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Abstract. In the present paper, we have proved the sharp inequality
|H3,1(f)| ≤ 4 and |H3,1(f)| ≤ 1 for analytic functions f with an :=

f (n)(0)/n!, n ∈ N, such that

Re
f(z)

z
> α, z ∈ D := {z ∈ C : |z| < 1}

for α = 0 and α = 1/2, respectively, where

H3,1(f) :=

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
is the third Hankel determinant.

1. Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1} and let A
be its subclass normalized by f(0) = 0, f ′(0) = 1, i.e., functions of the form

(1.1) f(z) =

∞∑
n=1

anz
n, a1 = 1, z ∈ D.

For q, n ∈ N, the Hankel determinants Hq,n(f) of functions f ∈ A of the
form (1.1) are defined by

Hq,n(f) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣ .
Computing the upper bound of Hq,n over subfamilies of A is an interesting
problem to study. Recently many authors have examined the Hankel deter-
minant H2,2(f) = a2a4 − a23 of order 2 (see e.g., [4, 5, 9, 13, 19]). Note also
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that H2,1(f) = a3− a22 is the well-known coefficient functional which for S was
estimated in 1916 by Bieberbach (see e.g., [8, Vol. I, p. 35]). To find the upper
bound of the Hankel determinant

(1.2) H3,1(f) =

∣∣∣∣∣∣
a1 a1 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22)

of order 3, is more difficult if we expect to get a sharp estimate. Results
in this direction, however not sharp, were obtained by various authors, e.g.,
[1, 2, 4, 5, 21,23,25,29,30]). If a subclass F of A has a representation involving
the Carathéodory class P, i.e., the class of functions p ∈ H of the form

(1.3) p(z) = 1 +

∞∑
n=1

cnz
n, z ∈ D,

having a positive real part in D, the coefficients of functions in F have a suitable
representation expressed by coefficients of functions in P. Therefore, to get the
upper bound of H3,1 over F , the authors based their computing on the well-
known formulas on coefficient c2 (e.g., [20, p. 166]) and the formula c3 due to
Libera and Zlotkiewicz [14, 15]. The formula for c4 which was recently found
in [12] allows to reach sharpness of bound of H3,1. It was done in [10] and [11]
for convex functions and starlike functions of order 1/2.

Given α ∈ [0, 1), let T (α) be the class of f ∈ A such that

(1.4) Re
f(z)

z
> α, z ∈ D.

Let T := T (0). In this paper, we found the sharp bound of H3,1 over the
classes T and T (1/2), namely, we proved that |H3,1(f)| ≤ 4 for f ∈ T and
|H3,1(f)| ≤ 1 for f ∈ T (1/2).

The families T and T (1/2) play important roles in the theory of univalent
functions although their elements are functions which are not necessarily uni-
valent. One of the significant results belongs to Marx [17] and Strohhäcker [27].
They proved that

(1.5) Sc ⊂ S∗(1/2) ⊂ T (1/2)

(see also [18, Theorem 2.6a, p. 57]), where Sc is the class of convex functions
introduced by Study [28], i.e., the family of all univalent functions in A which
map D onto convex domains, and S∗(1/2) is the class of starlike functions of
order 1/2. An idea of starlikeness of order α (α ∈ [0, 1)) belongs to Robertson
[24]. By the well known result due to Study ([28], see also [6, p. 42]) a function
f is in Sc if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ D,
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and a function f is in S∗(1/2) ([24], see also [8, Vol. I, p. 138]) if and only if

Re
zf ′(z)

f(z)
>

1

2
, z ∈ D.

What is interesting, a function

(1.6) f(z) =
z

1− z
, z ∈ D,

is extremal for many computational problems in these three classes, i.e., in
Sc, S∗(1/2) and T (1/2). The class T plays a fundamental role in the theory
of semigroups of analytic functions as a generator of one-parameter continues
semigroups studied by Berkson, Porta, Shoikhet, Elin and others (e.g., [26],
[7]). For other classical results concerning the classes T and T (1/2) see e.g.,
[16, 22].

At the end let us mention that in [10] and [11] it was shown that |H3,1(f)| ≤
4/135 for f ∈ Sc and |H3,1(f)| ≤ 1/9 for f ∈ S∗(1/2), respectively, with
sharpness of both results. In view of the inclusion (1.5) we can say that the
corresponding bounds of H3,1 carry some information about the richness of
classes. Coefficient bounds does not necessarily include such a distinction,
namely, for all three classes i.e., Sc, S∗(1/2) and T (1/2) modules of all coeffi-
cients are bounded by 1 (see [8, Theorem 7, p. 117; Theorem 2, p. 140]) with
the extremal function given by (1.6).

