References
- T. Akyel and B. N. Ornek, Some remarks on Schwarz lemma at the boundary, Filomat 31 (2017), no. 13, 4139-4151. https://doi.org/10.2298/fil1713139a
- T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
- H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910X521643
- V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N.Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
- M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 2, 85-89. https://doi.org/10.1112/jlms/s1-8.2.85
- G. M. Goluzin, Geometrical theory of functions of a complex variable (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
- M. Mateljevic, Rigidity of holomorphic mappings & Schwarz and Jack lemma, In press. http://doi.org/10.13140/RG.2.2.34140.90249.
- M. Mateljevic, N. Mutavdcz, and B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma, ResearchGate. http://doi.org/10.13140/RG.2.2.25744.15369
- P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, J. Class. Anal. 12 (2018), no. 2, 93-97. https://doi.org/10.7153/jca-2018-12-08
- P. R. Mercer, An improved Schwarz lemma at the boundary, Open Math. 16 (2018), no. 1, 1140-1144. https://doi.org/10.1515/math-2018-0096
- J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.2307/1997533
- M. Obradovic and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis (Munich) 25 (2005), no. 3, 183-188. https://doi.org/10.1524/anly.2005.25.3.183
- M. Obradovic and S. Ponnusamy, On the class U, In Proceedings of the 21st Annual Conference of the Jammu Mathematical Society and a National Seminar on Analysis and its Application, pp. 11-26, 2011.
- B. N. Ornek, Some remarks of the Caratheodory's inequality on the right half plane, Commun. Korean Math. Soc. 35 (2020), no. 1, 201-215. https://doi.org/10.4134/CKMS.c180469
- B. N. Ornek and T. Duzenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018), 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
- B. N. Ornek and T. Duzenli, Schwarz lemma for driving point impedance functions and its circuit applications, Intern. J. Circuit Theory Appl. 47 (2019), 813-824. https://doi.org/10.1002/cta.2616
- R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
- Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-02770-7
- J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lith. Math. J. 58 (2018), no. 2, 212-218. https://doi.org/10.1007/s10986-018-9397-0
-
A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class
$\mathcal{U} (λ), Comput. Methods Funct. Theory 13 (2013), no. 4, 613-634. https://doi.org/10.1007/s40315-013-0045-8