HORADAM POLYNOMIALS FOR A NEW SUBCLASS OF SAKAGUCHI-TYPE BI-UNIVALENT FUNCTIONS DEFINED BY (p, q)-DERIVATIVE OPERATOR

Vanithakumari Balasubramaniam, Saravanan Gunasekar, Baskaran Sudharsanan, and Sibel Yalçin

Abstract

In this paper, a new subclass, $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$, of Sakaguchitype analytic bi-univalent functions defined by (p, q)-derivative operator using Horadam polynomials is constructed and investigated. The initial coefficient bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are obtained. Fekete-Szegö inequalities for the class are found. Finally, we give some corollaries.

1. Introduction

We denote the complex plane by C, the open unit disk by U and the real line by R. Let $f(z)$ be a normalized analytic function of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

in U. Let \mathcal{A} be the class of all normalized analytic functions. Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions.

Let f be a member of \mathcal{S}. The function $f(z)$ is said to be bi-univalent if, in the w-plane, the inverse function, $f^{-1}(w)$, of $f(z)$ has an analytic continuation to $|w|<1$. Let σ be the class of all bi-univalent functions in U [13]. In 1967, Lewin [10] introduced the class of bi-univalent functions and gave an estimate for the second coefficient for functions belonging to this class as $\left|a_{2}\right|<1.51$. His result was improved by Brannan and Clunie [3] to $\left|a_{2}\right| \leq \sqrt{2}$. There is an extensive literature on the estimates of the initial coefficients of bi-univalent functions (see [4, 14, 17-21]).

For any compact family of functions, finding sharp bounds for $\left|a_{3}-\kappa a_{2}^{2}\right|$ is called the Fekete-Szegö problem. In particular, when $\kappa=1$, the functional

[^0]represents Schwarzian derivative. In the theory of Geometric functions the role of Schwarzian derivative is remarkable.

Let f_{1} and f_{2} be members of \mathcal{A}. The function f_{1} is said to be subordinate to f_{2}, if there exists an analytic function $c(z)$ in U with $c(0)=0$ and $|c(z)|<1$, and such that $f_{1}(z)=f_{2}(c(z))$. It is written as $f_{1}(z) \prec f_{2}(z)$. Sakaguchi [12] introduced a subclass consisting of functions satisfying

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right)>\alpha
$$

These functions were named after him as Sakaguchi type functions (see [1, 2]). These functions are starlike with respect to symmetric points. Frasin [5] generalized this class which had functions of the form $\Re\left(\frac{(r-s) z f^{\prime}(z)}{f(r z)-f(s z)}\right)>\alpha$, $0 \leq \alpha<1, r, s \in C$ with $r \neq s,|s| \leq 1, z \in U$.

Horadam polynomials are generalized Horadam numbers and second order polynomial sequence. Recently, Horzum and Kocer [8], studied the Horadam polynomials $h_{k}(x)$, which is defined by the recurrence relation [7]

$$
h_{k}(x)=\varrho x h_{k-1}(x)+\rho h_{k-2}(x), \quad(x \in R, k=3,4, \ldots)
$$

with initial conditions

$$
\begin{equation*}
h_{1}(x)=b, \quad h_{2}(x)=a x, \tag{2}
\end{equation*}
$$

where $b, a, \varrho, \rho \in R$.
For $k=3$ we obtain

$$
h_{3}(x)=a \varrho x^{2}+b \rho .
$$

For more details one can refer to (see $[6,7,9,11,15,16]$). These polynomials and their generalizations play a vital role in Mathematics, Statistics and Physics. Table 1 gives us some of the special cases of Horadam polynomials.

Table 1. Special cases of the Horadam polynomials.

S. No.	Parameters	Special Cases
1	$b=a=\varrho=\rho=1$	Fibonacci polynomials $F_{k}(x)$
2	$b=2, a=\varrho=\rho=1$	Lucas polynomials $L_{k}(x)$
3	$b=\rho=1, a=\varrho=2$	Pell polynomials $P_{k}(x)$
4	$b=a=\varrho=2, \rho=1$	Pell-Lucas polynomials $Q_{k}(x)$
5	$b=a=1, \varrho=2, \rho=-1$	Chebyshev polynomials of the first kind $T_{k}(x)$
6	$b=1, a=\varrho=2, \rho=-1$	Chebyshev polynomials of the second kind $U_{k}(x)$

