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Abstract. In this article, by making use of a linear multiplier fractional differential

operator Dδ,m
λ , we introduce a new subclass of spiral-like functions. The main object is

to provide some subordination results for functions in this class. We also find sufficient

conditions for a function to be in the class and derive Fekete-Szegö inequalities.

1. Introduction and Preliminaries

Let A denote the class of functions f of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further let S denote
the family of functions of the form (1.1) which are univalent in U. A function f ∈ A

is said to be in the class of α-spirallike functions of order β in U, denoted by S(α, β),
if

Re

(
eiα

zf ′(z)

f(z)

)
> β cosα, z ∈ U,

for 0 ≤ β < 1 and for some real α with |α| < π/2. The class S(α, β) was studied by
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Libera [8] and Keogh and Merkes [6]. We observe that S(α, 0) = S(α) is the class of
spirallike functions introduced by Špaček [20], S(0, β) = S∗(β) is the class of starlike
functions of order β and S(0, 0) = S∗ is the familiar class of starlike functions.

For the constants α, β with |α| < π/2 and 0 ≤ β < 1, we define

(1.2) Pα,β(z) =
1 + e−iα(e−iα − 2β cosα)z

1− z
, z ∈ U.

The function Pα,β(z) maps the open unit disk onto the half plane Hα,β = {z ∈ C :

Re(eiαz) > β cosα}. If Pα,β(z) = 1 +
∞∑

n=1
pnz

n, then it is easy to verify that

(1.3) pn = 2e−iα(1− β) cosα, (n = 1, 2, . . .).

For functions f given by (1.1) and g given by

g(z) = z +
∞∑

n=2

bnz
n,

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n.

We will make use of the following definition of fractional derivatives by Owa
[13].

The fractional derivative of order δ is defined, for a function f, by

(1.4) Dδ
zf(z) =

1

Γ(1− δ)

d

dz

∫ z

0

f(ξ)

(z − ξ)δ
dξ, (0 ≤ δ < 1)

where the function f is analytic in a simply connected region of the complex z-plane
containing the origin, and the multiplicity of (z − ξ)−δ is removed by requiring
log(z − ξ) to be real when (z − ξ) > 0. It follows from (1.4) that

Dδ
z z

n =
Γ(n+ 1)

Γ(n+ 1− δ)
zn−δ, (0 ≤ δ < 1, n ∈ N = {1, 2, . . .}).

Using Dδ
zf , Owa and Srivastava [14] introduced the operator Ωδ : A −→ A, which

is known as an extension of fractional derivative and fractional integral as follows:

Ωδf(z) = Γ(2− δ) zδDδ
z f(z), −∞ < δ < 2

= z +
∞∑

n=2

Γ(n+ 1)Γ(2− δ)

Γ(n+ 1− δ)
anz

n.(1.5)
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Here we note that Ω0f(z) = f(z) and Ω1f(z) = zf ′(z).
In [2]Al-Oboudi and Al-Amoudi defined the linear multiplier fractional differential

operator Dδ,m
λ as follows:

Dδ,0
λ f(z) = f(z),

Dδ, 1
λ f(z) = (1− λ)Ωδf(z) + λ z(Ωδf(z))′, (0 ≤ δ < 1, λ ≥ 0),

Dδ, 2
λ f(z) = Dδ, 1

λ (Dδ, 1
λ f(z)),

...

Dδ,m
λ f(z) = Dδ, 1

λ (Dδ,m−1
λ f(z)), m ∈ N.(1.6)

For a related work also see [3]. If f(z) is given by (1.1), then by (1.6), we have

(1.7) Dδ,m
λ f(z) = z +

∞∑
n=2

Φn(δ, λ,m)anz
n, m ∈ N0,

where

(1.8) Φn(δ, λ,m) =

(
Γ(n+ 1)Γ(2− δ)

Γ(n+ 1− δ)

[
1 + (n− 1)λ

])m

, (n = 2, 3, . . .).

