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Abstract. The aim of this paper is to study a new and unified class Rα
Cosh of

analytic functions associated with cosine hyperbolic function in the open unit disc
E = {z ∈ C : |z| < 1}. Some interesting properties of this class such as initial
coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman
inequality and third Hankel determinant have been established. Furthermore, these
results have also been studied for two-fold and three-fold symmetric functions.

1. Introduction

Let the class of functions f which are analytic in the open unit disc E = {z ∈
C : |z| < 1} and normalized by the conditions f(0) = f ′(0)− 1 = 0, is denoted by A
and is defined as

A =

{
f : f(z) = z +

∞∑
k=2

akz
k, z ∈ E

}
.

The subclass of A which consists of univalent functions in E, is denoted by S. In

the theory of univalent functions, the most famous result is Bieberbach’s conjecture

which was established by L. Bieberbach [6] in 1916. It states that, if f ∈ S is a

univalent function, then |an| ≤ n, n = 2, 3, .... This result remained as a challenge

for the mathematicians for a long time. Finally, L. De-Branges [9] proved this

conjecture in 1985. During the course of proving this conjecture, various coefficients

inequalities were come into existence which helped in defining certain new subclasses

of analytic functions. Here we mention only those classes which are relevant to our

work.
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equality, Zalcman inequality, cosine hyperbolic function, Hankel determinant.
∗Corresponding author.

c⃝ 2024 Korean Soc. Math. Educ.

201



202 G. Singh, G. Singh, N. Singh & N. Singh

The class of starlike functions is denoted by S∗ and is defined as

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
.

Reade [26] introduced the class CS∗ of close-to-star functions which is given by

CS∗ =

{
f : f ∈ A, Re

(
f(z)

g(z)

)
> 0, g ∈ S∗, z ∈ E

}
.

For g(z) = z, MacGregor [19] studied the following subclass of close-to-star func-

tions:

R′
=

{
f : f ∈ A, Re

(
f(z)

z

)
> 0, z ∈ E

}
.

Also, MacGregor [18] established the class R of bounded turning functions which

is defined as

R =
{
f : f ∈ A, Re(f ′(z)) > 0, z ∈ E

}
.

As a generalization, Murugusundaramoorthi and Magesh [20] studied the class

R(α) defined as

R(α) =

{
f : f ∈ A, Re

(
(1− α)

f(z)

z
+ αf ′(z)

)
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

Clearly R(α) is the unification of the classes R′
and R as R(0) ≡ R′

and R(1) ≡ R.

Let f and g be two analytic functions in E. Then f is said to be subordinate to

g (denoted as f ≺ g) if there exists a function w with w(0) = 0 and |w(z)| < 1 such

that f(z) = g(w(z)). Moreover, if g is univalent in E, then the subordination leads

to f(0) = g(0) and f(E) ⊂ g(E).

Using the concept of subordination, various subclasses of S were studied by several

authors by associating to different superordinating functions ϕ(z). Some of the

recently studied classes are mentined below:

(i) Janowski [11] studied the class S∗(A,B) for ϕ(z) = 1+Az
1+Bz .

(ii) For ϕ(z) = 1 + sinz, Cho et al. [8] studied the class S∗
sin.

(iii) Taking ϕ(z) = ez, Arif et al. [3] studied the class S∗
e .

(iv) Chosing ϕ(z) = 1 + z − z3

3 , Wani and Swaminathan [37] studied the class SN .

(v) Sokol and Stankiewicz [34] studied the class S∗
L associated with ϕ(z) =

√
1 + z.

(vi) For ϕ(z) = z +
√
1 + z2, Raina and Sokol [23] studied the class SC .

(vii) Considering ϕ(z) = 1 + 4
3z +

2
3z

2, Sharma et al. [29] studied the class S∗
C .

(viii) For ϕ(z) = 1 + sinh−1z, Arora and Kumar [4] studied the class S∗
p .

(ix) For ϕ(z) = 2
1+e−z , Goel and Kumar [10] studied the class S∗

SG.

(x) Alotaibi et al. [1] studied the class S∗
Cosh related to ϕ(z) = coshz.
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Following the recent trend, now we introduce a unified and generalized subclass

of analytic functions associated with the superordinating function cosh
√
z.

Definition 1.1. A function f ∈ A is said to be in the class Rα
Cosh (0 ≤ α ≤ 1) if it

satisfies the condition

(1− α)
f(z)

z
+ αf ′(z) ≺ cosh

√
z.

For α = 0 and α = 1, the class Rα
Cosh reduces to the classes R′

Cosh and RCosh,

respectively.