Lemma 1.1. The generating function $G(x, z)$ of the Horadam polynomials $h_{k}(x)$ is given by

$$
G(x, z)=\sum_{k=1}^{\infty} h_{k}(x) z^{k-1}=\frac{b+(a-b \varrho) x z}{1-\varrho x z-\rho z^{2}} .
$$

Definition. For $0<q<p \leq 1$, the (p, q)-derivative operator, $D_{p, q}(f(z))$, is defined as

$$
D_{p, q}(f(z)) \begin{cases}\frac{f(p z)-f(q z)}{(p-q) z}, & z \neq 0, \tag{3}\\ f^{\prime}(0), & z=0,\end{cases}
$$

provided $f^{\prime}(0)$ exists.
It can be written as

$$
D_{p, q}(f(z))=1+\sum_{k=2}^{\infty}[k]_{p, q} a_{k} z^{k-1}
$$

where $[k]_{p, q}=\frac{p^{k}-q^{k}}{p-q}$, the (p, q)-bracket of k and is also called a twin-basic number. For instance, $D_{p, q}\left(z^{k}\right)=[k]_{p, q} z^{k-1}$. When $p=1$, the (p, q)-derivative operator $D_{p, q}$ reduces to the q-derivative operator D_{q}. The inverse Taylor series of (3) is given by

$$
\begin{aligned}
D_{p, q}(g(w)) & =\frac{g(p w)-g(q w)}{(p-q) w} \\
& =1-[2]_{p, q} a_{2} w+[3]_{p, q}\left(2 a_{2}^{2}-a_{3}\right) w^{2}-[4]_{p, q}\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{3}+\cdots,
\end{aligned}
$$

where $g=f^{-1}$.

2. Coefficient bounds for the function class $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$

In this section, we define our new class $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$ and evaluate the bound for the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions in $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$.

Definition. A function $f \in \sigma$, given by (1), is said to be in the class $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s$; x) if

$$
\begin{equation*}
\left(D_{p, q} f\right)^{\mu}(z)\left(\frac{(r-s) z}{f(r z)-f(s z)}\right) \prec 1-b+G(x, z) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{p, q} g\right)^{\mu}(w)\left(\frac{(r-s) w}{g(r w)-g(s w)}\right) \prec 1-b+G(x, w) \tag{5}
\end{equation*}
$$

where $g=f^{-1}, \mu \geq 1$ and $r, s \in C$ with $r \neq s,|s| \leq 1$.
Theorem 2.1. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|a x| \sqrt{|a x|}}{\sqrt{\left|L a^{2} x^{2}-M^{2}\left(a \varrho x^{2}+b \rho\right)\right|}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|\frac{a x}{N}\right|+\frac{a^{2} x^{2}}{|M|^{2}} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
L & =\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}-\mu[2]_{p, q}(r+s)+r s+\mu[3]_{p, q}, \\
M & =\mu[2]_{p, q}-r-s,
\end{aligned}
$$

and

$$
N=\mu[3]_{p, q}-r^{2}-r s-s^{2} .
$$

Proof. Since $f \in \mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$, there exist two analytic functions $u, v: U \rightarrow U$ given by

$$
\begin{equation*}
u(z)=\sum_{k=1}^{\infty} u_{k} z^{k} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=\sum_{k=1}^{\infty} v_{k} w^{k} \tag{9}
\end{equation*}
$$

with $u(0)=0=v(0),|u(z)|<1,|v(w)|<1$ for all $z, w \in U$ such that

$$
\left(D_{p, q} f\right)^{\mu}(z)\left(\frac{(r-s) z}{f(r z)-f(s z)}\right)=1-b+G(x, u(z))
$$

and

$$
\left(D_{p, q} g\right)^{\mu}(w)\left(\frac{(r-s) w}{g(r w)-g(s w)}\right)=1-b+G(x, v(w)) .
$$

Or equivalently

$$
\begin{align*}
& \left(D_{p, q} f\right)^{\mu}(z)\left(\frac{(r-s) z}{f(r z)-f(s z)}\right) \tag{10}\\
= & 1+h_{2}(x) u_{1} z+\left[h_{2}(x) u_{2}+h_{3}(x) u_{1}^{2}\right] z^{2}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
& \left(D_{p, q} g\right)^{\mu}(w)\left(\frac{(r-s) w}{g(r w)-g(s w)}\right) \tag{11}\\
= & 1+h_{2}(x) v_{1} w+\left[h_{2}(x) v_{2}+h_{3}(x) v_{1}^{2}\right] w^{2}+\cdots .
\end{align*}
$$

