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SOME RESULTS CONCERNED WITH HANKEL
DETERMINANT FOR N (a) CLASS

GIZEM ATLI AND BULENT NAFI ORNEK

ABSTRACT. In this paper, we give some results an upper bound of Hankel
determinant of H2(1) for the classes of N (o). We get a sharp upper
bound for Ha(1) = c3 —c3 for N () by adding 21, 22, . . ., zn zeros of f(z)
which are different than zero. Moreover, in a class of analytic functions
on the unit disc, assuming the existence of angular limit on the boundary
point, the estimations below of the modulus of angular derivative have
been obtained. Finally, the sharpness of the inequalities obtained in the
presented theorems are proved.

1. Introduction

Let A denote the class of functions f(z) = 2z + c22? + c32 + -+ which are
analytic in D = {z : |z] < 1}. Also, let N («) be the subclass of A consisting
of all functions f(z) which satisfy

2
z !

(L.1) <f(z)> f'(z)—al <1,

where « € C. There are many studies about this inequality [12,13,21].

The certain analytic functions which are in the class of A («) on the unit
disc D are considered in this paper. The subject of the present paper is to dis-
cuss some properties of the function f(z) which belong to the class of N («) by
applying Schwarz lemma. Schwarz lemma is a highly popular topic in electrical
engineering. As exemplary applications, the use of positive real functions and
boundary analysis of these functions for circuit synthesis can be given. More-
over, it is also possible to utilize Schwarz lemma for the analysis of transfer
functions in control engineering and to design multi-notch filter structures in
signal processing [15,16].

In this paper, we will give the sharp estimates for the Hankel determinant of
the class of analytic function f € A will satisfy the condition (1.1). Also, the
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relationship between the coefficients of the Hankel determinant and the angular
derivative of the function f, which provides the class N (a), will be examined.
In this examine, the coefficients ¢z, c3 and ¢4 will be used.

Let f € A. The ¢'* Hankel determinant of f for n > 0 and g > 1 is stated
by Noonan and Thomas [11] as

Cp, Cn+1 et Cn+q—1
Cn+1 Cp42 Cn+q
Hq(n) = . . . : , 1 =1.
Cnt+q—1 Cn+q *°° Cni2q-—2

From the Hankel determinant for n = 1 and ¢ = 2, we have

1 C2

H(1)=| o 2

:C3—C§.

Here, the Hankel determinant Hy(1) = c3 — c3 is well-known as Fekete-Szegd
functional [5]. In [11], authors have obtained the upper bounds of the Hankel
determinant |cacs — c3|. Also, in [18], author has obtained the upper bounds

the Hankel determinant A", Moreover, in [20], authors have given bounds for
the Second Hankel determinant for class M,. We will get a sharp upper bound
for Hy(1) = ¢3 — c% for N (a) by adding 21, 22, . .., 2, zeros of f(z) which are
different than zero in our study.

Let f(z) € N («) and consider the following function

2
p(z) = (f(zz)> fe)—a=1—a+(cs—c3) 2°+ (2cs — deacs +265) 22+ - .

It is an analytic function in D and p(0) = 1 — . Consider the function

m(z) = p(z) —p(0) 1
L=p(0)p(2) 11

=

Here, m(z) is an analytic function in D, m(0) = 0 and |m(z)| < 1 for z € D.
Therefore, the function m(z) satisfies the condition of Schwarz lemma [6]. From
the Schwarz lemma, we obtain