It can be seen that, by specializing the parameters the operator Dδ,m
λ reduces

to many known and new integral and differential operators. In particular, when
δ = 0 the operator Dδ,m

λ reduces to the operator introduced by AL-Oboudi [1] and
for δ = 0, λ = 1 it reduces to the operator introduced by Sălăgean [16]. Further

we remark that, when m = 1, λ = 0 the operator Dδ,m
λ reduces to Owa-Srivastava

fractional differential operator [14]. We note here in passing that very recently,
Srivastava et al. [23] studied subclasses of analytic functions defined by using a

more general fractional derivative operator than Dδ,m
λ .

In view of (1.7), Dδ,m
λ f(z) can be expressed in terms of convolution as follows:

Dδ,m
λ f(z) = (gδ, λ ∗ f)(z), (m ∈ N0, z ∈ U),

where

gδ, λ(z) = z +
∞∑

n=2

Φn(δ, λ,m)zn, (z ∈ U).

Define the function g
(−1)
δ, λ such that

(1.9) g
(−1)
δ, λ (z) ∗ gδ, λ(z) =

z

1− z
, (z ∈ U).

It is easy to note that

(1.10) f(z) = g
(−1)
δ, λ (z) ∗Dδ,m

λ f(z).
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We now introduce the following subclass of A:

Definition 1.1. Let −π/2 < α < π/2, 0 ≤ β < 1 and 0 ≤ γ < 1. A function f ∈ A

is said to be in the class Sδ,mγ, λ (α, β) if and only if

(1.11) Re

(
eiα

z(Dδ,m
λ f(z))′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′

)
> β cosα, (z ∈ U).

It is interesting to note that, by specializing the parameters, the class Sδ,mγ, λ (α, β)
reduces to many new and known subclasses of analytic functions. We list some of
the special cases of the function class Sδ,mγ, λ (α, β) in the following remarks.

Remark 1.2. Let −π/2 < α < π/2, 0 ≤ β < 1, 0 ≤ γ < 1 and m = 0. Then

S
δ, 0
γ, λ(α, β) = Sγ(α, β) : =

{
f ∈ A : Re

(
eiα zf ′(z)

(1−γ)f(z)+γzf ′(z)

)
> β cosα, z ∈ U

}
.

Also, Sδ, 00, λ(α, β) = S(α, β) is the class of α-spirallike functions of order β studied

by Libera [8] and S
δ, 0
0, λ(α, 0) = S(α) is the class of spirallike functions introduced

by Špaček [20]. Here we remark that some analogous classes of Sγ(α, β) have been
recently studied by Murugusundaramoorthy in [11] and Orhan et al. in [12].

Remark 1.3. Let −π/2 < α < π/2, 0 ≤ β < 1, 0 ≤ γ < 1 and δ = 0. Then
S
0,m
γ, λ (α, β) = Smγ, λ(α, β)

:=
{
f ∈ A : Re

(
eiα

z(Dm
λ f(z))′

(1−γ)Dm
λ f(z)+γz(Dm

λ f(z))′

)
> β cosα, z ∈ U

}
, where Dm

λ is the

Al-Oboudi operator [1] defined by Dm
λ f(z) = z +

∑∞
n=2 [1 + (n− 1)λ]

m
anz

n.

Remark 1.4. Let −π/2 < α < π/2, 0 ≤ β < 1, 0 ≤ γ < 1, δ = 0 and λ = 1. Then
S
0,m
γ, 1 (α, β) = Smγ (α, β)

:=
{
f ∈ A : Re

(
eiα z(Dmf(z))′

(1−γ)Dmf(z)+γz(Dmf(z))′

)
> β cosα, z ∈ U

}
, where Dm is

the Sălăgean operator [16] defined by Dmf(z) = z +
∑∞

n=2 n
manz

n.