Since $|u(z)|<1$ and $|v(w)|<1$, it is clear that

$$
\begin{align*}
& \left|u_{k}\right| \leq 1, \tag{12}\\
& \left|v_{k}\right| \leq 1 \tag{13}
\end{align*}
$$

for $k=1,2, \ldots$ From (10) and (11), we have

$$
\begin{equation*}
\left(\mu[2]_{p, q}-r-s\right) a_{2}=h_{2}(x) u_{1}, \tag{14}
\end{equation*}
$$

HORADAM POLYNOMIALS FOR A NEW SUBCLASS OF SAKAGUCHI-TYPE 465

$$
\begin{align*}
& \left(\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}+(r+s)^{2}-\mu[2]_{p, q}(r+s)\right) a_{2}^{2} \\
& +\left(\mu[3]_{p, q}-r^{2}-r s-s^{2}\right) a_{3} \tag{15}\\
= & h_{2}(x) u_{2}+h_{3}(x) u_{1}^{2},
\end{align*}
$$

$$
\begin{equation*}
-\left(\mu[2]_{p, q}-r-s\right) a_{2}=h_{2}(x) v_{1} \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}+(r+s)^{2}-\mu[2]_{p, q}(r+s)\right) a_{2}^{2} \\
& +\left(\mu[3]_{p, q}-r^{2}-r s-s^{2}\right)\left(2 a_{2}^{2}-a_{3}\right) \tag{17}\\
= & h_{2}(x) v_{2}+h_{3}(x) v_{1}^{2} .
\end{align*}
$$

From (14) and (16), we get

$$
\begin{equation*}
u_{1}=-v_{1} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left(\mu[2]_{p, q}-r-s\right)^{2} a_{2}^{2}=h_{2}^{2}(x)\left(u_{1}^{2}+v_{1}^{2}\right) . \tag{19}
\end{equation*}
$$

Upon adding (15) and (17), we get

$$
\begin{align*}
& 2\left(\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}-\mu[2]_{p, q}(r+s)+r s+\mu[3]_{p, q}\right) a_{2}^{2} \\
= & h_{2}(x)\left(u_{2}+v_{2}\right)+h_{3}(x)\left(u_{1}^{2}+v_{1}^{2}\right) . \tag{20}
\end{align*}
$$

By using (19) in (20), we have

$$
\begin{align*}
& 2\left[\left(\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}-\mu[2]_{p, q}(r+s)+r s+\mu[3]_{p, q}\right) h_{2}^{2}(x)\right. \\
& \left.\quad-\left(\mu[2]_{p, q}-r-s\right)^{2} h_{3}(x)\right] a_{2}^{2} \tag{21}\\
= & h_{2}^{3}(x)\left(u_{2}+v_{2}\right)
\end{align*}
$$

which implies

$$
\left|a_{2}\right| \leq \frac{|a x| \sqrt{|a x|}}{\sqrt{\left|L a^{2} x^{2}-M^{2}\left(a \varrho x^{2}+b \rho\right)\right|}}
$$

Now subtracting (17) from (15) and using (18), we get

$$
\begin{equation*}
a_{3}-a_{2}^{2}=\frac{h_{2}(x)\left(u_{2}-v_{2}\right)}{2\left(\mu[3]_{p, q}-r^{2}-r s-s^{2}\right)} . \tag{22}
\end{equation*}
$$

Then, in aid of (19), we get

$$
\begin{equation*}
a_{3}=\frac{h_{2}(x)\left(u_{2}-v_{2}\right)}{2 N}+\frac{h_{2}^{2}(x)\left(u_{1}^{2}+v_{1}^{2}\right)}{2 M^{2}} . \tag{23}
\end{equation*}
$$

Thus

$$
\left|a_{3}\right| \leq\left|\frac{a x}{N}\right|+\frac{a^{2} x^{2}}{|M|^{2}}
$$

Corollary 2.2. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{1, p, q}(r, s ; x)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|a x| \sqrt{|a x|}}{\sqrt{\left|\left([3]_{p, q}+r s-[2]_{p, q}(r+s)\right) a^{2} x^{2}-\left([2]_{p, q}-r-s\right)^{2}\left(a \varrho x^{2}+b \rho\right)\right|}} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|\frac{a x}{[3]_{p, q}-r^{2}-r s-s^{2}}\right|+\frac{a^{2} x^{2}}{\left|[2]_{p, q}-r-s\right|^{2}} . \tag{25}
\end{equation*}
$$