_p()-p0) 1
1= p(0)p(2) ] 2=z

—Ziz

=
[

i=

1—a+ (c3—c3) 22+ (204 —deges +263) 23 + -+ — (1 — @)

n
[1-(1-a)(1—a+(c3—c3) 2+ (2ca —deaes +2e3) 2% + - )] [ 72

(c5 — B) 2%+ (2c4 — dcoes +263) 23 + - -

[1—(1—a)(1—a+(cs—c3) 22+ (2cs — deges +2¢3) 25 + - )] [ 72
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(03 — c%) + (204 — 4cocg + 203) zZ4 -

n

717

Il =

m(z) _
=
o l-—(1-a@)(1—a+(cz—c3)22+ (2c4 —4cacg +2¢3) 23 + -+ +)]
-l mol
(1=n=af) Izl (1= =af) IT |l
i= i=1
and N
2
()] < (1= 1= af) 1.
i=1
Now, let us show the sharpness of this inequality. Let
— (0 n -z
p(z) —p(0) _ 2]
L= pOp(z) i l-me
and .
2 1 =2 +200)
p(z) = —= 0
1+ p(0)z? H1 AL

From the definition of p(z), we take

2
(i) 6o o
z — s
1+p(0)22 IT £
i=1
22 [T 22 +p(0)
1—a+ (c3—c3) 2%+ (2c4 — degeg +263) 25 4o = — =1 -
14 p(0)22 ] 22
211 22 +2(0)
(c5 —c3) 2% + (2c4 — deacs +263) 22 4+ = =1 — +a-—1
L+p(0)22 [T 7%
i=1 ‘
n
(1 —]1- a|2) 22 [ &2
1+ (1 -2 ] &=
=1
and
2 " Z—Z4
(1-1-af) I =
(5 — 3) + (2¢4 — 4cges + 20%) Z4 = Zn_l
1+(1-a)2 ] &=
i=1 ¢
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Passing to limit (z — 0) in the last equality yields
2
jes = | = 1H21)] = (1= 1 = al*) T I=il.
i=1

We thus obtain the following lemma.

Lemma 1.1. Let f(z) € N («) and 21, 22,...,2, be the zeros of the function
f(z) = z in D that are different from zero. Then we have the inequality

(1.2) (Hy(1)] < (1= 1= of) [TIal-

This result is sharp.

Several studies on Schwarz lemma exist in literature as it has a wide applica-
bility area. Some examples are about being estimated from below the modulus
of the derivative of the function at some boundary point of the unit disc which
is also called as boundary version of Schwarz lemma where it is given as follows

[17]:

Lemma 1.2. Let g : D — D be an analytic function with g(z) = cp2? +
cp12PTH 4+ oo p > 1. Assume that there is a zyg € OD so that g extends
continuously to zg, |g(z0)| =1 and ¢'(z0) exists. Then

1 — ey
1.3 ! >p+ L
(13) 9/ Co)l 2+ 71
and
(1.4) l9'(20) > p-

Inequalities (1.3) and (1.4) are sharp.

Inequalities (1.3), (1.4) and their generalizations have important applications
in geometric theory of functions and they are still hot topics in the mathematics
literature [1-4,7,8,14-17]. Mercer considers some Schwarz and Carathéodory
inequalities at the boundary, as consequences of a lemma due to Rogosinski [9].
In addition, he obtains a new boundary Schwarz lemma, for analytic functions
mapping the unit disk to itself [10].

The following lemma, known as the Julia-Wolff lemma, is needed in the
sequel (see, [19])

Lemma 1.3 (Julia-Wolff lemma). Let g be an analytic function in D, g(0) =0
and g(D) C D. If, in addition, the function g has an angular limit g(zo) at zo €
0D, |g(z0)| = 1, then the angular derivative ¢'(zo) exists and 1 < |g'(z0)| < oo.

Corollary 1.4. The analytic function g has a finite angular derivative g'(zp)
if and only if g’ has the finite angular limit ¢'(z9) at zg € OD.
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2. Main results

In this section, we discuss different versions of the boundary Schwarz lemma
and Hankel determinant for A («) class. Second derivative of the module of
f(2) is evaluated below by including the z1, 2, . .., 2, zeros and Ho(1) Hankel
determinant of the function f(z) — z which are different from zero. In the
inequalities obtained, the relationship between the Hankel determinant and
the second angular derivative of the f(z) function was established.