2. Main results

The basis for proof of the main result is the following lemma. It contains the
well-known formula for c2 (e.g., [20, p. 166]), the formula for c3 due to Libera
and Zlotkiewicz [14,15] and the formula for c4 found in [12].

Lemma 2.1. If p ∈ P is of the form (1.3) with c1 ≥ 0, then

(2.1) 2c2 = c21 + (4− c21)ζ,

(2.2) 4c3 = c31 + (4− c21)c1ζ(2− ζ) + 2(4− c21)(1− |ζ|2)η

and

8c4 = c41 + (4− c21)ζ
[
c21(ζ2 − 3ζ + 3) + 4ζ

]
− 4(4− c21)(1− |ζ|2)

[
c1(ζ − 1)η + ζη2 −

(
1− |η|2

)
ξ
](2.3)

for some ζ, η, ξ ∈ D := {z ∈ C : |z| ≤ 1}.

We will now estimate H3,1(f) for f ∈ T .

Theorem 2.2.

(2.4) max{|H3,1(f)| : f ∈ T } = 4

with the extremal function

(2.5) f(z) =
z + z3

1− z2
, z ∈ D.
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Proof. Let f ∈ T be of the form (1.1). Then by (1.4),

(2.6) f(z) = zp(z), z ∈ D,

for some function p ∈ P of the form (1.3). Since the class P is invariant under
the rotations, by Carathéodory Theorem we may assume that c := c1 ∈ [0, 2]
([3], see also [8, Vol. I, p. 80, Theorem 3]). Substituting the series (1.1) and
(1.3) into (2.6) and equating the coefficients we get a2 = c, a3 = c2, a4 = c3
and a5 = c4. Hence, and by (1.2) we have

(2.7) H3,1(f) = 2cc2c3 − c32 − c23 + c4(c2 − c2).

To simplify the computation, let t := 4− c2. By using the equalities (2.1)-(2.3)
we have

c2 =
1

2
(c2 + tζ), c3 =

1

4

(
c3 + 2ctζ − ctζ2 + 2t(1− |ζ|2)η

)
,

c4 =
1

8

[
c4 + 3c2tζ+(4− 3c2)tζ2+c2tζ3+4t(1− |ζ|2)

(
cη − cζη − ζη2

)
+4t(1− |ζ|2)(1− |η|2)ξ

]
.

(2.8)

Hence by straightforward algebraic computation we have

2cc2c3 =
1

16

[
4c6 + 12c4tζ − 4c4tζ2 + 8c2t2ζ2 − 4c2t2ζ3

+8c3t(1− |ζ|2)η + 8ct2(1− |ζ|2)ζη
]
,

c32 =
1

16

[
2c6 + 6c4tζ + 6c2t2ζ2 + 2t3ζ3

]
,

c23 =
1

16

[
c6 + 4c4tζ − 2c4tζ2 + 4c2t2ζ2 − 4c2t2ζ3 + c2t2ζ4

+ 4c3t(1− |ζ|2)η + 8ct2(1− |ζ|2)ζη − 4ct2(1− |ζ|2)ζ2η

+4t2(1− |ζ|2)2η2
]
,

(2.9)

and

c4(c2 − c2) =
1

16

[
−c6 − 2c4tζ − (4− 3c2)c2tζ2 + 3c2t2ζ2 − c4tζ3

+ (4− 3c2)t2ζ3 + c2t2ζ4 − 4c2t(1− |ζ|2)(cη − cηζ − ζη2)

+ 4t2(1− |ζ|2)(cζη − cζ2η − |ζ|2η2)

+4t(−c2 + tζ)(1− |ζ|2)(1− |η|2)ξ
]
.

Substituting the above expressions with t = 4 − c2 to (2.7) by elementary
but tedious computation we get

H3,1(f) =
1

4
(4−c2)

[
−4ζ3+4c(1−|ζ|2)ζη+(−4 + c2 + c2ζ)(1−|ζ|2)η2

+(−c2 + (4−c2)ζ)(1−|ζ|2)(1−|η|2)ξ
]
.

(2.10)
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Let x := |ζ| ∈ [0, 1] and y := |η| ∈ [0, 1]. Taking into account that |ξ| ≤ 1, from
(2.10) we obtain

(2.11) |H3,1(f)| ≤ 1

4
F (c, x, y),

where

F (c, x, y) := (4− c2)
[
2(2− c2)(1− x2)(1− x)y2 + 4c(1− x2)xy

+(c2 + (4− c2)x)(1− x2) + 4x3
]
.

