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SAKAGUCHI-TYPE BI-UNIVALENT FUNCTIONS DEFINED

BY (p, q)-DERIVATIVE OPERATOR
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Abstract. In this paper, a new subclass, SCµ,p,q
σ (r, s;x), of Sakaguchi-

type analytic bi-univalent functions defined by (p, q)-derivative operator
using Horadam polynomials is constructed and investigated. The initial

coefficient bounds for |a2| and |a3| are obtained. Fekete-Szegö inequalities

for the class are found. Finally, we give some corollaries.

1. Introduction

We denote the complex plane by C, the open unit disk by U and the real
line by R. Let f(z) be a normalized analytic function of the form

(1) f(z) = z +

∞∑
k=2

akz
k,

in U . Let A be the class of all normalized analytic functions. Let S be the
subclass of A consisting of univalent functions.

Let f be a member of S. The function f(z) is said to be bi-univalent if, in
the w-plane, the inverse function, f−1(w), of f(z) has an analytic continuation
to |w| < 1. Let σ be the class of all bi-univalent functions in U [13]. In 1967,
Lewin [10] introduced the class of bi-univalent functions and gave an estimate
for the second coefficient for functions belonging to this class as |a2| < 1.51.

His result was improved by Brannan and Clunie [3] to |a2| ≤
√
2. There is an

extensive literature on the estimates of the initial coefficients of bi-univalent
functions (see [4, 14,17–21]).

For any compact family of functions, finding sharp bounds for |a3 − κa22|
is called the Fekete-Szegö problem. In particular, when κ = 1, the functional
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represents Schwarzian derivative. In the theory of Geometric functions the role
of Schwarzian derivative is remarkable.

Let f1 and f2 be members of A. The function f1 is said to be subordinate to
f2, if there exists an analytic function c(z) in U with c(0) = 0 and |c(z)| < 1,
and such that f1(z) = f2(c(z)). It is written as f1(z) ≺ f2(z). Sakaguchi [12]
introduced a subclass consisting of functions satisfying

ℜ
(

zf ′(z)

f(z)− f(−z)

)
> α.

These functions were named after him as Sakaguchi type functions (see [1,
2]). These functions are starlike with respect to symmetric points. Frasin [5]

generalized this class which had functions of the form ℜ
(

(r−s)zf ′(z)
f(rz)−f(sz)

)
> α,

0 ≤ α < 1, r, s ∈ C with r ̸= s, |s| ≤ 1, z ∈ U.
Horadam polynomials are generalized Horadam numbers and second order

polynomial sequence. Recently, Horzum and Kocer [8], studied the Horadam
polynomials hk(x), which is defined by the recurrence relation [7]

hk(x) = ϱxhk−1(x) + ρhk−2(x), (x ∈ R, k = 3, 4, . . .)

with initial conditions

(2) h1(x) = b, h2(x) = ax,

where b, a, ϱ, ρ ∈ R.
For k = 3 we obtain

h3(x) = aϱx2 + bρ.

For more details one can refer to (see [6,7,9,11,15,16]). These polynomials and
their generalizations play a vital role in Mathematics, Statistics and Physics.
Table 1 gives us some of the special cases of Horadam polynomials.

Table 1. Special cases of the Horadam polynomials.

S. No. Parameters Special Cases
1 b = a = ϱ = ρ = 1 Fibonacci polynomials Fk(x)
2 b = 2, a = ϱ = ρ = 1 Lucas polynomials Lk(x)
3 b = ρ = 1, a = ϱ = 2 Pell polynomials Pk(x)
4 b = a = ϱ = 2, ρ = 1 Pell-Lucas polynomials Qk(x)
5 b = a = 1, ϱ = 2, ρ = −1 Chebyshev polynomials of the first kind Tk(x)
6 b = 1, a = ϱ = 2, ρ = −1 Chebyshev polynomials of the second kind Uk(x)

Lemma 1.1. The generating function G(x, z) of the Horadam polynomials
hk(x) is given by

G(x, z) =

∞∑
k=1

hk(x)z
k−1 =

b+ (a− bϱ)xz

1− ϱxz − ρz2
.
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Definition. For 0 < q < p ≤ 1, the (p, q)-derivative operator, Dp,q(f(z)), is
defined as

(3) Dp,q(f(z))


f(pz)− f(qz)

(p− q)z
, z ̸= 0,

f ′(0), z = 0,

provided f ′(0) exists.

