• 제목/요약/키워드: Tunnel field-effect transistor

검색결과 33건 처리시간 0.021초

Compact Capacitance Model of L-Shape Tunnel Field-Effect Transistors for Circuit Simulation

  • Yu, Yun Seop;Najam, Faraz
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.263-268
    • /
    • 2021
  • Although the compact capacitance model of point tunneling types of tunneling field-effect transistors (TFET) has been proposed, those of line tunneling types of TFETs have not been reported. In this study, a compact capacitance model of an L-shaped TFET (LTFET), a line tunneling type of TFET, is proposed using the previously developed surface potentials and current models of P- and L-type LTFETs. The Verilog-A LTFET model for simulation program with integrated circuit emphasis (SPICE) was also developed to verify the validation of the compact LTFET model including the capacitance model. The SPICE simulation results using the Verilog-A LTFET were compared to those obtained using a technology computer-aided-design (TCAD) device simulator. The current-voltage characteristics and capacitance-voltage characteristics of N and P-LTFETs were consistent for all operational bias. The voltage transfer characteristics and transient response of the inverter circuit comprising N and P-LTFETs in series were verified with the TCAD mixed-mode simulation results.

Role of Quantum Confinement Effect on Tunneling Operation of LTFET Devices

  • Najam, Faraz;Yu, Yun Seop
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.241-242
    • /
    • 2017
  • Part of the channel in L-shaped tunnel field-effect transistor (LTFET) is very thin and suffers from quantum confinement effect. Role of quantum confinement effect on band-to-band-tunneling (BTBT) of LTFET was investigated using numerical simulation and band diagram analysis. It was found that quantum confinement effect significantly affects the BTBT mechanism of LTFET devices.

  • PDF

도핑효과에 의한 L-shaped 터널링 전계효과 트랜지스터의 영향에 대한 연구 (Investigation on the Doping Effects on L-shaped Tunneling Field Effect transistors(L-shaped TFETs))

  • 심언성;안태준;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.450-452
    • /
    • 2016
  • 2차원 TCAD 시뮬레이션을 이용하여 L-shaped 터널링 전계효과 트랜지스터(Tunnel Field-Effect Transistor; TFET)의 도핑농도에 따른 효과를 조사했다. 소스 도핑이 $10^{20}cm^{-3}$ 이상에서 subthreshold swing (SS)이 가장 낮고, 드레인 도핑농도는 $10^{18}cm^{-3}$이하로 하는 것이 음전압에 생기는 누설전류를 막을 수 있다.

  • PDF

Triple Material Surrounding Gate (TMSG) Nanoscale Tunnel FET-Analytical Modeling and Simulation

  • Vanitha, P.;Balamurugan, N.B.;Priya, G. Lakshmi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권6호
    • /
    • pp.585-593
    • /
    • 2015
  • In the nanoscale regime, many multigate devices are explored to reduce their size further and to enhance their performance. In this paper, design of a novel device called, Triple Material Surrounding Gate Tunnel Field effect transistor (TMSGTFET) has been developed and proposed. The advantages of surrounding gate and tunnel FET are combined to form a new structure. The gate material surrounding the device is replaced by three gate materials of different work functions in order to curb the short channel effects. A 2-D analytical modeling of the surface potential, lateral electric field, vertical electric field and drain current of the device is done, and the results are discussed. A step up potential profile is obtained which screens the drain potential, thus reducing the drain control over the channel. This results in appreciable diminishing of short channel effects and hot carrier effects. The proposed model also shows improved ON current. The excellent device characteristics predicted by the model are validated using TCAD simulation, thus ensuring the accuracy of our model.

Assessment of Ambipolar Behavior of a Tunnel FET and Influence of Structural Modifications

  • Narang, Rakhi;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권4호
    • /
    • pp.482-491
    • /
    • 2012
  • In the present work, comprehensive investigation of the ambipolar characteristics of two silicon (Si) tunnel field-effect transistor (TFET) architectures (i.e. p-i-n and p-n-p-n) has been carried out. The impact of architectural modifications such as heterogeneous gate (HG) dielectric, gate drain underlap (GDU) and asymmetric source/drain doping on the ambipolar behavior is quantified in terms of physical parameters proposed for ambipolarity characterization. Moreover, the impact on the miller capacitance is also taken into consideration since ambipolarity is directly related to reliable logic circuit operation and miller capacitance is related to circuit performance.

