2}+2-\frac{2(1+2 \lambda)}{(1+\lambda)^{2}} k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

Proof. Let the function $f \in \mathcal{R}_{\lambda}^{k}$ and of the form (1). Then for the initial coefficients A_{2} and A_{3} of the inverse function f^{-1} given by (2) we get

$$
\begin{equation*}
A_{2}=-a_{2} \quad \text { and } \quad A_{3}=2 a_{2}^{2}-a_{3} \tag{25}
\end{equation*}
$$

The upper bound for A_{2} is obtained by using the equalities (19) and (20). Also the upper bound for A_{3} is easily obtained from Theorem 2.3.

Theorem 2.5. Let $f \in \mathcal{R}_{\lambda}^{k}$ be given by (1) be univalent and its inverse f^{-1} has the coefficients of the form (2). Then we have

$$
\left|A_{3}-\mu A_{2}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{1+2 \lambda} \max \left\{1,\left|k^{2}+2-\frac{(1+2 \lambda)(2-\mu)}{(1+\lambda)^{2}} k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

for all $\mu \in \mathbb{C}$.

Proof. Let the function $f \in \mathcal{R}_{\lambda}^{k}$ and of the form (1). Then from (25) and (20), we get

$$
\left|A_{3}-\mu A_{2}^{2}\right|=\frac{1}{1+2 \lambda}\left|p_{2}-\frac{(1+2 \lambda)(2-\mu)}{(1+\lambda)^{2}} p_{1}^{2}\right| .
$$

Now using Lemma 1.6, we obtain the required result.
Theorem 2.6. Let $f \in \mathcal{R}_{\lambda}^{k}$ be given by (1) be univalent and the coefficients of $\log (f(z) / z)$ be given by (3). Then

$$
\left|\delta_{1}\right| \leq \frac{k}{2(1+\lambda)}\left|\tau_{k}\right|
$$

and

$$
\left|\delta_{2}\right| \leq \frac{k\left|\tau_{k}\right|}{2(1+2 \lambda)} \max \left\{1,\left|k^{2}+2-\frac{1+2 \lambda}{2(1+\lambda)^{2}} k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\} .
$$

Each of these results is sharp.
Proof. Let the function $f \in \mathcal{R}_{\lambda}^{k}$ and of the form (1). By differentiating (3) and equating coefficients, we have

$$
\delta_{1}=\frac{1}{2} a_{2}, \quad \delta_{2}=\frac{1}{2}\left(a_{3}-\frac{1}{2} a_{2}^{2}\right) .
$$

Thus the desired results obtained from (19) and (20) for $\left|\delta_{1}\right|$, and from Theorem 2.3 for $\left|\delta_{2}\right|$.

The following result is obtained from Theorem 2.3 (or Lemma 1.6).
Theorem 2.7. Let $f \in \mathcal{R}_{\lambda}^{k}$ be given by (1) be univalent and the coefficients of $\log (f(z) / z)$ be given by (3). Then

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{2(1+2 \lambda)} \max \left\{1,\left|k^{2}+2-\frac{(1+2 \lambda)(1+\mu)}{2(1+\lambda)^{2}} k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

3. Corollaries and Consequences

Setting $\lambda=1$ in Theorem 2.1, we get the following consequence.
Corollary 3.1. If the function f given by (1) is in the class $\mathcal{R}\left(\tilde{p}_{k}\right)$, then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{4\left(k^{2}+2\right)-3 \mu k^{2}}{12} \tau_{k}^{2} & , \quad \mu \leq \frac{4\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{3 k^{2} \tau_{k}}, \\ \frac{k\left|\tau_{k}\right|}{3} & , \quad \frac{4\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{3 k^{2} \tau_{k}} \leq \mu \leq \frac{4\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{3 k^{2} \tau_{k}}, \\ \frac{3 \mu k^{2}-4\left(k^{2}+2\right)}{12} \tau_{k}^{2} & , \quad \mu \geq \frac{4\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{3 k^{2} \tau_{k}} .\end{cases}
$$

If $\frac{4\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{3 k^{2} \tau_{k}} \leq \mu \leq \frac{4\left(k^{2}+2\right)}{3 k^{2}}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\frac{4\left[\left(k^{2}+2\right) \tau_{k}+k\right]}{3 k^{2} \tau_{k}}\right)\left|a_{2}\right|^{2} \leq \frac{k\left|\tau_{k}\right|}{3}
$$

Furthermore, if $\frac{4\left(k^{2}+2\right)}{3 k^{2}} \leq \mu \leq \frac{4\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{3 k^{2} \tau_{k}}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{4\left[\left(k^{2}+2\right) \tau_{k}-k\right]}{3 k^{2} \tau_{k}}-\mu\right)\left|a_{2}\right|^{2} \leq \frac{k\left|\tau_{k}\right|}{3} .
$$

Each of these results is sharp.
Remark 3.2. Note that Corollary 3.1 gives a worthy improvement of [19, Theorem 3.3] for the real values of μ.