It can be written as

Dp,q(f(z)) = 1 +

∞∑
k=2

[k]p,qakz
k−1,

where [k]p,q = pk−qk

p−q , the (p, q)-bracket of k and is also called a twin-basic

number. For instance, Dp,q(z
k) = [k]p,qz

k−1. When p = 1, the (p, q)-derivative
operatorDp,q reduces to the q-derivative operatorDq. The inverse Taylor series
of (3) is given by

Dp,q(g(w)) =
g(pw)− g(qw)

(p− q)w

= 1−[2]p,qa2w+[3]p,q(2a
2
2−a3)w

2−[4]p,q(5a
3
2−5a2a3+a4)w

3+· · · ,

where g = f−1.

2. Coefficient bounds for the function class SCµ,p,q
σ (r, s;x)

In this section, we define our new class SCµ,p,q
σ (r, s;x) and evaluate the bound

for the initial coefficients |a2| and |a3| for the functions in SCµ,p,q
σ (r, s;x).

Definition. A function f ∈ σ, given by (1), is said to be in the class SCµ,p,q
σ (r, s;

x) if

(Dp,qf)
µ(z)

(
(r − s)z

f(rz)− f(sz)

)
≺ 1− b+G(x, z)(4)

and

(Dp,qg)
µ(w)

(
(r − s)w

g(rw)− g(sw)

)
≺ 1− b+G(x,w),(5)

where g = f−1, µ ≥ 1 and r, s ∈ C with r ̸= s, |s| ≤ 1.

Theorem 2.1. If f(z), given by (1), is in SCµ,p,q
σ (r, s;x), then

(6) |a2| ≤
|ax|

√
|ax|√

|La2x2 −M2 (aϱx2 + bρ)|
and

(7) |a3| ≤
∣∣∣ax
N

∣∣∣+ a2x2

|M |2
,
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where

L =
µ(µ− 1)

2
[2]2p,q − µ[2]p,q(r + s) + rs+ µ[3]p,q,

M = µ[2]p,q − r − s,

and

N = µ[3]p,q − r2 − rs− s2.

Proof. Since f ∈ SCµ,p,q
σ (r, s;x), there exist two analytic functions u, v : U → U

given by

u(z) =

∞∑
k=1

ukz
k(8)

and

v(w) =

∞∑
k=1

vkw
k(9)

with u(0) = 0 = v(0), |u(z)| < 1, |v(w)| < 1 for all z, w ∈ U such that

(Dp,qf)
µ(z)

(
(r − s)z

f(rz)− f(sz)

)
= 1− b+G(x, u(z))

and

(Dp,qg)
µ(w)

(
(r − s)w

g(rw)− g(sw)

)
= 1− b+G(x, v(w)).

Or equivalently

(10)
(Dp,qf)

µ(z)

(
(r − s)z

f(rz)− f(sz)

)
= 1 + h2(x)u1z +

[
h2(x)u2 + h3(x)u

2
1

]
z2 + · · ·

and

(11)
(Dp,qg)

µ(w)

(
(r − s)w

g(rw)− g(sw)

)
= 1 + h2(x)v1w +

[
h2(x)v2 + h3(x)v

2
1

]
w2 + · · · .

Since |u(z)| < 1 and |v(w)| < 1, it is clear that

|uk| ≤ 1,(12)

|vk| ≤ 1(13)

for k = 1, 2, . . .. From (10) and (11), we have

(14) (µ[2]p,q − r − s) a2 = h2(x)u1,
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(15)

(
µ(µ− 1)

2
[2]2p,q + (r + s)2 − µ[2]p,q(r + s)

)
a22

+
(
µ[3]p,q − r2 − rs− s2

)
a3

= h2(x)u2 + h3(x)u
2
1,

(16) − (µ[2]p,q − r − s) a2 = h2(x)v1

and

(17)

(
µ(µ− 1)

2
[2]2p,q + (r + s)2 − µ[2]p,q(r + s)

)
a22

+
(
µ[3]p,q − r2 − rs− s2

)
(2a22 − a3)

= h2(x)v2 + h3(x)v
2
1 .