For q ≥ 1 and n ≥ 1, Pommerenke [21] defined the qth Hankel determinant Hq(n)

as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
For different values of q and n, the Hankel determinant Hq(n) reduces to various

coefficient functionals. For q = 2 and n = 1, it redues to H2(1) = a3 − a22, which is

the well known Fekete-Szegö functional. For q = 2 and n = 2, Hq(n) takes the form

of H2(2) = a2a4 − a23, which is known as Hankel determinant of second order and

for q = 3 and n = 1, it agrees with H3(1), which is the Hankel determinant of third

order.

The functional Jn,m(f) = anam−am+n−1, n,m ∈ N−{1}, is known as generalized

Zalcman functional and was introduced by Ma [17]. For n = 2,m = 3, it reduces

to J2,3(f) = a2a3 − a4. The upper bound for the functional J2,3(f) was computed

by various authors over different subclasses of analytic functions. It plays very

important role in establishing the bounds for the third Hankel determinant.

Now a days, the estimation of Hankel determinants for various subclasses of

analytic functions is a topic of great interest. Janteng et al. [12] investigated the

second Hankel determinant for the classes of starlike functions, convex functions

and the class of functions with bounded boundary rotation. After that second order

Hankel determinant was extensively studied by various authors for different classes.

Babalola [5] was the first researcher who successfully obtained the upper bound of

third Hankel determinant for some fundamental classes. Further a few researchers

including Shanmugam et al. [28], Bucur et al. [7], Altinkaya and Yalcin [2] and

recently Singh and Singh [30], Singh et al. [31, 32, 33], Sun et al. [35], Riaz et

al. [27], Raza et al. [25], Sunthrayuth et al. [36] and many more have been actively
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engaged in the study of third Hankel determinant for various subclasses of analytic

functions.

In this paper, we establish the upper bounds of the third Hankel determinant

for the class Rα
Cosh. Moreover the bounds of H3(1) are studied for the two-fold and

three-fold symmetric functions. Various known results follow as consequences.

2. Preliminary Lemmas

Let P denote the class of analytic functions p given by

p(z) = 1 +

∞∑
k=1

pkz
k,

whose real parts are positive in E.

In order to prove our main results, the following lemmas have been used:

Lemma 2.1 ([13, 29]). If p ∈ P, then

|pk| ≤ 2, k ∈ N,∣∣∣∣p2 − p21
2

∣∣∣∣ ≤ 2− |p1|2

2
,

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1,

and for complex number ρ, we have

|p2 − ρp21| ≤ 2max{1, |2ρ− 1|}.

Lemma 2.2 ([3]). Let p ∈ P, then

|Jp31 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|,

where J,K,L are real numbers.

In particular, it is proved in [22] that

|p31 − 2p1p2 + p3| ≤ 2.

Lemma 2.3 ([15, 16]). If p ∈ P, then

2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z,

for |x| ≤ 1 and |z| ≤ 1.
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Lemma 2.4 ([24]). Let m,n, l and r satisfy the inequalities 0 < m < 1, 0 < r < 1

and

8r(1−r)
[
(mn− 2l)2 + (m(r +m)− n)2

]
+m(1−m)(n−2rm)2 ≤ 4m2(1−m)2r(1−r).

If p ∈ P, then ∣∣∣∣lp41 + rp22 + 2mp1p3 −
3

2
np21p2 − p4

∣∣∣∣ ≤ 2.

3. Initial Coefficient Bounds

Theorem 3.1. If f ∈ Rα
Cosh, then

(1) |a2| ≤
1

2(1 + α)
,

(2) |a3| ≤
1

2(1 + 2α)
,

(3) |a4| ≤
1

2(1 + 3α)
,

and

(4) |a5| ≤
1

2(1 + 4α)
.

The results are sharp.

Proof. Since f ∈ Rα
Cosh, so using the concept of subordination in Definition 1.1, we

have

(5) (1− α)
f(z)

z
+ αf ′(z) = cosh

√
w(z).

Taking p(z) = 1+w(z)
1−w(z) = 1 + p1z + p2z

2 + p3z
3 + ..., which implies w(z) = p(z)−1

p(z)+1 .

For f ∈ A, we have

(6)

(1−α)
f(z)

z
+αf ′(z) = 1+(1+α)a2z+(1+2α)a3z

2+(1+3α)a4z
3+(1+4α)a5z

4+ ...

