• Title/Summary/Keyword: N-functions

Search Result 2,186, Processing Time 0.026 seconds

ON THE MODULAR FUNCTION $j_4$ OF LEVEL 4

  • Kim, Chang-Heon;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.903-931
    • /
    • 1998
  • Since the modular curves X(N) = $\Gamma$(N)\(equation omitted)* (N =1,2,3) have genus 0, we have field isomorphisms K(X(l))(equation omitted)C(J), K(X(2))(equation omitted)(λ) and K(X(3))(equation omitted)( $j_3$) where J, λ are the classical modular functions of level 1 and 2, and $j_3$ can be represented as the quotient of reduced Eisenstein series. When N = 4, we see from the genus formula that the curve X(4) is of genus 0 too. Thus the field K(X(4)) is a rational function field over C. We find such a field generator $j_4$(z) = x(z)/y(z) (x(z) = $\theta$$_3$((equation omitted)), y(z) = $\theta$$_4$((equation omitted)) Jacobi theta functions). We also investigate the structures of the spaces $M_{k}$($\Gamma$(4)), $S_{k}$($\Gamma$(4)), M(equation omitted)((equation omitted)(4)) and S(equation omitted)((equation omitted)(4)) in terms of x(z) and y(z). As its application, we apply the above results to quadratic forms.rms.

  • PDF

CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.323-342
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $Xn:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}:C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\cdots},x(t_n),x(t_{n+1}))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions which have the form $${\int}_{L_2[0,t]}{{\exp}\{i(v,x)\}d{\sigma}(v)}{{\int}_{\mathbb{R}^r}}\;{\exp}\{i{\sum_{j=1}^{r}z_j(v_j,x)\}dp(z_1,{\cdots},z_r)$$ for $x{\in}C[0,t]$, where $\{v_1,{\cdots},v_r\}$ is an orthonormal subset of $L_2[0,t]$ and ${\sigma}$ and ${\rho}$ are the complex Borel measures of bounded variations on $L_2[0,t]$ and $\mathbb{R}^r$, respectively. We then investigate the inverse transforms of the function with their relationships and finally prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the products of the conditional Fourier-Feynman transforms of each function.

APPROXIMATING THE STIELTJES INTEGRAL OF BOUNDED FUNCTIONS AND APPLICATIONS FOR THREE POINT QUADRATURE RULES

  • Dragomir, Sever Silvestru
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.523-536
    • /
    • 2007
  • Sharp error estimates in approximating the Stieltjes integral with bounded integrands and bounded integrators respectively, are given. Applications for three point quadrature rules of n-time differentiable functions are also provided.

REMARKS OF CONGRUENT ARITHMETIC SUMS OF THETA FUNCTIONS DERIVED FROM DIVISOR FUNCTIONS

  • Kim, Aeran;Kim, Daeyeoul;Ikikardes, Nazli Yildiz
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.351-372
    • /
    • 2013
  • In this paper, we study a distinction the two generating functions : ${\varphi}^k(q)=\sum_{n=0}^{\infty}r_k(n)q^n$ and ${\varphi}^{*,k}(q)={\varphi}^k(q)-{\varphi}^k(q^2)$ ($k$ = 2, 4, 6, 8, 10, 12, 16), where $r_k(n)$ is the number of representations of $n$ as the sum of $k$ squares. We also obtain some congruences of representation numbers and divisor function.

General Theorem for Explicit Evaluations and Reciprocity Theorems for Ramanujan-Göllnitz-Gordon Continued Fraction

  • SAIKIA, NIPEN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.983-996
    • /
    • 2015
  • In the paper A new parameter for Ramanujan's theta-functions and explicit values, Arab J. Math. Sc., 18 (2012), 105-119, Saikia studied the parameter $A_{k,n}$ involving Ramanujan's theta-functions ${\phi}(q)$ and ${\psi}(q)$ for any positive real numbers k and n and applied it to find explicit values of ${\psi}(q)$. As more application to the parameter $A_{k,n}$, in this paper we prove a new general theorem for explicit evaluation of Ramanujan-$G{\ddot{o}}llnitz$-Gordon continued fraction K(q) in terms of the parameter $A_{k,n}$ and give examples. We also find some new explicit values of the parameter $A_{k,n}$ and offer reciprocity theorems for the continued fraction K(q).