From (14) and (16), we get

(18) u1 = −v1

and

2 (µ[2]p,q − r − s)
2
a22 = h2

2(x)(u
2
1 + v21).(19)

Upon adding (15) and (17), we get

(20)
2
(

µ(µ−1)
2 [2]2p,q − µ[2]p,q(r + s) + rs+ µ[3]p,q

)
a22

= h2(x)(u2 + v2) + h3(x)(u
2
1 + v21).

By using (19) in (20), we have

(21)

2
[(

µ(µ−1)
2 [2]2p,q − µ[2]p,q(r + s) + rs+ µ[3]p,q

)
h2
2(x)

− (µ[2]p,q − r − s)
2
h3(x)

]
a22

= h3
2(x)(u2 + v2)

which implies

|a2| ≤
|ax|

√
|ax|√

|La2x2 −M2 (aϱx2 + bρ)|
.

Now subtracting (17) from (15) and using (18), we get

a3 − a22 =
h2(x)(u2 − v2)

2 (µ[3]p,q − r2 − rs− s2)
.(22)

Then, in aid of (19), we get

a3 =
h2(x)(u2 − v2)

2N
+

h2
2(x)

(
u2
1 + v21

)
2M2

.(23)

Thus

|a3| ≤
∣∣∣ax
N

∣∣∣+ a2x2

|M |2
. □
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Corollary 2.2. If f(z), given by (1), is in SC1,p,q
σ (r, s;x), then

(24) |a2| ≤
|ax|

√
|ax|√∣∣∣([3]p,q+rs−[2]p,q(r+s)) a2x2−([2]p,q−r−s)

2
(aϱx2+bρ)

∣∣∣
and

(25) |a3| ≤
∣∣∣∣ ax

[3]p,q − r2 − rs− s2

∣∣∣∣+ a2x2

|[2]p,q − r − s|2
.

Corollary 2.3. If f(z), given by (1), is in SCµ,p,q
σ (1, 0;x), then

(26) |a2| ≤
|ax|

√
|ax|√∣∣∣∣(µ(µ− 1)

2
[2]2p,q+µ[3]p,q−µ[2]p,q

)
a2x2−(µ[2]p,q−1)

2
(aϱx2+bρ)

∣∣∣∣
and

(27) |a3| ≤
∣∣∣∣ ax

µ[3]p,q − 1

∣∣∣∣+ a2x2

(µ[2]p,q − 1)
2 .

Corollary 2.4. If f(z), given by (1), is in SCµ,p,q
σ (1,−1;x), then

(28) |a2| ≤
|ax|

√
|ax|√∣∣∣(µ(µ−1)

2 [2]2p,q + µ[3]p,q − 1
)
a2x2 − µ2[2]2p,q (aϱx

2 + bρ)
∣∣∣

and

(29) |a3| ≤
∣∣∣∣ ax

µ[3]p,q − 1

∣∣∣∣+ a2x2

µ2[2]2p,q
.

Corollary 2.5. If f(z), given by (1), is in SCµ,1,q
σ (r, s;x) and q → 1−, then

(30) |a2| ≤
|ax|

√
|ax|√∣∣∣(2µ2+(1−2r−2s)µ+rs) a2x2−(2µ−r−s)

2
(aϱx2+bρ)

∣∣∣
and

(31) |a3| ≤
∣∣∣∣ ax

3µ− r2 − rs− s2

∣∣∣∣+ a2x2

|2µ− r − s|2
.

3. Fekete-Szegö inequalities for the function class SCµ,p,q
σ (r, s;x)

In this section, we estimate Fekete-Szegö inequalities |a3−κa22| for the func-
tions belonging to the class SCµ,p,q

σ (r, s;x).