Remark 1.5. Let −π/2 < α < π/2, 0 ≤ β < 1, 0 ≤ γ < 1, λ = 0 and m = 1. Then

S
δ, 1
γ, 0(α, β) = Sδγ(α, β) :=

{
f ∈ A : Re

(
eiα z(Ωδf(z))′

(1−γ)Ωδf(z)+γz(Ωδf(z))′

)
> β cosα, z ∈ U

}
,

where Ωδ is the Owa-Srivastava fractional differential operator [14] defined by (1.5).

2. Membership Characterizations

In this section, we obtain some sufficient conditions for f(z) ∈ S
δ,m
γ, λ (α, β).

Theorem 2.1. Let f ∈ A and let η be a real number with 0 ≤ η < 1. If

(2.1)

∣∣∣∣∣ z(Dδ,m
λ f(z))′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′
− 1

∣∣∣∣∣ < 1− η, (z ∈ U),

then f ∈ S
δ,m
γ,λ (α, β) provided, |α| ≤ cos−1( 1−δ

1−β ).
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Proof. It follows from (2.1) that
[

z(Dδ,m
λ f(z))′

(1−γ)Dδ,m
λ f(z)+γz(Dδ,m

λ f(z))′

]
= 1 + (1 − η)w(z),

where |w(z)| < 1 for z ∈ U. Thus

Re

[
eiα

z(Dδ,m
λ f(z))′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′

]
= Re[eiα(1 + (1− η)w(z))]

= cosα+ (1− η)Re[eiαw(z)]

≥ cosα− (1− η)
∣∣eiαw(z)∣∣

> cosα− (1− η)

≥ β cosα

for |α| ≤ cos−1( 1−δ
1−β ), and the proof is complete. 2

Taking η = 1− (1− β) cosα in Theorem 2.1, we have the following result.

Corollary 2.2. Let f ∈ A. If∣∣∣∣∣ z(Dδ,m
λ f(z))′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′
− 1

∣∣∣∣∣ < (1− β) cosα,

then f ∈ S
δ,m
γ,λ (α, β) .

Theorem 2.3. Let f ∈ A be of the form (1.1). If

(2.2)
∞∑

n=2

[(1− γ)(n− 1) secα+ (1− β)(1 + (1− n)γ)]Φn(δ, λ,m) |an| ≤ 1− β,

where −π
2 < α < π

2 , 0 ≤ β < 1, 0 ≤ γ < 1 and Φn(δ, λ,m) is defined by (1.8), then

f ∈ S
δ,m
γ,λ (α, β).

Proof. In view of Corollary 2.2, it suffices to show that

(2.3)

∣∣∣∣∣ z(Dδ,m
λ f(z))′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′
− 1

∣∣∣∣∣ < (1− β) cosα.

Now, we have∣∣∣∣∣ z(Dδ,m
λ f(z))′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′
− 1

∣∣∣∣∣
= (1− γ)

∣∣∣∣∣∣∣∣
∞∑

n=2
(n− 1)Φn(δ, λ,m)anz

n−1

1 +
∞∑

n=2
[1 + (n− 1)γ]Φn(δ, λ,m)anzn−1

∣∣∣∣∣∣∣∣
< (1− γ)

∞∑
n=2

(n− 1)Φn(δ, λ,m) |an|

1−
∞∑

n=2
[1 + (n− 1)γ]Φn(δ, λ,m) |an|

.
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The last expression is bounded above by (1− β) cosα, if

∞∑
n=2

(1− γ)(n− 1)Φn(δ, λ,m) secα |an|

≤ (1− β)

{
1−

∞∑
n=2

[1 + (n− 1)γ]Φn(δ, λ,m) |an|

}

which is equivalent to our condition (2.2) of the theorem. Thus, we conclude from

(2.3) that f(z) ∈ S
δ,m
γ,λ (α, β). 2

In view of the Remarks 1.2–1.5, we state the following corollaries.

