• Title/Summary/Keyword: Source-drain current

Search Result 249, Processing Time 0.026 seconds

Simultaneous Measurements of Drain-to-Source Current and Carrier Injection Properties of Organic Thin-Film Transistors

  • Majima, Yutaka
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.271-272
    • /
    • 2007
  • Displacement current $(I_{dis})$ and drain-to-source current $(I_{DS})$ are evaluated using the simultaneous measurements of source $(I_S)$ and drain $(I_D)$ currents during the application of a constant drain voltage and a triangular-wave gate voltage $(V_{GS})$ to top-contact pentacene thin-film transistors.

  • PDF

Analysis of a Novel Elevated Source Drain MOSFET with Reduced Gate-Induced Drain Leakage and High Driving Capability (Gate-Induced Drain Leakage를 줄인 새로운 구조의 고성능 Elevated Source Drain MOSFET에 관한 분석)

  • Kim, Gyeong-Hwan;Choe, Chang-Sun;Kim, Jeong-Tae;Choe, U-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.390-397
    • /
    • 2001
  • A novel self-aligned ESD (Elevated Source Drain) MOSFET structure which can effectively reduce the GIDL (Gate-Induced Drain Leakage) current is proposed and analyzed. The proposed ESD structure is characterized by sidewall spacer and recessed-channel depth which are determined by dry-etching process. Elevation of the Source/Drain extension region is realized so that the low-activation effect caused by low-energy ion implantation can be avoided. Unlike the conventional LDD structures, it is shown that the GIDL current of the ESD structure is suppressed without sacrificing the maximum driving capability. The main reason for the reduction of GIDL current Is the decreased electric field at the point of the maximum band-to-band tunneling as the peak electric field is shifted toward the drain side.

  • PDF

28 nm MOSFET Design for Low Standby Power Applications (저전력 응용을 위한 28 nm 금속 게이트/high-k MOSFET 디자인)

  • Lim, To-Woo;Jang, Jun-Yong;Kim, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.235-238
    • /
    • 2008
  • This paper explores 28 nm MOSFET design for LSTP(Low Standby Power) applications using TCAD(Technology Computer Aided Design) simulation. Simulated results show that the leakage current of the MOSFET is increasingly dominated by GIDL(Gate Induced Drain Leakage) instead of a subthreshold leakage as the Source/Drain extension doping increases. The GIDL current can be reduced by grading lateral abruptness of the drain at the expense of a higher Source/Drain series resistance. For 28 nm MOSFET suggested in ITRS, we have shown Source/Drain design becomes even more critical to meet both leakage current and performance requirement.

Simulation of nonoverlapped source/drain-to-gate Nano-CMOS for low leakage current (낮은 누설전류를 위한 소스/드레인-게이트 비중첩 Nano-CMOS구조 전산모사)

  • Song, Seung-Hyun;Lee, Kang-Sung;Jeong, Yoon-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.579-580
    • /
    • 2006
  • Simple nonoverlapped source/drain-to-gate MOSFETs to suppress GIDL (gate-induced drain leakage) is simulated with SILVACO simulation tool. Changing spacer thickness for adjusting length of Drain to Gate nonoverlapped region, this simulation observes on/off characteristic of nonoverlapped source/drain-to-gate MOSFETs. Off current is dramatically decreased with S/D to gate nonoverlapped length increasing. The result shows that maximum on/off current ratio is achieved by adjusting nonoverlapped length.

  • PDF

Electrical Characteristics and Models for Asymmetric n-MOSFET′s with Irregular Source/Drain Contacts (불규칙한 소오스/드레인 금속 접촉을 갖는 비대칭 n-MOSFET의 전기적 특성 및 모델)

  • 공동욱;정환희;이재성;이용현
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.208-211
    • /
    • 1999
  • Abstract - Electrical characteristics or asymmetric n-MOSFET's with different source and drain geometry are experimently investigated using test structures having various gate width. Saturation drain current and resistance in linear region are estimated by a simple schematic model, which consists of conventional device having parasitic resistor. A comparison of experimental results of symmetric and asymmetric devices gives the parasitic resistance caused by abnormal device structure. The suggested model shows good agreement with the measured drain current for both forward- and reverse-modes.

  • PDF

Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials (서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상)

  • Kim, Seung-Tae;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

도핑 농도의 변화에 따른 MOSFET Total current 특성변화

  • Lee, Jin-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.487-489
    • /
    • 2017
  • Source와 Drain 부분에 도핑의 농도를 변화시킴으로써 MOSFET의 내부의 Total current의 변화의 경향성을 분석하였다. 이를 위해 Simple한 MOSFET 구조를 설계를 한 뒤 gate 부분에 전압을 주어 측정을 하였으며, 그 결과 Source, Drain의 도핑농도가 증가 될 수록 Total current의 변화하는 정도가 커짐을 알 수 있다.

  • PDF

The Fabrication and Characterization of CODE MOSFET (CODE MOSFET 소자의 제작 및 특성)

  • 송재혁;김기홍;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.895-900
    • /
    • 1990
  • With the MOS device scailing down, the substrate concentration must increase in order to avoid punchthrough leakage current due to the DIBL(Drain Induced Barrier Lowering) effect. However the enhancement of the substrate concentration increases source, drain juntion capacitances and substrate current due to hot elelctron, degrading the speed characteristics and reliability of the MOS devices. In this paper, a new device, called CODE(Channel Only Dopant Enhancement) MOS, an its fabrication are proposed. By comparing the fabricated CODE MOSFET with the conventional device, the improvements on DIBL, substrate current and source, drain juntion capacitances are realized.

  • PDF

A Study on the Device Characteristics of NMOSFETs Having Elevated Source/drain Made by Selective Epitaxial Growth(SEG) of Silicon (실리콘 선택적 결정 성장 공정을 이용한 Elevated Source/drain물 갖는 NMOSFETs 소자의 특성 연구)

  • Kim, Yeong-Sin;Lee, Gi-Am;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.134-140
    • /
    • 2002
  • Deep submicron NMOSFETs with elevated source/drain can be fabricated using self-aligned selective epitaxial growth(SEG) of silicon for enhanced device characteristics with shallow junction compared to conventional MOSFETs. Shallow junctions, especially with the heartily-doped S/D residing in the elevated layer, give hotter immunity to Yt roll off, drain-induced-barrier-lowering (DIBL), subthreshold swing (SS), punch-through, and hot carrier effects. In this paper, the characteristics of both deep submicron elevated source/drain NMOSFETs and conventional NMOSFETs were investigated by using TSUPREM-4 and MEDICI simulators, and then the results were compared. It was observed from the simulation results that deep submicron elevated S/D NMOSFETs having shallower junction depth resulted in reduced short channel effects, such as DIBL, SS, and hot carrier effects than conventional NMOSFETs. The saturation current, Idsat, of the elevated S/D NMOSFETs was higher than conventional NMOSFETs with identical device dimensions due to smaller sheet resistance in source/drain regions. However, the gate-to-drain capacitance increased in the elevated S/D MOSFETs compared with the conventional NMOSFETs because of increasing overlap area. Therefore, it is concluded that elevated S/D MOSFETs may result in better device characteristics including current drivability than conventional NMOSFETs, but there exists trade-off between device characteristics and fate-to-drain capacitance.