Also

cosh
√
w(z) = 1 +

1

4
p1z +

(
p2
4

− 11p21
96

)
z2 +

(
301p31
5760

− 11p1p2
48

+
p3
4

)
z3

+

(
−91p41
3840

+
301p21p2
1920

− 11p3p1
48

− 11p22
96

+
p4
4

)
z4 + ...(7)
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Using (6) and (7) in (5), it yields

1 + (1 + α)a2z + (1 + 2α)a3z
2 + (1 + 3α)a4z

3 + (1 + 4α)a5z
4 + ...

= 1 + 1
4p1z +

(
p2
4 − 11p21

96

)
z2 +

(
301p31
5760 − 11p1p2

48 + p3
4

)
z3

(8) +

(
−91p41
3840

+
301p21p2
1920

− 11p3p1
48

− 11p22
96

+
p4
4

)
z4 + ...

Comparing the coefficients of z, z2, z3 and z4 in (8), we obtain

(9) a2 =
1

4(1 + α)
p1,

(10) a3 =
1

4(1 + 2α)

[
p2 −

11p21
24

]
,

(11) a4 =
1

4(1 + 3α)

[
301

1440
p31 −

11

12
p1p2 + p3

]
,

and

(12) a5 =
1

4(1 + 4α)

[
−91p41

960
− 11p22

24
− 11

12
p3p1 +

301p21p2
480

+ p4

]
.

Using first inequality of Lemma 2.1 in (9), the result (1) is obvious.

From (10), we have

(13) |a3| =
1

4(1 + 2α)

∣∣∣∣p2 − 11

24
p21

∣∣∣∣ .
Using fourth inequality of Lemma 2.1 in (13), the result (2) can be easily obtained.

(11) can be written as

(14) |a4| =
1

4(1 + 3α)

∣∣∣∣ 3011440
p31 −

11

12
p1p2 + p3

∣∣∣∣ .
Using Lemma 2.2 in (14), the result (3) is obvious.

Further, using Lemma 2.4 in (12), the result (4) is obvious. �

Equality in the results (1), (2), (3) and (4) is attained for the functions f1, f2, f3

and f4, respectively defined as

(15) (1− α)
f1(z)

z
+ αf ′

1(z) = cosh
√
z,

(16) (1− α)
f2(z)

z
+ αf ′

2(z) = cosh
√
z2,

(17) (1− α)
f3(z)

z
+ αf ′

3(z) = cosh
√
z3,
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(18) (1− α)
f4(z)

z
+ αf ′

4(z) = cosh
√
z4.

On putting α = 0, Theorem 3.1 yields the following result:

Corollary 3.1. If f ∈ R′
Cosh, then

|a2| ≤
1

2
, |a3| ≤

1

2
, |a4| ≤

1

2
, |a5| ≤

1

2
.

For α = 1, Theorem 3.1 gives the following result due to Khan et al. [14]:

Corollary 3.2. If f ∈ RCosh, then

|a2| ≤
1

4
, |a3| ≤

1

6
, |a4| ≤

1

8
, |a5| ≤

1

10
.

4. Fekete-Szegö Inequality

Theorem 4.1. If f ∈ Rα
Cosh and µ is any complex number, then

(19) |a3 − µa22| ≤
1

2(1 + 2α)
max

{
1,

| − (1 + α)2 + 6(1 + 2α)µ|
12(1 + α)2

}
.

The bound is sharp.

Proof. From (9) and (10), we obtain

(20) |a3 − µa22| =
1

4(1 + 2α)

∣∣∣∣p2 − 11(1 + α)2 + 6(1 + 2α)µ

24(1 + α)2
p21

∣∣∣∣ .
Using fourth inequality of Lemma 2.1, (20) can be expressed as

|a3 − µa22| ≤
1

2(1 + 2α)
max

{
1,

| − (1 + α)2 + 6(1 + 2α)µ|
12(1 + α)2

}
.

Equality in the result (19) is attained for the function f2 defined in (16). �

Substituting for α = 0, Theorem 4.1 yields the following result:

Corollary 4.1. If f ∈ R′
Cosh, then

|a3 − µa22| ≤
1

2
max

{
1,

|6µ− 1|
12

}
.

Putting α = 1, Theorem 4.1 yields the following result due to Khan et al. [14]:

Corollary 4.2. If f ∈ RCosh, then

|a3 − µa22| ≤
1

6
max

{
1,

|9µ− 2|
24

}
.
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For µ = 1, Theorem 4.1 yields the following result:

Corollary 4.3. If f ∈ Rα
Cosh, then

|a3 − a22| ≤
1

2(1 + 2α)
.

For α = 0, Corollary 4.3 yields the following result:

Corollary 4.4. If f ∈ R′
Cosh, then

|a3 − a22| ≤
1

2
.