Theorem 2.1. Let f(z) € N (a). Suppose that, for some zg € 0D, f has an

angular limit f(zo) at 20, f(20) = 7% and f(20) = H% Let z1,29,...,2, be

the zeros of the function f(z) — z in D that are different from zero. Then we
have the inequality

(2.1) " (z0)] = = (hilzlz

(17|170z\2)|1+a|2 el R

(1= of) et )

(-1 =a) fL i) =t + (1) £

2(e4 — ea (3 + 2H(1))) — Ha(1) 35 122

i=

This result is sharp for « € R and 21, 22, ...,2, € RT.

Proof. Let z1,z2a,...,2, be the zeros of the function f(z) — z in D that are
different from zero. Consider the following functions
o) — 2 =2(0)
1—p(0)p(2)
and

By the maximum principle, for each z € D, we have |9(z)| < |B(z)|. The
function

()
r(z) = B(2)
is analytic in D, and |r(z)| < 1 for z € D. In particular, we have
|cs — 3 _ [Ha(1)]

Ir(0)] =

2\ 14 B 2\ 14
(1= =ef) Tl (1= —af) TT1ad

and

Zi

3 N1z
204 — 40263 + 202 — Hg(l) Z

(0)] = -
(1 - a|2) 11 J=
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‘2(a4—<a(c§4—2fﬁ(1») f&(l)ézlkaz

(1-11-aP) [T |2

=1

It is obvious that

2019/(20) . ’ > ZOB/(Z()) - / 5
and
zoB((z;)) B Zo|—2+z — |zl

T |20 — Zl|
The auxiliary function
1—r(0)r(z)
is analytic in the unit disc D, ®(0) = 0, |®(z)| < 1 for z € D and |®(zp)|

=1
for zgp € 9D. From (1.3) for p = 1, we obtain
2 1—|r(0))”
- < |® — = AT |y
1+|(I)I(O)‘ = ‘ (ZO)| 2 ‘7‘ (ZO)|

1= O0)r(z0)|
L b s

= | (z0)| |1 +af”

1= 1= af) [T |l - [Ha(1)

2+§iliiﬂi
i=1 IzO _Zi|2 .

It can be seen that

1
(1f|1—0z|2) ﬁ |zi| + |H2(1)] 2
( {

1—|r(0)?
#/(z) = MOy,
1= 0)r(2)
and
‘2(C4—C2(c§+2ﬂ2(1)))—H2(1) ; ﬂ’
, ' (0) (1-l1=af?) [1 1=
|‘I) (O)| = 1 5 = D)
— [r(0)]

|Ha (1)
(1-I1-al?) T |=|
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1—|z|?

M=

‘2 (ca — 2 (3 +2H2(1))) — Ha(1)

= (1—|17a|2)H|Z¢| —— :
e e fy) o
Let us substitute the values of |®'(0)|. Thus, we obtain
2
n 2(ca—ca(3+2Ha(1)) )~ Ha(1) 3 ﬂ
1+(17\1704\2> H Eq = —— '
i1 (S
(1= al®) I+ 1F20] e
< =1 { " (20)[ 1+ of” = <2+§j ’)}
(1= =) I sl = ) L lol ol
i=1
2<((17|1fa\)mzt\) - \)
n 2 . . n 2
((17 il w\z) 11 \zl|> — [Hy(D)]* + (1 - falz) IT feal 2 (ea = ea (¢ + 2Ha(1) - Ha(1) 32 —
(1= =) T+ 100
< o { £ (o) 11+ o - <2+Z )}
(1= =af) [l -y L lol o