Setting $k=1$ in Theorem 2.1, we get the following consequence.
Corollary 3.3. If the function f given by (1) is in the class \mathcal{R}_{λ}, then we have

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{3(1+\lambda)^{2}-\mu(1+2 \lambda)}{(1+\lambda)^{2}(1+2 \lambda)} \tau^{2} & , \quad \mu \leq \frac{(1+\lambda)^{2}(3 \tau+1)}{(1+2 \lambda) \tau}, \\
\frac{|\tau|}{1+2 \lambda} & , \quad \frac{(1+\lambda)^{2}(3 \tau+1)}{(1+2 \lambda) \tau} \leq \mu \leq \frac{(1+\lambda)^{2}(3 \tau-1)}{(1+2 \lambda) \tau}, \\
\frac{\mu(1+2 \lambda)-3(1+\lambda)^{2}}{(1+\lambda)^{2}(1+2 \lambda)} \tau^{2} \quad, \quad \mu \geq \frac{(1+\lambda)^{2}(3 \tau-1)}{(1+2 \lambda) \tau} . \\
\text { If } \frac{(1+\lambda)^{2}(3 \tau+1)}{(1+2 \lambda) \tau} \leq \mu \leq \frac{3(1+\lambda)^{2}}{1+2 \lambda}, \text { then }\end{cases} \\
\quad\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\frac{(1+\lambda)^{2}(3 \tau+1)}{(1+2 \lambda) \tau}\right)\left|a_{2}\right|^{2} \leq \frac{|\tau|}{1+2 \lambda} .
\end{gathered}
$$

Furthermore, if $\frac{3(1+\lambda)^{2}}{1+2 \lambda} \leq \mu \leq \frac{(1+\lambda)^{2}(3 \tau-1)}{(1+2 \lambda) \tau}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{(1+\lambda)^{2}(3 \tau-1)}{(1+2 \lambda) \tau}-\mu\right)\left|a_{2}\right|^{2} \leq \frac{|\tau|}{1+2 \lambda}
$$

Each of these results is sharp.
Setting $k=1$ and $\lambda=1$ in Theorem 2.1, we get the following consequence.
Corollary 3.4. If the function f given by (1) is in the class $\mathcal{R}(\tilde{p})$, then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{4-\mu}{4} \tau^{2} & , \quad \mu \leq \frac{4(3 \tau+1)}{3 \tau} \\ \frac{|\tau|}{3} & , \quad \frac{4(3 \tau+1)}{3 \tau} \leq \mu \leq \frac{4(3 \tau-1)}{3 \tau} \\ \frac{\mu-4}{4} \tau^{2} & , \quad \mu \geq \frac{4(3 \tau-1)}{3 \tau}\end{cases}
$$

If $\frac{4(3 \tau+1)}{3 \tau} \leq \mu \leq 4$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\frac{4(3 \tau+1)}{3 \tau}\right)\left|a_{2}\right|^{2} \leq \frac{|\tau|}{3}
$$

Furthermore, if $4 \leq \mu \leq \frac{4(3 \tau-1)}{3 \tau}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{4(3 \tau-1)}{3 \tau}-\mu\right)\left|a_{2}\right|^{2} \leq \frac{|\tau|}{3} .
$$

Each of these results is sharp.
Setting $\lambda=1$ in Theorem 2.3, we get the following consequence.
Corollary 3.5. If the function f given by (1) is in the class $\mathcal{R}\left(\tilde{p}_{k}\right)$, then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{3} \max \left\{1,\left|k^{2}+2-\frac{3 \mu}{4} k^{2}\right| \frac{\left|\tau_{k}\right|}{k}\right\}
$$

for all $\mu \in \mathbb{C}$. The result is sharp.
Setting $\lambda=1$ in Theorem 2.4, we get the following consequence.
Corollary 3.6. Let $f \in \mathcal{R}\left(\tilde{p}_{k}\right)$ be given by (1) be univalent and its inverse f^{-1} has the coefficients of the form (2). Then we have

$$
\left|A_{2}\right| \leq \frac{k}{2}\left|\tau_{k}\right|
$$

and

$$
\left|A_{3}\right| \leq \frac{k\left|\tau_{k}\right|}{3} \max \left\{1, \frac{\left|4-k^{2}\right|}{2 k}\left|\tau_{k}\right|\right\}
$$

Setting $\lambda=1$ in Theorem 2.5, we get the following consequence.
Corollary 3.7. Let $f \in \mathcal{R}\left(\tilde{p}_{k}\right)$ be given by (1) be univalent and its inverse f^{-1} has the coefficients of the form (2). Then we have

$$
\left|A_{3}-\mu A_{2}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{3} \max \left\{1, \frac{\left|8-(2-3 \mu) k^{2}\right|}{4 k}\left|\tau_{k}\right|\right\}
$$

for all $\mu \in \mathbb{C}$.
Setting $\lambda=1$ in Theorem 2.6, we get the following consequence.
Corollary 3.8. Let $f \in \mathcal{R}\left(\tilde{p}_{k}\right)$ be given by (1) be univalent and the coefficients of $\log (f(z) / z)$ be given by (3). Then

$$
\left|\delta_{1}\right| \leq \frac{k}{4}\left|\tau_{k}\right|
$$

and

$$
\left|\delta_{2}\right| \leq \frac{k\left|\tau_{k}\right|}{6} \max \left\{1, \frac{\left|5 k^{2}+16\right|}{8 k}\left|\tau_{k}\right|\right\}
$$

Each of these results is sharp.