Corollary 2.3. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, p, q}(1,0 ; x)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|a x| \sqrt{|a x|}}{\sqrt{\left|\left(\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}+\mu[3]_{p, q}-\mu[2]_{p, q}\right) a^{2} x^{2}-\left(\mu[2]_{p, q}-1\right)^{2}\left(a \varrho x^{2}+b \rho\right)\right|}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|\frac{a x}{\mu[3]_{p, q}-1}\right|+\frac{a^{2} x^{2}}{\left(\mu[2]_{p, q}-1\right)^{2}} . \tag{27}
\end{equation*}
$$

Corollary 2.4. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, p, q}(1,-1 ; x)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|a x| \sqrt{|a x|}}{\sqrt{\left|\left(\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}+\mu[3]_{p, q}-1\right) a^{2} x^{2}-\mu^{2}[2]_{p, q}^{2}\left(a \varrho x^{2}+b \rho\right)\right|}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|\frac{a x}{\mu[3]_{p, q}-1}\right|+\frac{a^{2} x^{2}}{\mu^{2}[2]_{p, q}^{2}} . \tag{29}
\end{equation*}
$$

Corollary 2.5. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, 1, q}(r, s ; x)$ and $q \rightarrow 1^{-}$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|a x| \sqrt{|a x|}}{\sqrt{\left|\left(2 \mu^{2}+(1-2 r-2 s) \mu+r s\right) a^{2} x^{2}-(2 \mu-r-s)^{2}\left(a \varrho x^{2}+b \rho\right)\right|}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|\frac{a x}{3 \mu-r^{2}-r s-s^{2}}\right|+\frac{a^{2} x^{2}}{|2 \mu-r-s|^{2}} . \tag{31}
\end{equation*}
$$

3. Fekete-Szegö inequalities for the function class $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$

In this section, we estimate Fekete-Szegö inequalities $\left|a_{3}-\kappa a_{2}^{2}\right|$ for the functions belonging to the class $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$.

Theorem 3.1. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, p, q}(r, s ; x)$ and $\kappa \in R$, then

$$
\left|a_{3}-\kappa a_{2}^{2}\right| \leq\left(\frac{1}{|N|}+2|\Psi(\mu, p, q, r, s ; x)|\right)\left|h_{2}(x)\right|
$$

where

$$
\Psi(\mu, p, q, r, s ; x)=\frac{(1-\kappa) h_{2}^{2}(x)}{2\left(L h_{2}^{2}(x)-M^{2} h_{3}(x)\right)},
$$

L, M and N are as in Theorem 2.1.
Proof. For $\kappa \in R$ and from (22), we get

$$
\begin{equation*}
a_{3}-\kappa a_{2}^{2}=\frac{h_{2}(x)\left(u_{2}-v_{2}\right)}{2 N}+(1-\kappa) a_{2}^{2} \tag{32}
\end{equation*}
$$

By using (21), we have

$$
\begin{aligned}
& a_{3}-\kappa a_{2}^{2} \\
= & \frac{h_{2}(x)\left(u_{2}-v_{2}\right)}{2 N}+(1-\kappa)\left(\frac{h_{2}^{3}(x)\left(u_{2}+v_{2}\right)}{2\left(L h_{2}^{2}(x)-M^{2} h_{3}(x)\right)}\right) \\
= & h_{2}(x)\left[\left(\frac{1}{2 N}+\Psi(\mu, p, q, r, s ; x)\right) u_{2}+\left(\frac{-1}{2 N}+\Psi(\mu, p, q, r, s ; x)\right) v_{2}\right],
\end{aligned}
$$

where

$$
\Psi(\mu, p, q, r, s ; x)=\frac{(1-\kappa) h_{2}^{2}(x)}{2\left(L h_{2}^{2}(x)-M^{2} h_{3}(x)\right)} .
$$

Thus

$$
\left|a_{3}-\kappa a_{2}^{2}\right| \leq\left(\frac{1}{|N|}+2|\Psi(\mu, p, q, r, s ; x)|\right)\left|h_{2}(x)\right| .
$$