2 ((1 ~ L= af) [T 1a - |H2<1>\)2
(1) fL i) =t + (1= —of) f1 2

i=

2
5i£;iﬂwf% 11 +af? - <2+§j '%'>

e

(e1 = 2 (c + 2Ha(1))) — Ha(1) 3 15

IN

|20 — Zz|

and

|fN(ZO)| > ( |Oc|2 <2+i 17‘2’1"2

1-|1-af’) [1+af = 20—zl

. 2((1—\170\2) 1ljl|zi\*|H2(1)‘>2
(=1 =a?) fL i) =t + (1= =) f1 2

Now, we shall show that the inequality (2.1) is sharp. Let

(e1 = ca (¢ + 2Ha(1))) ~ Ha(1) 32 1

) p0) _ oy 2o

1- mp('z) i=1 1 —Ziz

and
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If we take the derivative of both sides of the last equation, for z = 1 and
21,29, ...,2n € RT, we obtain

1—[1—a L
=t (3+Y 2.
p'(1) (2—@)2 ( ‘ 1_21,)
Since p'(1) = f"(1) (1 + a)2 and o € R, we have

rqn «a "1+ z
7= (2—a)(1+a) <3+Z:1_Zi>.

On the other hand, we obtain

and

(C3 - Cg) + (204 — 4dcacs —|—20§’) 24 =

Passing to limit in the last equality yields c3 —c3 = Ha(1) = 0. Similarly, using
straightforward calculations, we take

n
‘204 — 4eocs + 20525‘ = (1 —]1- a|2) H |zi] -
i=1

Thus, for a € R, we get

i SESE
2y L

(1_|1—042>|1+a|2 = o — 2l

2 (1= -of) f1 0 1)
((-n-ar)it w)z ~#F + (11 -af) [T 2

i=1

_|_

2(cs = c2 (3 +2Ha(1))) — Hz(1) ;
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n 2 9 n n
z) +(1-11-af) (1—\1—&\)1_“22\
1 i=1 =1

. « 1+ 2z
C2-a)(1+a) <3+;1zi>' 0

If f(2) — z has no zeros different from z = 0 in Theorem 2.1, this is given by
the following theorem.

Theorem 2.2. Let f(z) € N (a) and c3 > ¢4 (c2 > 0, c3 > 0). Also, f(z) — 2
has no zeros in D except z = 0. Suppose that, for some zy € D, f has an

angular limit f(z0) at 2o, f(z0) = £% and f'(20) = 9. Then we have
(2.2)
(o)) = o’ ) b () 1Ha(0)
)| > _
(1*U*aFN1+M2 m(ﬁ%%FNHxULﬂqfcﬂ%+ﬂHﬂnﬂ
and
Hs(1
(2.3) lea — 2 (3 4+ 2H2(1))| < [|H2(1)|In <1|i()|2> ‘ :
-1 -«

The inequality (2.3) is sharp.

Proof. Let 9(z) be as in the proof of Theorem 2.1. Also, let s(z) = 22. By the
maximum principle, for each z € D, we have |9(z)| < |s(z)|. The function

is analytic in D and |t(z)| < 1 for z € D. In particular, we have

p(z) = p(0)

t(z) = ——
(1-2O)p(2)) 22
B L—a+ (c3—c3) 2%+ (24 —deocs +263) 22+ -+ — (1 — @)
-0 -@) (1 —a+(cz—c3) 22+ (2c4 — deacs +2¢3) 23 4 - -+ )] 22
B (03 — 02) (204 — 4eaes + 202) z4+-
Cl-(1-a)(l—a+(c3—c3)z2+ (204—40263—1—262)23—|—---)7
(2.4 10y = 20

1—]1—af
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and
B |204 — 4eocs + 20§| 2 |c4 —Co (cg + 2H2(1))|

(0

£ 1—|1—af 1—|1—af
Having in mind inequality (2.4), we denote by Int(z) the analytic branch of
the logarithm normed by the condition

I Hy (1)
Int(0) =1 (1_1_042) <o.