Corollary 2.4. Let f ∈ A be of the form (1.1). If

∞∑
n=2

[(1− γ)(n− 1) secα+ (1− β)(1 + (n− 1)γ)] |an| ≤ 1− β,

where −π/2 < α < π/2, 0 ≤ β < 1 and 0 ≤ γ < 1, then f ∈ Sγ(α, β).

Corollary 2.5. Let f ∈ A be of the form (1.1). If

∞∑
n=2

[(1− γ)(n− 1) secα+ (1− β)(1 + (n− 1)γ)] [1 + (n− 1)λ]m|an| ≤ 1− β,

where −π/2 < α < π/2, 0 ≤ β < 1 and 0 ≤ γ < 1, then f ∈ Smγ, λ(α, β).

Corollary 2.6. Let f ∈ A be of the form (1.1). If

∞∑
n=2

nm [(1− γ)(n− 1) secα+ (1− β)(1 + (n− 1)γ)] |an| ≤ 1− β,

where −π/2 < α < π/2, 0 ≤ β < 1 and 0 ≤ γ < 1, then f ∈ Smγ (α, β).

Corollary 2.7. Let f ∈ A be of the form (1.1). If

∞∑
n=2

Γ(n+ 1)Γ(2− δ)

Γ(n+ 1− δ)
[(1− γ)(n− 1) secα+ (1− β)(1 + (n− 1)γ)] |an| ≤ 1− β,

where −π/2 < α < π/2, 0 ≤ β < 1 and 0 ≤ γ < 1, then f ∈ Sδγ(α, β).

We also observe that Corollary 2.4 yields the results of Kwon and Owa [7] and
Silverman [18] for particular values of γ and β. Substituting γ = 0 in Corollary 2.4,
we have
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Corollary 2.8.([7]) Let f ∈ A be of the form (1.1). If

∞∑
n=2

[(n− 1) secα+ 1− β] |an| ≤ 1− β,

where −π/2 < α < π/2 and 0 ≤ β < 1, then f ∈ S(α, β).

Taking γ = 0 and β = 0 in Corollary 2.4, we have

Corollary 2.9.([18]) Let f ∈ A be of the form (1.1). If

∞∑
n=2

[1 + (n− 1) secα] |an| ≤ 1,

where −π/2 < α < π/2, then f ∈ S(α).

A necessary and sufficient condition for a function f(z) to be in the class

S
δ,m
γ,λ (α, β) is given, in terms of integral representation, in the following theorem.

Theorem 2.10. A function f ∈ A is in the class S
δ,m
γ,λ (α, β) if and only if there

exists a function w(z) analytic in U, with w(0) = 0, |w(z)| < 1 (z ∈ U), such that

f(z) = g
(−1)
δ, λ (z) ∗ z exp

(∫ z

0

[
Pα,β(w(ζ))− 1

1− γPα,β(w(ζ))

]
dζ

ζ

)
, (z ∈ U),

where Pα,β(z) and g
(−1)
δ, λ (z) are defined by (1.2) and (1.9) respectively.

Proof. In view of (1.11), f ∈ S
δ,m
γ,λ (α, β) if and only if there exists w(z) analytic in

U and satisfying the conditions w(0) = 0, |w(z)| < 1 for z ∈ U, such that

z(Dδ,m
λ f(z))′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′
= Pα,β(w(z)).

From the above equation, we get

(2.4) Dδ,m
λ f(z) = z exp

(∫ z

0

[
Pα,β(w(ζ))− 1

1− γPα,β(w(ζ))

]
dζ

ζ

)
.

Using (2.4) in (1.10), we obtain

f(z) = g
(−1)
δ, λ (z) ∗ z exp

(∫ z

0

[
Pα,β(w(ζ))− 1

1− γPα,β(w(ζ))

]
dζ

ζ

)
, (z ∈ U),

which completes the proof. 2
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For 0 ≤ θ ≤ 2π and 0 ≤ τ ≤ 1, we define the function

(2.5) Ψ(z, θ, τ) = g
(−1)
δ, λ (z) ∗ z exp

(∫ z

0

[
Pα,β

(
eiθζ(ζ + τ)/(1 + τζ)

)
− 1

1− γPα,β (eiθζ(ζ + τ)/(1 + τζ))

]
dζ

ζ

)
,

where Pα,β(z) and g
(−1)
δ, λ (z) are defined by (1.2) and (1.9) respectively. By virtue of

Theorem 2.10, the function Ψ(z, θ, τ) belongs to the class Sδ,mγ,λ (α, β).

