• Title/Summary/Keyword: SoC 테스트

Search Result 111, Processing Time 0.026 seconds

An Efficient Test Access Mechanism for System On a Chip Testing (시스템 온 칩 테스트를 위한 효과적인 테스트 접근 구조)

  • Song, Dong-Seop;Bae, Sang-Min;Gang, Seong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.54-64
    • /
    • 2002
  • Recently System On a Chip(SoC) design based on IP cores has become the trend of If design To prevent the testing problem from becoming the bottleneck of the core-based design, defining of an efficient test architecture and a successful test methodology are mandatory. This paper describes a test architecture and a test control access mechanism for SoC based on IEEE 1149.1 boundary,scan. The proposed SoC test architecture is fully compatible with IEEE P1500 Standard for Embedded Core Test(SECT), and applicable for both TAPed cores and Wrapped cores within a SOC with the same test access mechanism. Controlled by TCK, TMS, TDI, and TDO, the proposed test architecture provides a hierarchical test feature.

Implementation of FPGA-based SoC Design Verification System for a Soundbar with Embedded Processor (사운드바(Soundbar)를 위한 프로세서 내장 SoC 설계 검증을 위한 FPGA 시스템의 구현)

  • Kim, Sung-Woo;Lee, Seon-Hee;Choi, Seong-Jhin
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.792-802
    • /
    • 2016
  • Real time verification is necessary, since there are several features that cannot be verified through design simulation in the design of multiband soundbar system. And then this paper describes an implementation of an FPGA-based real-time verification system for a soundbar SoC with an embedded processor. It is verified a real-time performance test and a listening test which are several features in the design stage that cannot be verified through a design simulation. The measurement of quantitative specifications such as SNR, THD+N, frequency response, etc. as well as the listening test were performed through the implemented FPGA system, and it was verified that test results satisfied the target specifications.

Delay Fault Test for Interconnection on Boards and SoCs (칩 및 코아간 연결선의 지연 고장 테스트)

  • Yi, Hyun-Bean;Kim, Doo-Young;Han, Ju-Hee;Park, Sung-Ju
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.2
    • /
    • pp.84-92
    • /
    • 2007
  • This paper proposes an interconnect delay fault test (IDFT) solution on boards and SoCs based on IEEE 1149.1 and IEEE P1500. A new IDFT system clock rising edge generator which forces output boundary scan cells to update test data at the rising edge of system clock and input boundary scan cells to capture the test data at the next rising edge of the system clock is introduced. Using this proposed circuit, IDFT for interconnects synchronized to different system clocks in frequency can be achieved efficiently. Moreover, the proposed IDFT technique does not require any modification of the boundary scan cells or the standard TAP controller and simplifies the test procedure and reduces the area overhead.

Interconnect Delay Fault Test in Boards and SoCs with Multiple System Clocks (다중 시스템 클럭으로 동작하는 보드 및 SoC의 연결선 지연 고장 테스트)

  • Lee Hyunbean;Kim Younghun;Park Sungju;Park Changwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.37-44
    • /
    • 2006
  • This paper proposes an interconnect delay fault test (IDFT) solution on boards and SoCs based on IEEE 1149.1 and IEEE P1500. A new IDFT system clock rising edge generator which forces output boundary scan cells to update test data at the rising edge of system clock and input boundary scan cells to capture the test data at the next rising edge of the system clock is introduced. Using this proposed circuit, IDFT for interconnects synchronized to different system clocks in frequency can be achieved efficiently. Moreover, the proposed IDFT technique does not require any modification of the boundary scan cells or the standard TAP controller is simple in terms of test procedure and is small in terms of area overhead.

Efficient Test Data Compression and Low Power Scan Testing for System-On-a-Chip(SOC) (SOC(System-On-a-Chip)에 있어서 효율적인 테스트 데이터 압축 및 저전력 스캔 테스트)

  • Park Byoung-Soo;Jung Jun-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.229-236
    • /
    • 2005
  • Testing time and power consumption during testing System-On-a-Chip (SOC) are becoming increasingly important as the IP core increases in a SOC. We present a new algorithm to reduce the scan-in power and test data volume using the modified scan latch reordering. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power and high compression. Experimental results for ISCAS 89 benchmark circuits show that reduced test data and low power scan testing can be achieved in all cases.