Theorem 3.1. If f(z), given by (1), is in SCµ,p,q
σ (r, s;x) and κ ∈ R, then

|a3 − κa22| ≤
(

1

|N |
+ 2 |Ψ(µ, p, q, r, s;x)|

)
|h2(x)| ,
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where

Ψ(µ, p, q, r, s;x) =
(1− κ)h2

2(x)

2 (Lh2
2(x)−M2h3(x))

,

L, M and N are as in Theorem 2.1.

Proof. For κ ∈ R and from (22), we get

a3 − κa22 =
h2(x)(u2 − v2)

2N
+ (1− κ)a22.(32)

By using (21), we have

a3 − κa22

=
h2(x)(u2 − v2)

2N
+ (1− κ)

(
h3
2(x)(u2 + v2)

2 (Lh2
2(x)−M2h3(x))

)
= h2(x)

[(
1

2N
+Ψ(µ, p, q, r, s;x)

)
u2 +

(
−1

2N
+Ψ(µ, p, q, r, s;x)

)
v2

]
,

where

Ψ (µ, p, q, r, s;x) =
(1− κ)h2

2(x)

2 (Lh2
2(x)−M2h3(x))

.

Thus

|a3 − κa22| ≤
(

1

|N |
+ 2 |Ψ(µ, p, q, r, s;x)|

)
|h2(x)| . □

Corollary 3.2. If f(z), given by (1), is in SC1,p,q
σ (r, s;x) and κ ∈ R, then

|a3 − κa22| ≤
(

1

|N1|
+ 2 |Ψ(1, p, q, r, s;x)|

)
|h2(x)| ,

where

Ψ(1, p, q, r, s;x) =
(1− κ)h2

2(x)

2 (L1h2
2(x)−M2

1h3(x))
,

L1 = −[2]p,q(r + s) + rs+ [3]p,q,

M1 = [2]p,q − r − s,

and
N1 = [3]p,q − r2 − rs− s2.

Corollary 3.3. If f(z), given by (1), is in SCµ,p,q
σ (1, 0;x) and κ ∈ R, then

|a3 − κa22| ≤


∣∣∣ axN2

∣∣∣ , |κ− 1| ≤
∣∣∣L2

N2
− M2

2 (aϱx
2+bρ)

N2a2x2

∣∣∣ ,
|κ−1||a3x3|

|L2a2x2−M2
2 (aϱx

2+bρ)| , |κ− 1| ≥
∣∣∣L2

N2
− M2

2 (aϱx
2+bρ)

N2a2x2

∣∣∣ ,
where

L2 =
µ(µ− 1)

2
[2]2p,q + µ[3]p,q − µ[2]p,q,

M2 = µ[2]p,q − 1,
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and

N2 = µ[3]p,q − 1.

Corollary 3.4. If f(z), given by (1), is in SCµ,p,q
σ (1,−1;x) and κ ∈ R, then

|a3 − κa22| ≤


∣∣∣ axN2

∣∣∣ , |κ− 1| ≤
∣∣∣L3

N2
− µ2[2]2p,q(aϱx

2+bρ)

N2a2x2

∣∣∣ ,
|κ−1||a3x3|

|L3a2x2−µ2[2]2p,q(aϱx
2+bρ)| , |κ− 1| ≥

∣∣∣L3

N2
− µ2[2]2p,q(aϱx

2+bρ)

N2a2x2

∣∣∣ ,
where L3 = µ(µ−1)

2 [2]2p,q + µ[3]p,q − 1 and N2 is as in Corollary 3.3.

Corollary 3.5. If f(z), given by (1), is in SCµ,1,q
σ (r, s;x), q → 1− and κ ∈ R,

then

|a3 − κa22| ≤
(

1

|N3|
+ 2 |Ψ(µ, r, s;x)|

)
|h2(x)| ,

where

Ψ(µ, r, s;x) =
(1− κ)h2

2(x)

2 (L4h2
2(x)−M2

3h3(x))
,

L4 = 2µ2 + (1− 2r − 2s)µ+ rs,

M3 = 2µ− r − s,

and

N3 = 3µ− r2 − rs− s2.
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Department of Mathematics

Bursa Uludag University
16059, Bursa, Turkey

Email address: sibelyalcin34@gmail.com