Schottky Barrier Tunnel Field-Effect Transistor using Spacer Technique

  • Kim, Hyun Woo;Kim, Jong Pil;Kim, Sang Wan;Sun, Min-Chul;Kim, Garam;Kim, Jang Hyun;Park, Euyhwan;Kim, Hyungjin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.572-578
    • /
    • 2014
  • In order to overcome small current drivability of a tunneling field-effect transistor (TFET), a TFET using Schottky barrier (SBTFET) is proposed. The proposed device has a metal source region unlike the conventional TFET. In addition, dopant segregation technology between the source and channel region is applied to reduce tunneling resistance. For TFET fabrication, spacer technique is adopted to enable self-aligned process because the SBTFET consists of source and drain with different types. Also the control device which has a doped source region is made to compare the electrical characteristics with those of the SBTFET. From the measured results, the SBTFET shows better on/off switching property than the control device. The observed drive current is larger than those of the previously reported TFET. Also, short-channel effects (SCEs) are investigated through the comparison of electrical characteristics between the long- and short-channel SBTFET.

Analytical Surface Potential Model with TCAD Simulation Verification for Evaluation of Surrounding Gate TFET

  • Samuel, T.S. Arun;Balamurugan, N.B.;Niranjana, T.;Samyuktha, B.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.655-661
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a surrounding gate tunnel field effect transistor (TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunneling generation rate and thus we numerically extract the tunneling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

차세대 웨어러블 전자시스템용 실리콘 나노선 트랜지스터 연구 (Research on Silicon Nanowire Transistors for Future Wearable Electronic Systems)

  • 임경민;김민석;김윤중;임두혁;김상식
    • 진공이야기
    • /
    • 제3권3호
    • /
    • pp.15-18
    • /
    • 2016
  • In future wearable electronic systems, 3-dimensional (3D) devices have attracted much attention due to their high density integration and low-power functionality. Among 3D devices, gate-all-around (GAA) nanowire transistor provides superior gate controllability, resulting in suppressing short channel effect and other drawbacks in 2D metal-oxide-semiconductor field-effect transistor (MOSFET). Silicon nanowires (SiNWs) are the most promising building block for GAA structure device due to their compatibility with the current Si-based ultra large scale integration (ULSI) technology. Moreover, the theoretical limit for subthreshold swing (SS) of MOSFET is 60 mV/dec at room temperature, which causes the increase in Ioff current. To overcome theoretical limit for the SS, it is crucial that research into new types of device concepts should be performed. In our present studies, we have experimentally demonstrated feedback FET (FBFET) and tunnel FET (TFET) with sub-60 mV/dec based on SiNWs. Also, we fabricated SiNW based complementary TFET (c-TFET) and SiNW complementary metal-oxide-semiconductor (CMOS) inverter. Our research demonstrates the promising potential of SiNW electronic devices for future wearable electronic systems.

포켓 구조 터널링 전계효과 트랜지스터의 2D 터널링 효과 (2D Tunneling Effect of Pocket Tunnel Field Effect Transistor)

  • 안태준;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.243-244
    • /
    • 2017
  • 이 논문은 터널링 전계효과 트랜지스터의 밴드 간 터널링 전류 계산에 대하여 1차원과 2차원 방향의 터널링이 어떤 차이를 나타내는지 알아보았다. 2차원 방향의 터널링은 1차원 방향의 터널링에서 계산 되지 않는 대각선 방향의 터널링이 나타나기 때문에 더 정확한 터널링 전류를 계산할 수 있다. 시뮬레이션 결과는 문턱전압 이상의 전압에서는 2차원 방향으로 일어나는 터널링이 큰 영향을 미치지 않지만, 문턱전압 이하에서는 문턱전압 이하 기울기에 많은 영향을 미친다.

  • PDF

Device and Circuit Level Performance Comparison of Tunnel FET Architectures and Impact of Heterogeneous Gate Dielectric

  • Narang, Rakhi;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.224-236
    • /
    • 2013
  • This work presents a comparative study of four Double Gate tunnel FET (DG-TFET) architectures: conventional p-i-n DG-TFET, p-n-p-n DG-TFET, a gate dielectric engineered Heterogate (HG) p-i-n DG-TFET and a new device architecture with the merits of both Hetero Gate and p-n-p-n, i.e. HG p-n-p-n DG-TFET. It has been shown that, the problem of high gate capacitance along with low ON current for a p-i-n TFET, which severely hampers the circuit performance of TFET can be overcome by using a p-n-p-n TFET with a dielectric engineered Hetero-gate architecture (i.e. HG p-n-p-n). P-n-p-n architecture improves the ON current and the heterogeneous dielectric helps in reducing the gate capacitance and suppressing the ambipolar behavior. Moreover, the HG architecture does not degrade the output characteristics, unlike the gate drain underlap architecture, and effectively reduces the gate capacitance.