3. Fekete-Szegö Problem

A classical theorem of Fekete-Szegö [5] states that, if f(z) ∈ S is given by (1.1),
then

|a3 − µa22| ≤


3− 4µ if µ ≤ 0,

1 + 2 exp
(

−2µ
1−µ

)
if 0 ≤ µ ≤ 1,

4µ− 3 if µ ≥ 1.

This inequality is sharp in the sense that for each µ there exists a function in S such
that the equality holds. Later, Pfluger [15] has considered the same problem but for
complex values of µ. The problem of finding sharp upper bounds for the functional
|a3−µa22| for different subclasses of A is known as the Fekete-Szegö problem. In the
recent years, this problem has been extensively studied by many authors including
[4, 10, 17, 21]. Further, in [22], Srivastava, Mishra and Das investigated the Fekete-
Szego coefficient problem rather systematically and extensively for the class

C1 :=
∪
α

C1(α),

(
− π

2
< α <

π

2

)
,

where C1(α) is the class of normalized analytic functions f in U, which are given
by (1.1) and satisfying the inequality

Re

(
eiα

zf ′(z)

ϕ(z)

)
> 0,

(
z ∈ U; ϕ ∈ S∗; −π

2
< α <

π

2

)
.

In order to obtain sharp upper bound for Fekete-Szegö functional for the class
S
δ,m
γ,λ (α, β), the following lemma is required.

Lemma 3.1.([6]) Let w(z) be analytic in U and satisfy the conditions w(0) =

0, |w(z)| < 1 for z ∈ U. If w(z) =
∞∑
r=1

wnz
n, z ∈ U, then

(3.1) |w1| ≤ 1, |w2| ≤ 1− |w1|2,

and

(3.2) |w2 − sw2
1| ≤ max{1, |s|},
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for any complex number s.

Theorem 3.2. Let f ∈ S
δ,m
γ,λ (α, β) be given by (1.1) and let µ be a real number.

Then
(3.3)

|a3−µa22| ≤



(1−β) cosα
(1−γ)2Φ3(δ,λ,m)

[
γ + 3− 2β(1 + γ)− 4µ(1−β)Φ3(δ,λ,m)

Φ2
2(δ,λ,m)

]
, if µ ≤ σ1,

(1−β) cosα
(1−γ)Φ3(δ,λ,m) , if σ1 ≤ µ ≤ σ2,

(1−β) cosα
(1−γ)2Φ3(δ,λ,m)

[
4µ(1−β)Φ3(δ,λ,m)

Φ2
2(δ,λ,m)

+ 2β(1 + γ)− γ − 3
]
, if µ ≥ σ2,

where

(3.4) σ1 =
(1 + γ)Φ2

2(δ, λ,m)

2Φ3(δ, λ,m)
, σ2 =

2− β(1 + γ)Φ2
2(δ, λ,m)

2(1− β)Φ3(δ, λ,m)

and Φ2(δ, λ,m), Φ3(δ, λ,m) are defined by (1.8) with n = 2 and n = 3 respectively.
All the estimates in (3.3) are sharp.

Proof. Suppose that f ∈ S
δ,m
γ,λ (α, β) is given by (1.1). Then there exists w(z) =

∞∑
r=1

wrz
r, analytic in U with w(0) = 0, |w(z)| < 1, (z ∈ U) such that

(3.5)
z[Dδ,m

λ f(z)]′

(1− γ)Dδ,m
λ f(z) + γz(Dδ,m

λ f(z))′
= Pα,β(w(z)), z ∈ U.