Consider the function
_ Int(z) — Int(0)

2)
W) = ) T m0)
w(z) is analytic in the unit disc D, |w(z)| < 1 for |2| < 1, w(0) = 0 and
|w(z0)| =1 for zgp € OD. From (1.3) for p = 1, we obtain

2 o ()] = [2In¢(0)] t'(z0)
1+ |w’(0)] < |/ (=)l IInt(z0) + In¢(0)|* | t(20)
—21nt(0)

= g i(e0) 1 w20 | GO G0}

Since
/ 17|p(0)‘2 / 1*|1*O‘|2 " 2
[0 (20)] = ————= 0" (20)| = TTeE |f"(20) 11 + @]
1= p(Op(=0)| @
and
21nt(0 t'(0
' (0)] = |2In¢(0)] ; ( )‘
IInt(0) + Int(0)[* | £(0)
_ —1 2les— o (63 +2H5(1))]
B Hy(1) Ho(1 ’
2111(17‘;7&‘2) |Ha(1)]
we take
2 —21Int(0) 1-1—-af ,, 2
< 14+al*=25.
1 — leszea(BH2H20)] ~ arg? #(z0) + In*#(0) { laf? |zl [L+ e

H-
in (=2 ) | Ha (1)

Replacing arg?t(zo) by zero, we obtain

1 -1 1-— |1 - O“Q 7 2
< 1+a>-25,
1 ‘04—02(C§+2H2(1))| - In ( H>(1) 2) { |a|2 ‘f (ZO)| | a‘
in (20 ) | Ha (1)) 1-l1-af
2 Hz(l)
) In? (205 ) |y (1)) SRR

2
el

In (2225 ) [ Ha(1)] — fea — ez (3 + 2Ha(1)]
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and

2 n? Ha(1) , .
£ (20)] > o (2_1 o 1n? (2500) |Ha (1) )

2 2
(1-n=af’)1+al n (2805 ) [Ha(1)]  Jea = ez (63 + 2Ha(1))]

Similarly, the function w(z) satisfies the assumptions of the Schwarz lemma
[6], we obtain

vy 12t (0)] t'(0)
L O= IInt(0) + In ¢(0)|* | £(0) ’
B ~1 2|es — ca (3 + 2Ha(1))|
2w (2R [ Hy (1)

B |C4 —co (cg + 2H2(1))|
(1) (2245)

Hy(1)
|H2(1)|In (1—|1—a|2> ’ .

Now, we shall show that the inequality (2.3) is sharp. Let
Int(z) —Int(0) s
Int(z) +Int(0)

and

lea — 2 (3 4+ 2H3(1))] <

p(z) = g —Loaet Int(0) ’
1—1—(1—04)22612“() 1+(1—a)z2612“()
1—a+(03—c)z +(204—402<’3+202) +~-~—(1—a)7<1_‘1_0‘|>‘“Zlnt(o)
2? 1+(1—a)2261 2 Int(0)

and

(1 - a|2) o122 Int(0)

1+ (1—-a) 22e1: mi(0) |
If we take the derivative of both sides of the last equation, we take

(204 — 4cacs —i—ZCg) 4+
9 = z)2 lnt(0)61 £2 Int(0) (14—(1—&) 261 zlnt(O))
= (1-n-ap)
( +(1—a)22e1 Zlnf(O))

lnt(O)el = lnf(o)z2) 1=z nt(0)

(03 — cg) + (204 — 4dcacs —|—2c§) Z4=

(1-a@) (Qzel = Int(0) 4 = Z)z

+

(14— =2t lnt<o>>2
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Passing to limit (z — 0) in the last equality yields

and

1]
2]

3]

(4]

[5]

[6]

(7

[9]
(10]

(11]

(12]

2@—4@%+2£:(1—u—mﬁ2ammum

:(1—H—af)2 B H0)

1-1—af \1-]1-a)
Hy (1)
=2H(1)In | ——————= |,
SO ST
H5(1
2’04_02 (C%+2H2(1))’ =2 H2<1)1n 1_|i(_)0é|2
H(1
’04—62 (C§+2H2(1))’ = HQ(].)IH N |i( ) |2 0
—1-a
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