Setting $\lambda=1$ in Theorem 2.7, we get the following consequence.
Corollary 3.9. Let $f \in \mathcal{R}\left(\tilde{p}_{k}\right)$ be given by (1) be univalent and the coefficients of $\log (f(z) / z)$ be given by (3). Then

$$
\left|\delta_{2}-\mu \delta_{1}^{2}\right| \leq \frac{k\left|\tau_{k}\right|}{6} \max \left\{1, \frac{\left|(5-3 \mu) k^{2}+16\right|}{8 k}\left|\tau_{k}\right|\right\}
$$

References

[1] S. Bulut, Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers, Mathematica Slovaca 71 (2021), no. 4, 823-830.
[2] S. Bulut and J. Sokól, Sharp coefficient bounds of analytic functions subordinate to shell-like curves connected with k-Fibonacci numbers, submitted.
[3] P. L. Duren, Univalent Functions, Grundlehren der Mathematics. Wissenschaften, Bd, Springer-Verlag, NewYork, 1983.
[4] J. Dziok, R. K. Raina, and J. Sokót, On α-convex functions related to shell-like functions connected with Fibonacci numbers, Applied Mathematics and Computation 218 (2011), 996-1002.
[5] J. Dziok, R. K. Raina, and J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Computers and Mathematics with Applications 61 (2011), 2605-2613.
[6] J. Dziok, R. K. Raina, and J. Sokót, On a class of starlike functions related to a shelllike curve connected with Fibonacci numbers, Mathematical and Computer Modelling 57 (2013), 1203-1211.
[7] S. Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons and Fractals 33 (2007), no. 1, 38-49.
[8] M. Fekete and G. Szegö, Eine bemerkung über ungerade schlichte funktionen, Journal of the London Mathematical Society 8 (1933), 85-89.
[9] H. Ö. Güney, S. İlhan, and J. Sokół, An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers, Boletín de la Sociedad Matemática Mexicana (3) 25 (2019), no. 1, 117-129.
[10] H. Ö. Güney, J. Sokól, and S. İlhan, Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers, Acta Universitatis Apulensis. Mathematics-Informatics 54 (2018), 161-174.
[11] I. R. Kayumov, On Brennan's conjecture for a special class of functions, Mathematical Notes 78 (2005), 498-502.
[12] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
[13] N. Yılmaz Özgür, and J. Sokót, On starlike functions connected with k-Fibonacci numbers, Bulletin of the Malaysian Mathematical Sciences Society 38 (2015), no. 1, 249-258.
[14] R. K. Raina and J. Sokól, Fekete-Szegö problem for some starlike functions related to shell-like curves, Mathematica Slovaca 66 (2016), no. 1, 135-140.
[15] J. Sokól, On starlike functions connected with Fibonacci numbers, Folia Scientiarum Universitatis Technicae Resoviensis 175 (1999), no. 23, 111-116.
[16] J. Sokół, S. İlhan, and H. Ö. Güney, An upper bound for third Hankel determinant of starlike functions related to shell-like curves connected with Fibonacci numbers, Journal of Mathematics and Applications 41 (2018), 195-206.
[17] J. Sokół, S. İlhan, and H. Ö. Güney, Second Hankel determinant problem for several classes of analytic functions related to shell-like curves connected with Fibonacci numbers, TWMS Journal of Applied and Engineering Mathematics 8 (2018), no. 1a, 220-229.
[18] J. Sokół, R. K. Raina, and N. Yılmaz Özgür, Applications of k-Fibonacci numbers for the starlike analytic functions, Hacettepe Journal of Mathematics and Statistics 44 (2015), no. 1, 121-127.
[19] P. Sumalatha, R. B. Sharma, and M. Hari Priya, Third Hankel determinant for the bounded turning functions subordinate to k-Fibonacci sequence, ICNTMMA Journal of Physics: Conference Series, 1597, 2020.

Serap Bulut
Kocaeli University, Faculty of Aviation and Space Sciences,
Kartepe-Kocaeli 41285, Turkey.
E-mail: serap.bulut@kocaeli.edu.tr
Janusz Sokół
University of Rzeszów, College of Natural Sciences, ul. Prof. Pigonia 1, Rzeszów 35-310, Poland.
E-mail: jsokol@ur.edu.pl