Let Pα,β(z) = 1+ p1z + p2z
2 + p3z

3 + · · · . Equating the coefficients of z and z2 on
both sides of (3.5), we obtain

a2 =
p1w1

(1− γ)Φ2(δ, λ,m)
,

a3 =
1

2(1− γ)Φ3(δ, λ,m)

[(
1 + γ

1− γ
p21 + p2

)
w2

1 + p1w2

]
.

From (1.3), we have p1 = p2 = 2e−iα(1− β) cosα , and thus we obtain

a2 =
2e−iα(1− β) cosα

(1− γ)Φ2(δ, λ,m)
w1,

a3 =
e−iα(1− β) cosα

2(1− γ)Φ3(δ, λ,m)

[(
1 + γ

1− γ
2e−iα(1− β) cosα+ 1

)
w2

1 + w2

]
.

(3.6)

It follows that

|a3 − µa22| ≤
(1− β) cosα

(1− γ)Φ3(δ, λ,m)

×
{∣∣∣∣2e−iα(1− β) cosα

1− γ

(
1 + γ − 2µΦ3(δ, λ,m)

Φ2
2(δ, λ,m)

)
+ 1

∣∣∣∣ |w1|2 + |w2|
}
.
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Making use of Lemma 3.1 we have

|a3 − µa22| ≤
(1− β) cosα

(1− γ)Φ3(δ, λ,m)

×
{
1 +

[∣∣∣∣2e−iα(1− β) cosα

1− γ

(
1 + γ − 2µΦ3(δ, λ,m)

Φ2
2(δ, λ,m)

)
+ 1

∣∣∣∣− 1

]
|w1|2

}
(3.7)

or

(3.8) |a3 − µa22| ≤
(1− β) cosα

(1− γ)Φ3(δ, λ,m)

[
1 +

(√
1 +M(2 +M) cos2 α− 1

)
|w1|2

]
,

where

(3.9) M =
2(1− β)

1− γ

(
1 + γ − 2µΦ3(δ, λ,m)

Φ2
2(δ, λ,m)

)
.

Let G(x, y) = 1 +
(√

1 +M(2 +M)x2 − 1
)
y2 where x = cosα, y = |w1| and

(x, y) ∈ [0, 1]× [0, 1]. We can easily verify that, the function G(x, y) does not have
a local maximum at any interior point of the open rectangle (0, 1)× (0, 1). So the
maximum must be attained at a boundary point. As G(x, 0) = 1, G(0, y) = 1 and
G(1, 1) = |1 +M |, the maximal value of G(x, y) may be G(0, 0) = 1 or G(1, 1) =
|1 +M |. Therefore, (3.8) gives

(3.10) |a3 − µa22| ≤
(1− β) cosα

(1− γ)Φ3(δ, λ,m)
max{1, |1 +M |},

where M is given by (3.9).
Now let us consider |1 +M | ≥ 1. If µ ≤ σ1, where σ1 is given by (3.4), then

M ≥ 0 and from (3.10), we obtain

|a3 − µa22| ≤
(1− β) cosα

(1− γ)2ϕ3(δ, λ,m)

[
γ + 3− 2β(1 + γ)− 4µ(1− β)Φ3(δ, λ,m)

Φ2
2(δ, λ,m)

]
which is the first part of the inequality (3.3). If σ1 ≤ µ ≤ σ2, then |1+M | ≤ 1 and
from (3.10) we get

|a3 − µa22| ≤
(1− β) cosα

(1− γ)Φ3(δ, λ,m)

which is the second part of the inequality (3.3). Finally, if σ2 ≥ µ where σ2 is given
by (3.4) then M ≤ −2 and it follows from (3.10) that

|a3 − µa22| ≤
(1− β) cosα

(1− γ)2Φ3(δ, λ,m)

[
4µ(1− β)Φ3(δ, λ,m)

Φ2
2(δ, λ,m)

+ 2β(1 + γ)− γ − 3

]
and this completes the third part of (3.3). In view of Lemma 3.1, the results are
sharp for w(z) = z and w(z) = z2 or one of their rotations. From (3.5), we obtain
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that the extremal functions are Ψ(z, θ, 1) and Ψ(z, θ, 0), defined by (2.5) with τ = 1
and τ = 0. 2

In the following, we give the Fekete-Szegö problem for the class Sδ,mγ,λ (α, β) with
complex parameter.