  • PDF

Efficient AMBA Based System-on-a-chip Core Test With IEEE 1500 Wrapper (IEEE 1500 래퍼를 이용한 효과적인 AMBA 기반 시스템-온-칩 코아 테스트)

  • Yi, Hyun-Bean;Han, Ju-Hee;Kim, Byeong-Jin;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.61-68
    • /
    • 2008
  • This paper introduces an embedded core test wrapper for AMBA based System-on-Chip(SoC) test. The proposed test wrapper is compatible with IEEE 1500 and can be controlled by ARM Test Interface Controller(TIC). We use IEEE 1500 wrapper boundary registers as temporal registers to load test results as well as test patterns and apply a modified scan test procedure. Test time is reduced by simultaneously performing primary input insertion and primary output observation as well as scan-in and scan-out.

Design of Defect Diagnosis Platform based on CAN Network for Reliability Improvement of Vehicle SoC (차량용 SoC의 신뢰성 향상을 위한 CAN 통신 기반의 고장진단 플랫폼 설계)

  • Hwang, Doyeon;Kim, Dooyoung;Park, Sungju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.47-55
    • /
    • 2015
  • To verify the function of vehicle is becoming more and more difficult because many electronic control units have been embedded in vehicle with development of electronics industry. The reliability of vehicle should be considered above all important because malfunction of vehicle can cause damage of human life. In this paper, defect diagnosis platform based on CAN network is proposed to improve the reliability of vehicle. Reliability of vehicle is significantly increased by adopting the structural test via dedicated test path after manufacturing. Besides, the test cost is reduced because additional test pins are not required.

At-speed Interconnect Test Controller for SoC with Multiple System Clocks and Heterogeneous Cores (다중 시스템 클럭과 이종 코아를 가진 시스템 온 칩을 위한 연결선 지연 고장 테스트 제어기)

  • Jang Yeonsil;Lee Hyunbin;Shin Hyunchul;Park Sungju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.39-46
    • /
    • 2005
  • This paper introduces a new At-speed Interconnect Test Controller (ASITC) that can detect and diagnose dynamic as well as static defects in an SoC. SoC is comprised of IEEE 1149.1 and P1500 wrapped cores which can be operated by multiple system clocks. In other to test such a complicated SoC, we designed a interface module for P1500 wrapped cores and the ASITC that makes it possible to detect interconnect delay faults during 1 system clock from launching to capturing the transition signal. The ASITC proposed requires less area overhead than other approaches and the operation was verified through the FPGA implementation

An Efficient Test Data Compression/Decompression Using Input Reduction (IR 기법을 이용한 효율적인 테스트 데이터 압축 방법)

  • 전성훈;임정빈;김근배;안진호;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.87-95
    • /
    • 2004
  • This paper proposes a new test data compression/decompression method for SoC(Systems-on-a-Chip). The method is based on analyzing the factors that influence test parameters: compression ratio and hardware overhead. To improve compression ratio, the proposed method is based on Modified Statistical Coding (MSC) and Input Reduction (IR) scheme, as well as a novel mapping and reordering algorithm proposed in a preprocessing step. Unlike previous approaches using the CSR architecture, the proposed method is to compress original test data and decompress the compressed test data without the CSR architecture. Therefore, the proposed method leads to better compression ratio with lower hardware overhead than previous works. An experimental comparison on ISCAS '89 benchmark circuits validates the proposed method.

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Yang, Myung-Hoon;Park, Young-Kyu;Lee, Dae-Yeal;Yoon, Hyun-Jun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • Semiconductor testing area challenges many testing issues due to the minimization and ultra high performance of current semiconductors. Among these issues, signal integrity test on interconnections must be solved for highly integrated circuits like SoC. In this paper, we propose an effective pattern application method for signal integrity test on interconnects. Proposed method can be applied by using boundary scan architecture and very efficient test can be preceded with pretty short test time.