• Title/Summary/Keyword: Scan-based test

Search Result 208, Processing Time 0.022 seconds

Scan Cell Grouping Algorithm for Low Power Design

  • Kim, In-Soo;Min, Hyoung-Bok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.130-134
    • /
    • 2008
  • The increasing size of very large scale integration (VLSI) circuits, high transistor density, and popularity of low-power circuit and system design are making the minimization of power dissipation an important issue in VLSI design. Test Power dissipation is exceedingly high in scan based environments wherein scan chain transitions during the shift of test data further reflect into significant levels of circuit switching unnecessarily. Scan chain or cell modification lead to reduced dissipations of power. The ETC algorithm of previous work has weak points. Taking all of this into account, we therefore propose a new algorithm. Its name is RE_ETC. The proposed modifications in the scan chain consist of Exclusive-OR gate insertion and scan cell reordering, leading to significant power reductions with absolutely no area or performance penalty whatsoever. Experimental results confirm the considerable reductions in scan chain transitions. We show that modified scan cell has the improvement of test efficiency and power dissipations.

LOS/LOC Scan Test Techniques for Detection of Delay Faults (지연고장 검출을 위한 LOS/LOC 스캔 테스트 기술)

  • Hur, Yongmin;Choe, Youngcheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The New efficient Mux-based scan latch cell design and scan test of LOS/LOC modes are proposed for detection of delay faults in digital logic circuits. The proposed scan cell design can support LOS(Launch-off-Shift) and LOC(Launch-off-Capture) tests with high fault coverage and low scan power and it can alleviate the problem of the slow selector enable signal and hold signal by supporting the logic capable of switching at the operational clock speeds. Also, it efficiently controls the power dissipation of the scan cell design during scan testing. Functional operation and timing simulation waveform for proposed scan hold cell design shows improvement in at-speed test timing in both test modes.

Reduction of Test Data and Power in Scan Testing for Digital Circuits using the Code-based Technique (코드 기반 기법을 이용한 디지털 회로의 스캔 테스트 데이터와 전력단축)

  • Hur, Yong-Min;Shin, Jae-Heung
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.5-12
    • /
    • 2008
  • We propose efficient scan testing method capable of reducing the test data and power dissipation for digital logic circuits. The proposed testing method is based on a hybrid run-length encoding which reduces test data storage on the tester. We also introduce modified Bus-invert coding method and scan cell design in scan cell reordering, thus providing increased power saving in scan in operation. Experimental results for ISCAS'89 benchmark circuits show that average power of 96.7% and peak power of 84% are reduced on the average without fault coverage degrading. We have obtained a high reduction of 78.2% on the test data compared the existing compression methods.

Partial Scan Design based on Levelized Combinational Structure

  • Park, Sung-Ju
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.7-13
    • /
    • 1997
  • To overcome the large hardware overhead attendant in the full scan design, the concept of partial scan design has emerged with the virtue of less area and testability close to full scan. Combinational Structure has been developed to avoid the use of sequential test generator. But the patterns sifted on scan register have to be held for sequential depth period upon the aid of the dedicated HOLD circuit. In this paper, a new levelized structure is introduced aiming to exclude the need of extra HOLD circuit. The time to stimulate each scan latch is uniquely determined on this structure, hence each test pattern can e applied by scan shifting and then pulsing a system clock like the full scan but with much les scan flip-flops. Experimental results show that some sequential circuits are levelized by just scanning self-loop flip-flops.

  • PDF

Delay Test for Boundary-Scan based Architectures (경계면 스캔 기저 구조를 위한 지연시험)

  • 강병욱;안광선
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.199-208
    • /
    • 1994
  • This paper proposes a delay fault test technique for ICs and PCBs with the boundary-scan architectures supporting ANSI/IEEE Std 1149.1-1990. The hybrid delay fault model, which comprises both of gate delay faults and path delay faults, is selected. We developed a procedure for testing delay faults in the circuits with typical boundary scan cells supporting the standard. Analyzing it,we concluded that it is impractical because the test clock must be 2.5 times faster than the system clock with the cell architect-ures following up the state transition of the TAP controller and test instruction set. We modified the boundary-scan cell and developed test instructions and the test procedure. The modified cell and the procedure need test clock two times slower than the system clock and support the ANSI/IEEE standard perfectly. A 4-bit ALU is selected for the circuits under test. and delay tests are simulated by the SILOS simulator. The simulation results ascertain the accurate operation and effectiveeness of the modified mechanism.