Corollary 3.2. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{1, p, q}(r, s ; x)$ and $\kappa \in R$, then

$$
\left|a_{3}-\kappa a_{2}^{2}\right| \leq\left(\frac{1}{\left|N_{1}\right|}+2|\Psi(1, p, q, r, s ; x)|\right)\left|h_{2}(x)\right|
$$

where

$$
\begin{gathered}
\Psi(1, p, q, r, s ; x)=\frac{(1-\kappa) h_{2}^{2}(x)}{2\left(L_{1} h_{2}^{2}(x)-M_{1}^{2} h_{3}(x)\right)}, \\
L_{1}=-[2]_{p, q}(r+s)+r s+[3]_{p, q}, \\
M_{1}=[2]_{p, q}-r-s,
\end{gathered}
$$

and

$$
N_{1}=[3]_{p, q}-r^{2}-r s-s^{2} .
$$

Corollary 3.3. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, p, q}(1,0 ; x)$ and $\kappa \in R$, then

$$
\left|a_{3}-\kappa a_{2}^{2}\right| \leq \begin{cases}\left|\frac{a x}{N_{2}}\right|, & |\kappa-1| \leq\left|\frac{L_{2}}{N_{2}}-\frac{M_{2}^{2}\left(a \varrho x^{2}+b \rho\right)}{N_{2} a^{2} x^{2}}\right|, \\ \frac{|\kappa-1|\left|a^{3} x^{3}\right|}{\left|L_{2} a^{2} x^{2}-M_{2}^{2}\left(a \varrho x^{2}+b \rho\right)\right|}, & |\kappa-1| \geq\left|\frac{L_{2}}{N_{2}}-\frac{M_{2}^{2}\left(a \varrho x^{2}+b \rho\right)}{N_{2} a^{2} x^{2}}\right|,\end{cases}
$$

where

$$
\begin{aligned}
L_{2} & =\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}+\mu[3]_{p, q}-\mu[2]_{p, q}, \\
M_{2} & =\mu[2]_{p, q}-1,
\end{aligned}
$$

and

$$
N_{2}=\mu[3]_{p, q}-1
$$

Corollary 3.4. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, p, q}(1,-1 ; x)$ and $\kappa \in R$, then

$$
\left|a_{3}-\kappa a_{2}^{2}\right| \leq \begin{cases}\left|\frac{a x}{N_{2}}\right|, & |\kappa-1| \leq\left|\frac{L_{3}}{N_{2}}-\frac{\mu^{2}[2]_{p, q}^{2}\left(a \varrho x^{2}+b \rho\right)}{N_{2} a^{2} x^{2}}\right| \\ \frac{|\kappa-1|\left|a^{3} x^{3}\right|}{\left|L_{3} a^{2} x^{2}-\mu^{2}[2]_{p, q}^{2}\left(a \varrho x^{2}+b \rho\right)\right|}, & |\kappa-1| \geq\left|\frac{L_{3}}{N_{2}}-\frac{\mu^{2}[2]_{p, q}^{2}\left(a \varrho x^{2}+b \rho\right)}{N_{2} a^{2} x^{2}}\right|\end{cases}
$$

where $L_{3}=\frac{\mu(\mu-1)}{2}[2]_{p, q}^{2}+\mu[3]_{p, q}-1$ and N_{2} is as in Corollary 3.3.
Corollary 3.5. If $f(z)$, given by (1), is in $\mathcal{S C}_{\sigma}^{\mu, 1, q}(r, s ; x), q \rightarrow 1^{-}$and $\kappa \in R$, then

$$
\left|a_{3}-\kappa a_{2}^{2}\right| \leq\left(\frac{1}{\left|N_{3}\right|}+2|\Psi(\mu, r, s ; x)|\right)\left|h_{2}(x)\right|,
$$

where

$$
\begin{gathered}
\Psi(\mu, r, s ; x)=\frac{(1-\kappa) h_{2}^{2}(x)}{2\left(L_{4} h_{2}^{2}(x)-M_{3}^{2} h_{3}(x)\right)}, \\
L_{4}=2 \mu^{2}+(1-2 r-2 s) \mu+r s, \\
M_{3}=2 \mu-r-s
\end{gathered}
$$