For α = 1, Corollary 4.3 yields the following result due to Khan et al. [14]:

Corollary 4.5. If f ∈ RCosh, then

|a3 − a22| ≤
1

6
.

5. Zalcman Inequality

Theorem 5.1. If f ∈ Rα
Cosh, then

(21) |a2a3 − a4| ≤
1

2(1 + 3α)
.

The estimate is sharp.

Proof. Using (9), (10), (11) and after simplification, we obtain

|a2a3 − a4| =
1

5760(1 + α)(1 + 2α)(1 + 3α)

×
∣∣(466 + 1398α+ 602α2)p31 − (1680 + 5040α+ 2640α2)p1p2(22)

+ (1440 + 4320α+ 2880α2)p3
∣∣.

Applying Lemma 2.2 in (22), (21) can be easily obtained. Equality in (21) is attained

for the function f3 defined in (17). �

Corollary 5.1. If f ∈ R′
Cosh, then

|a2a3 − a4| ≤
1

2
.

On putting α = 1 in Theorem 5.1, we can obtain the following result due to Khan

et al. [14]:



COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS 209

Corollary 5.2. If f ∈ RCosh, then

|a2a3 − a4| ≤
1

8
.

6. Second Hankel Determinant

Theorem 6.1. If f ∈ Rα
Cosh, then

(23) |a2a4 − a23| ≤
1

4(1 + 2α)2
.

Result is sharp.

Proof. Using (9), (10) and (11), we have

|a2a4 − a23| =
1

46080(1 + α)(1 + 2α)2(1 + 3α)

×
∣∣2880(1 + 2α)2p1p3 − 2640α2p21p2 + (−3− 12α+ 593α2)p41

− 2880(1 + 4α+ 3α2)p22
∣∣.

Substituting for p2 and p3 from Lemma 2.3 and letting p1 = p, we get

|a2a4 − a23| =
1

46080(1 + α)(1 + 2α)2(1 + 3α)∣∣− (7α2 + 12α+ 3)p4 + 120α2p2(4− p2)x

− 720(1 + 2α)2p2(4− p2)x2 − 720(1 + 4α+ 3α2)(4− p2)2x2

+ 1440(1 + 2α)2p(4− p2)(1− |x|2)z
∣∣.

Since |p| = |p1| ≤ 2, we may assume that p ∈ [0, 2]. Using the triangle inequality

and |z| ≤ 1 with |x| = t ∈ [0, 1], we obtain

|a2a4 − a23| ≤
1

46080(1 + α)(1 + 2α)2(1 + 3α)

×
[
(7α2 + 12α+ 3)p4 + 120α2p2(4− p2)t+ 720(1 + 2α)2p2(4− p2)t2

+ 720(1 + 4α+ 3α2)(4− p2)2t2 + 1440(1 + 2α)2p(4− p2)

− 1440(1 + 2α)2p(4− p2)t2
]
= F (p, t).

∂F

∂t
=

(4− p2)

384(1 + α)(1 + 2α)2(1 + 3α)

[
α2p2 + 12(1 + 2α)2p2t

+ 12(1 + 4α+ 3α2)(4− p2)t− 24(1 + α)2pt
]
.

Clearly ∂F
∂t ≥ 0 and so F (p, t) is an increasing function of t.
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Therefore,

max{F (p, t)} = F (p, 1) =
1

46080(1 + α)(1 + 2α)2(1 + 3α)

×
[
(7α2 + 12α+ 3)p4 + 120α2p2(4− p2) + 720(1 + 2α)2p2(4− p2)

+ 720(1 + α)(1 + 3α)(4− p2)2 + 1440(1 + 2α)2p(4− p2)

− 1440(1 + 2α)2p(4− p2)
]
= H(p).

H ′(p) = 0 gives p = 0. Also H ′′(p) < 0 for p = 0.

Therefore max{H(p)} = H(0) =
1

4(1 + 2α)2
, which proves (23).

Equality in (23) is attained for the function f2 defined in (16). �

Putting α = 0, Theorem 6.1 gives the following result:

Corollary 6.1. If f ∈ R′
Cosh, then

|a2a4 − a23| ≤
1

4
.

Substituting for α = 1 in Theorem 6.1, the following result due to Khan et al. [14],

is obvious:

Corollary 6.2. If f ∈ RCosh, then

|a2a4 − a23| ≤
1

36
.

7. Third Order Hankel Determinant H3(1)

On expanding, the third Hankel determinant can be expressed as

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22),

and after applying the triangle inequality, it yields

(24) |H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|.