Theorem 3.3. Let f ∈ S
δ,m
γ,λ (α, β) be given by (1.1) and let µ be a complex number.

Then

|a3 − µa22|

(3.11)

≤ (1− β) cosα

(1− γ)Φ3(δ, λ,m)
max

{
1,

∣∣∣∣2(1− β) cosα

(1− γ)

(
2µΦ3(δ, λ,m)

Φ2
2(δ, λ,m)

− 1− γ

)
− eiα

∣∣∣∣} .
The result is sharp.

Proof. Assume that f ∈ S
δ,m
γ,λ (α, β). Making use of (3.6), we obtain

|a3 − µa22| ≤
(1− β) cosα

(1− γ)Φ3(δ, λ,m)

×
∣∣∣∣w2 −

[
2e−iα(1− β) cosα

1− γ

(
2µΦ3(δ, λ,m)

Φ2
2(δ, λ,m)

− 1− γ

)
− 1

]
w2

1

∣∣∣∣ .
The inequality (3.11) follows by applying Lemma 3.1 with

s =
2e−iα(1− β) cosα

1− γ

(
2µΦ3(δ, λ,m)

Φ2
2(δ, λ,m)

− 1− γ

)
− 1.

The functions Ψ(z, θ, 1) and Ψ(z, θ, 0) defined by (2.5) with τ = 1 and τ = 0 show
that the inequality (3.11) is sharp. 2

Theorems 3.2 and 3.3 include several other results for particular values of the
parameters m, α, β, γ. In particular, Theorem 3.2 yields the results obtained by
Keogh and Merkes in [6] and Srivastava et al., in [22] for special values of the
parameters.

4. Subordination Results

In view of Theorem 2.3, we now introduce the subclass S̃δ,mγ,λ (α, β) ⊂ S
δ,m
γ,λ (α, β)

which consist of functions f ∈ A whose coefficients satisfy the condition (2.2). In

this section, we prove a subordination theorem for the class S̃
δ,m
γ,λ (α, β). To state

and prove our result we need the following definitions and lemma.

Definition 4.1.(cf. [9]) Let f(z) and g(z) be analytic in U. Then we say that the
function f(z) is subordinate to g(z) in U, and write f(z) ≺ g(z) if there exists an
analytic function w(z) with w(0) = 0, |w(z)| < 1 (z ∈ U), such that f(z) =
g(w(z)) (z ∈ U). In particular, if the function g(z) is univalent in U, then

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).
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Definition 4.2.([24]) (Subordinating Factor Sequence) A sequence {bn}∞n=1 of com-
plex numbers is said to be a subordinating factor sequence if, whenever f(z) of the
form (1.1) is analytic, univalent and convex in U, we have the subordination given
by

∞∑
n=1

an bn z
n ≺ f(z) (z ∈ U; a1 := 1).

Lemma 4.3.([24]) The sequence {bn}∞n=1 is a subordinating factor sequence if and
only if

Re

(
1 + 2

∞∑
n=1

bn z
n

)
> 0 (z ∈ U).