  • PDF

The Scan-Based BIST Architecture for Considering 2-Pattern Test (2-패턴 테스트를 고려한 스캔 기반 BIST 구조)

  • 손윤식;정정화
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.45-51
    • /
    • 2003
  • In this paper, a scan-based low power BIST (Built-In Self-Test) architecture is proposed. The proposed architecture is based on STUMPS, which uses a LFSR (Linear Feedback Shift Register) as the test generator, a MISR(Multiple Input Shift Register) as the reponse compactor, and SRL(Shift Register Latch) channels as multiple scan paths. In the proposed BIST a degenerate MISR structure is used for every SRL channel; this offers reduced area overheads and has less impact on performance than the STUMPS techniques. The proposed BIST is designed to support both test-per-clock and test-per-scan techniques, and in test-per-scan the total power consumption of the circuit can be reduced dramatically by suppressing the effects of scan data on the circuits. Results of the experiments on ISCAS 89 benchmark circuits show that this architecture is also suitable for detecting path delay faults, when the hamming distance of the data in the SRL channel is considered.

A Scan-Based On-Line Aging Monitoring Scheme

  • Yi, Hyunbean;Yoneda, Tomokazu;Inoue, Michiko
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 2014
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. This paper presents a scan-based on-line aging monitoring scheme which monitors aging during normal operation and gives an alarm if aging is detected so that the system users take action before a failure occurs. We illustrate our modified scan chain architecture and aging monitoring control method. Experimental results show our simulation results to verify the functions of the proposed scheme.

Low Power Testing in NoC(Network-on-Chip) using test pattern reconfiguration (테스트 패턴 재구성을 이용한 NoC(Network-on-Chip)의 저전력 테스트)

  • Jung, Jun-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.201-206
    • /
    • 2007
  • In this paper, we propose the efficient low power test methodology of NoC(Network-on chip) for the test of core-based systems that use this platform. To reduce the power consumption of transferring data through router channel, the scan vectors are partitioned into flits by channel width. The don't cares in unspecified scan vectors are mapped to binary values to minimize the switching rate between flits. Experimental results for full-scanned versions of ISCAS 89 benchmark circuits show that the proposed method leads to about 35% reduction in test power.

  • PDF

Design of Test Access Mechanism for AMBA based SoC (AMBA 기반 SoC 테스트를 위한 접근 메커니즘 설계)

  • Min, Pil-Jae;Song, Jae-Hoon;Yi, Hyun-Bean;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.74-79
    • /
    • 2006
  • Test Interface Controller (TIC) provided by ARM Ltd. is widely used for functional testing of System-on-Chip (SoC) adopting Advanced Microcontroller Bus Architecture (AMBA) bus system. Accordingly, this architecture has a deficiency of not being able to concurrently shifting in and out the structural scan test patterns through the TIC and AMBA bus. This paper introduces a new AMBA based Test Access Mechanism (ATAM) for speedy testing of SoCs embedding ARM cores. While preserving the compatability with the ARM TIC, since scan in and out operations can be performed simultaneously, test application time through the expensive Automatic Test Equipment (ATE) can be drastically reduced.

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.39-44
    • /
    • 2008
  • Scan architecture is very effective design-for-testability technique that is widely used for high testability, however, it requires so much test time due to test vector shifting time. In this paper, an efficient scan test method is presented that is based on the Illinois scan architecture. The proposed method maximizes the common input effect via a scan chain selection scheme. Experimental results show the proposed method requires very short test time and small data volume by increasing the efficiency of common input effect.