Theorem 7.1. If f ∈ Rα
Cosh, then

(25) |H3(1)| ≤
5 + 50α+ 179α2 + 268α3 + 136α4

8(1 + 2α)3(1 + 3α)2(1 + 4α)
.

Proof. By using (3), (4), (5), (21), (23) and Corollary 4.3 in (24), the result (25)

can be easily obtained. �

For α = 0, Theorem 7.1 yields the following result:
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Corollary 7.1. If f ∈ R′
Cosh, then

|H3(1)| ≤
5

8
.

For α = 1, Theorem 7.1 yields the following result due to Khan et al. [14]:

Corollary 7.2. If f ∈ RCosh, then

|H3(1)| ≤
319

8640
.

8. Bounds of |H3(1)| for Two-fold and Three-fold Symmetric
Functions

A function f is said to be n-fold symmetric function if it satisfies the following

condition:

f(ξz) = ξf(z)

where ξ = e
2πi
n and z ∈ E.

By S(n), we denote the set of all n-fold symmetric functions which belong to the

class S.

The n-fold univalent function have the following Taylor-Maclaurin series:

(26) f(z) = z +
∞∑
k=1

ank+1z
nk+1.

An analytic function f of the form (26) belongs to the family Rα(n)
Cosh if and only if

(1− α)
f(z)

z
+ αf ′(z) = cosh

√(
p(z)− 1

p(z) + 1

)
, p ∈ P(n),

where

(27) P(n) =

{
p ∈ P : p(z) = 1 +

∞∑
k=1

pnkz
nk, z ∈ E

}
.

Theorem 8.1. If f ∈ Rα(2)
Cosh, then

(28) |H3(1)| ≤
1

4(1 + 2α)(1 + 4α)
.

Proof. If f ∈ Rα(2)
Cosh, then there exists a function p ∈ P(2) such that

(29) (1− α)
f(z)

z
+ αf ′(z) = cosh

√(
p(z)− 1

p(z) + 1

)
.
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Using (26) and (27) for n = 2, (29) yields

(30) a3 =
1

4(1 + 2α)
p2,

(31) a5 =
1

4(1 + 4α)

(
p4 −

11

24
p22

)
.

Also

(32) H3(1) = a3a5 − a33.

Using (30) and (31) in (32), it yields

(33) H3(1) =
1

16(1 + 2α)(1 + 4α)
p2

[
p4 −

11(1 + 2α)2 + 6(1 + 4α)

24(1 + 2α)2
p22

]
.

Taking modulus and using third inequality of Lemma 2.1 in (33), we can easily get

the result (28). �

Putting α = 0, the following result can be easily obtained from Theorem 8.1:

Corollary 8.1. If f ∈ R
′(2)
Cosh, then

|H3(1)| ≤
1

4
.

For α = 1, Theorem 8.1 agrees with the following result due to Khan et al. [14].

Corollary 8.2. If f ∈ R(2)
Cosh, then

|H3(1)| ≤
1

60
.

Theorem 8.2. If f ∈ Rα(3)
Cosh, then

(34) |H3(1)| ≤
1

4(1 + 3α)2
.

The bound is sharp.

Proof. If f ∈ Rα(3)
Cosh, so there exists a function p ∈ P(3) such that

(35) (1− α)
f(z)

z
+ αf ′(z) = Cosh

√(
p(z)− 1

p(z) + 1

)
.

Using (26) and (27) for n = 3 in (35), it gives

(36) a4 =
1

4(1 + 3α)
p3.
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Also

(37) H3(1) = −a24.

Using (36) in (37), it yields

(38) H3(1) = − 1

16(1 + 3α)2
p23.

Taking modulus and using first inequality of Lemma 2.1, (34) can be easily obtained

from (38).

Equality in (34) is attained for the function f3 defined in (17). �

Putting α = 0 in Theorem 8.2, it gives the following result:

Corollary 8.3. If f ∈ R
′(3)
Cosh, then

|H3(1)| ≤
1

4
.

For α = 1, Theorem 8.2 yields the following result due to Khan et al. [14].

Corollary 8.4 If f ∈ R(3)
Cosh, then

|H3(1)| ≤
1

64
.

9. Conclusion

In this paper, we have introduced a new and unified class of analytic functions

by subordinating to cosine hyperbolic function. We established various coefficient

inequalities for this class and also extended the results to two-fold and three-fold

symmetric functions. Certain known results follow as the consequences of the results

of this paper. Till now, most of the work done on third Hankel determinant is based

on some of the standard classes, but here we have investigated the sharp bounds for

the third Hankel determinant for a generalized class. So this paper will pave the

way for other researchers to investigate some more generalized classes of analytic

functions.
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