Theorem 4.4. Let the function f(z) defined by (1.1) be in the class S̃
δ,m
γ,λ (α, β). If

g(z) ∈ K, the class of convex functions, then

(4.1)
[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

2[1− β + ((1− γ) secα+ (1− β)(1 + γ))Φ2(δ, λ,m)]
(f ∗ g)(z) ≺ g(z),

(z ∈ U, |α| < π

2
, 0 ≤ β < 1, 0 ≤ γ < 1)

and
(4.2)

Re{f(z)} > − [1− β + ((1− γ) secα+ (1− β)(1 + γ))Φ2(δ, λ,m)]

[(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
, (z ∈ U),

where Φn(δ, λ,m) is given by (1.8). The following constant factor in the subordina-
tion result (4.1):

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

2[1− β + ((1− γ) secα+ (1− β)(1 + γ))Φ2(δ, λ,m)]

cannot be replaced by a larger one.

Proof. Let f(z) ∈ S̃
δ,m
γ,λ (α, β) and suppose that

g(z) = z +
∞∑

n=2

cnz
n ∈ K.

Then we readily have

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

2[1− β + ((1− γ) secα+ (1− β)(1 + γ)) Φ2(δ, λ,m)]
(f ∗ g)(z)

=
[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

2[1− β + ((1− γ) secα+ (1− β)(1 + γ))Φ2(δ, λ,m)]

(
z +

∞∑
n=2

an cnz
n

)
.
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Thus, by Definition 4.2, the subordination result (4.1) will hold true if{
[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

2[1− β + ((1− γ) secα+ (1− β)(1 + γ)) Φ2(δ, λ,m)]
an

}∞

n=1

is a subordinating factor sequence, with a1 = 1. In view of Lemma 4.3 this is
equivalent to the following inequality:
(4.3)

Re

{
1+

∞∑
n=1

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
an z

n

}
> 0 (z ∈ U).

Since [(1 − γ) secα + (1 − β)(1 + γ)]Φn(δ, λ,m), (n ≥ 2) is an increasing function
of n, we have

Re

{
1 +

∞∑
n=1

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
an z

n

}
= Re

{
1 +

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
z

+
∞∑

n=2

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
an z

n

}
≥ 1− [(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
r

−
∑∞

n=2[(1− γ) secα+ (1− β)(1 + γ)]Φn(δ, λ,m) |an| rn

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)

> 1− [(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
r

− 1− β

1− β + [(1− γ) secα+ (1− β)(1 + γ)] Φ2(δ, λ,m)
r

= 1−r > 0 (|z| = r < 1),

where we have also made use of the assertion (2.2) of Theorem 2.3. This evidently
proves the inequality (4.3), and hence also the subordination result (4.1) asserted
by Theorem 4.4. The inequality (4.2) follows from (4.1) upon setting

g(z) =
z

1− z
= z +

∞∑
n=2

zn ∈ K.

Next we consider the function

(4.4) q(z) := z − 1− β

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)
z2,

(−π/2 < α < π/2, 0 ≤ β < 1, 0 ≤ γ < 1),



966 K. A. Selvakumaran, Geetha Balachandar and P. Rajaguru

where Φn(δ, λ,m) is given by (1.8), which is a member of the class S̃δ,mγ,λ (α, β). Then,
by using (4.1), we have

[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

2[1− β + ((1− γ) secα+ (1− β)(1 + γ))Φ2(δ, λ,m)]
q(z) ≺ z

1− z
(z ∈ U).

It is also easily verified for the function q(z) defined by (4.4) that

min

{
Re

(
[(1− γ) secα+ (1− β)(1 + γ)]Φ2(δ, λ,m)

2[1− β + ((1− γ) secα+ (1− β)(1 + γ))Φ2(δ, λ,m)]
q(z)

)}
= −1

2
,

(z ∈ U), which completes the proof of Theorem 4.4. 2

Here, we remark that Theorem 4.4 yields the results obtained by Singh [19]
for special values of the parameters m, α, β, γ. Also, in view of the Remarks 1.2–
1.5 and by taking suitable values for the parameters in Theorem 4.4, we can give
analogous results for the subclasses defined in these remarks and we choose to omit
further details in this regard.

Acknowledgements. The authors thank the referees for their valuable comments
and helpful suggestions.
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