MAXIMAL FUNCTIONS ALONG TWISTED SURFACES ON PRODUCT DOMAINS

  • Al-Salman, Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1003-1019
    • /
    • 2021
  • In this paper, we introduce a class of maximal functions along twisted surfaces in ℝn×ℝm of the form {(𝜙(|v|)u, 𝜑(|u|)v) : (u, v) ∈ ℝn×ℝm}. We prove Lp bounds when the kernels lie in the space Lq (𝕊n-1×𝕊m-1). As a consequence, we establish the Lp boundedness for such class of operators provided that the kernels are in L log L(𝕊n-1×𝕊m-1) or in the Block spaces B0,0q (𝕊n-1×𝕊m-1) (q > 1).

On a construction of resilient functions using a hyperelliptic curve with genus 2 (종수 2인 초타원곡선을 이용한 균형상관면역함수의 생성에 관한 연구)

  • 최춘수;이민섭
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.159-168
    • /
    • 2003
  • In [3], J. H. Cheon and S. T Chee proposed a method to generate boolean functions with good properties using a poly-nomials of degree 3 over a finite field $F_{2n}$. In this paper, we propose a method generating resilient functions with high nonlinearity from polynomials of degree 5 over a finite field $F_$2^n$$(n$\leq$14).

COUNTING SUBRINGS OF THE RING ℤm × ℤn

  • Toth, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1599-1611
    • /
    • 2019
  • Let $m,n{\in}{\mathbb{N}}$. We represent the additive subgroups of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$, which are also (unital) subrings, and deduce explicit formulas for $N^{(s)}(m,n)$ and $N^{(us)}(m,n)$, denoting the number of subrings of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$ and its unital subrings, respectively. We show that the functions $(m,n){\mapsto}N^{u,s}(m,n)$ and $(m,n){\mapsto}N^{(us)}(m,n)$ are multiplicative, viewed as functions of two variables, and their Dirichlet series can be expressed in terms of the Riemann zeta function. We also establish an asymptotic formula for the sum $\sum_{m,n{\leq}x}N^{(s)}(m,n)$, the error term of which is closely related to the Dirichlet divisor problem.

CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS

  • Kim, Aeran;Kim, Daeyeoul;Yan, Li
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.331-360
    • /
    • 2013
  • Let ${\sigma}_s(N)$ denote the sum of the sth powers of the positive divisors of a positive integer N and let $\tilde{\sigma}_s(N)={\sum}_{d|N}(-1)^{d-1}d^s$ with $d$, N, and s positive integers. Hahn [12] proved that $$16\sum_{k. In this paper, we give a generalization of Hahn's result. Furthermore, we find the formula ${\sum}_{k=1}^{N-1}\tilde{\sigma}_1(2^{n-m}k)\tilde{\sigma}_3(2^nN-2^nk)$ for $m(0{\leq}m{\leq}n)$.

THE SHARP BOUND OF THE THIRD HANKEL DETERMINANT FOR SOME CLASSES OF ANALYTIC FUNCTIONS

  • Kowalczyk, Bogumila;Lecko, Adam;Lecko, Millenia;Sim, Young Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1859-1868
    • /
    • 2018
  • In the present paper, we have proved the sharp inequality ${\mid}H_{3,1}(f){\mid}{\leq}4$ and ${\mid}H_{3,1}(f){\mid}{\leq}1$ for analytic functions f with $a_n:=f^{(n)}(0)/n!$, $n{\in}{\mathbb{N}},$, such that $$Re\frac{f(z)}{z}>{\alpha},\;z{\in}{\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$$ for ${\alpha}=0$ and ${\alpha}=1/2$, respectively, where $$H_{3,1}(f):=\left|{\array{{\alpha}_1&{\alpha}_2&{\alpha}_3\\{\alpha}_2&{\alpha}_3&{\alpha}_4\\{\alpha}_3&{\alpha}_4&{\alpha}_5}}\right|$$ is the third Hankel determinant.