ON THE FEKETE-SZEGO PROBLEM FOR CERTAIN ANALYTIC FUNCTIONS

  • Kwon, Oh-Sang (Department of Mathematics, Kyungsung University) ;
  • Cho, Nak-Eun (Department of Applied Mathematics, Pukyong National University)
  • Published : 2003.11.01

Abstract

Let $CS_\alpha(\beta)$ denote the class of normalized strongly $\alpha$-close-to-convex functions of order $\beta$, defined in the open unit disk $\cal{U}$ of $\mathbb{C}$${\mid}arg{(1-{\alpha})\frac{f(z)}{g(z)}+{\alpha}\frac{zf'(z)}{g(z)}}{\mid}\;\leq\frac{\pi}{2}{\beta}(\alpha,\beta\geq0)$ such that $g\; \in\;S^{\ask}$, the class of normalized starlike unctions. In this paper, we obtain the sharp Fekete-Szego inequalities for functions belonging to $CS_\alpha(\beta)$.

Keywords