and

$$
N_{3}=3 \mu-r^{2}-r s-s^{2} .
$$

References

[1] S. Baskaran, G. Saravanan, and B. Vanithakumari, Sakaguchi type function defined by (p, q)-fractional operator using Laguerre polynomials, Palest. J. Math. 11 (2022), Special Issue II, 41-47.
[2] S. Baskaran, G. Saravanan, S. Yalçn, and B. Vanithakumari, Sakaguchi type function defined by (p, q)-derivative operator using gegenbauer polynomials, Int. J. Nonlinear Analy. Appl. 13 (2022), no. 2, 2197-2204.
[3] R. P. Boas, Aspects of contemporary complex analysis, Academic Press, Inc., London, 1980.
[4] L. I. Cotǐrlă and A. K. Wanas, Applications of Laguerre polynomials for Bazilevič and θ-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions, Symmetry 15 (2023), no. 2, 406.
[5] B. A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci. 10 (2010), no. 2, 206-211.
[6] A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997), no. 2, 137-148.
[7] A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart. 23 (1985), no. 1, 7-20.
[8] T. Horzum and E. G. Koçer, On some properties of Horadam polynomials, Int. Math. Forum 4 (2009), no. 25-28, 1243-1252.
[9] T. Koshy, Fibonacci and Lucas Numbers with Applications. Vol. 2, Pure and Applied Mathematics (Hoboken), John Wiley \& Sons, Inc., Hoboken, NJ, 2019.
[10] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.2307/2035225
[11] A. Lupaş, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag. 7 (1999), no. 1, 3-12.
[12] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75. https://doi.org/10.2969/jmsj/01110072
[13] G. Saravanan and K. Muthunagai, Co-efficient estimates for the class of bi-quasi-convex functions using faber polynomials, Far East J. Math. Sci. (FJMS) 102 (2017), no. 10, 2267-2276.
[14] G. Saravanan and K. Muthunagai, Estimation of upper bounds for initial coefficients and fekete-szegö inequality for a subclass of analytic bi-univalent functions, In Applied Mathematics and Scientific Computing: International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017-Volume II, pages 57-65. Springer, 2019.
[15] G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, Amer. Math. Soc., New York, 1939.
[16] G. Szegő, Orthogonal polynomials, fourth edition, American Mathematical Society Colloquium Publications, Vol. XXIII, Amer. Math. Soc., Providence, RI, 1975.
[17] R. Vijaya, T. V. Sudharsan, and S. Sivasubramanian, Coefficient estimates for certain subclasses of biunivalent functions defined by convolution, Int. J. Anal. 2016 (2016), Art. ID 6958098, 5 pp. https://doi.org/10.1155/2016/6958098
[18] A. K. Wanas, F. M. Sakar, and A. A. Lupaş, Applications Laguerre polynomials for families of bi-univalent functions defined with (p, q)-Wanas operator, Axioms 12 (2023), no. 5, 430.
[19] A. K. Wanas, G. S. Sălăgean, and Á. P.-S. Orsolya, Coefficient bounds and Fekete-Szegö inequality for a certain family of holomorphic and bi-univalent functions defined by (M, N)-Lucas polynomials, Filomat 37 (2023), no. 4, 1037-1044. https://doi.org/10. 2298/fil2304037w
[20] Q.-H. Xu, Y.-C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994. https://doi.org/10.1016/j.aml.2011.11.013
[21] S. Yalçın, K. Muthunagai, and G. Saravanan, A subclass with bi-univalence involving (p, q)-Lucas polynomials and its coefficient bounds, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 3, 1015-1022. https://doi.org/10.1007/s40590-020-00294-z

Vanithakumari Balasubramaniam
Department of Mathematics
Agurchand Manmull Jain College
Meenambakkam, Chennai-600061, Tamil Nadu, India
AND
Department of Mathematics
Amrita School of Engineering
Amrita Vishwa Vidyapeetham
Vengal, Chennai-601103, Tamil Nadu, India
Email address: vanithagft@gmail.com
Saravanan Gunasekar
Department of Mathematics
Amrita School of Engineering
Amrita Vishwa Vidyapeetham
Vengal, Chennai-601103, Tamil Nadu, India
Email address: gsaran825@yahoo.com

Baskaran Sudharsanan
Department of Mathematics
Agurchand Manmull Jain College
Meenambakkam, Chennai-600061, Tamil Nadu, India
Email address: sbas9991@gmail.com
Sibel Yalçin
Department of Mathematics
Bursa Uludag University
16059, Bursa, Turkey
Email address: sibelyalcin34@gmail.com

[^0]: Received October 24, 2023; Accepted February 1, 2024.
 2020 Mathematics Subject Classification. Primary 30C45, 30C15.
 Key words and phrases. Analytic functions, univalent functions, bi-univalent functions, Fekete-Szegö problem, Sakaguchi-type functions, (p, q)-derivative operator, Horadam polynomials.