We will show that for c ∈ [0, 2], x ∈ [0, 1] and y ∈ [0, 1],

(2.12) F (c, x, y) ≤ 16.

I. For c =
√

2 we have

(2.13)
∂F

∂y
(
√

2, x, y) = 8
√

2(1− x2)x 6= 0, x, y ∈ (0, 1).

For c 6=
√

2 we have

∂F

∂y
= 4(4− c2)(1− x2)

[
(2− c2)(1− x)y + cx

]
= 0

only for

y = − cx

(2− c2)(1− x)
=: y0 ∈ (0, 1),

which holds for c ∈ (
√

2, 2).

Let c ∈ (
√

2, 2). For x ∈ (0, 1) we have

∂F

∂x
(c, x, y0) = (4− c2)

[
−2(2− c2)(3x+ 1)(1− x)y20

+4c(1− 3x2)y0 + 12x2 + (4− c2)(1− 3x2)− 2c2x
]

= 0

if and only if

− 2c2(3x+ 1)x2

(2− c2)(1− x)
− 4c2(1− 3x2)x

(2− c2)(1− x)
+ 4− c2 − 2c2x+ 3c2x2 = 0,

which is equivalent to

(2.14) −3c4x2 − 2c2(4− c2)x+ (4− c2)(2− c2) = 0.

Since ∆ := 8c4(4 − c2)(5 − 2c2) < 0 for c ∈ (
√

5/2, 2), so then the equation
(2.14) has no solution. Because all coefficients of (2.14) are negative from

Vieta’s formulae it follows that for c ∈ (
√

2,
√

5/2) both solutions of (2.14) are

negative. Clearly, the equation (2.14) has no solution for c =
√

5/2. Thus the
equation (2.14) has no solution and therefore taking into account (2.13) the
function F has no critical point in (0, 2)× (0, 1)× (0, 1).

II. We consider all faces. On the face c = 0,

q1(x, y) := F (0, x, y) = 16
(
(1− x2)(1− x)y2 + x

)
, x, y ∈ (0, 1).
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Since q1 is an increasing function of y ∈ (0, 1), so it has no critical point in
(0, 1)× (0, 1).

On the face c = 2,

F (2, x, y) = 0, x, y ∈ (0, 1).

On the face x = 0,

q2(c, y) := F (c, 0, y) = (4− c2)
[
2(2− c2)y2 + c2

]
, c ∈ (0, 2), y ∈ (0, 1).

Since
∂q2
∂y

= 4(4− c2)(2− c2)y = 0, c ∈ (0, 2), y ∈ (0, 1),

only for c =
√

2 and

∂q2
∂c

(
√

2, y) = −8
√

2y2 6= 0, y ∈ (0, 1),

so q2 has no critical point in (0, 2)× (0, 1).
On the face x = 1, F (c, 1, y) has no critical point for c ∈ (0, 2), y ∈ (0, 1),

obviously.
On the face y = 0,

q3(c, x) := F (c, x, 0)

= (4− c2)
(
c2 + (4− c2)x− c2x2 + c2x3

)
, c ∈ (0, 2), x ∈ (0, 1).

We have

∂q3
∂x

= (4− c2)(4 + c2(3x2 − 2x− 1)) = 0, c ∈ (0, 2), x ∈ (0, 1),

only for

c =
2√

(1− x)(1 + 3x)
=: c0 ∈ (0, 2),

which holds for x ∈ (0, 2/3). Moreover

∂q3
∂c

(c0, x) = 0

if and only if

c20(1− x2)(1− x) = 2(1− 2x− x2 + x3).

Since the last equation equivalently written as

3x4 − 2x3 − 5x2 + x− 1 = 0, x ∈ (0, 2/3),

has no zero (all real zeros are x1 ≈ −1.18, x2 ≈ 1, 64), so q3 has no critical
point in (0, 2)× (0, 1).

On the face y = 1 for c ∈ (0, 2) and x ∈ (0, 1),

q4(c, x) := F (c, x, 1)

= (4− c2)
[
4− c2 + (4c+ c2)x− (4− c2)x2 + (4− 4c− c2)x3

]
.
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A numerical computation shows that the system of equations ∂q4/∂x = 0 and
∂q4/∂c = 0 equivalent to{

3(4− 4c− c2)x2 − 2(4− c2)x+ 4c+ c2 = 0,
(−4− 4c+ 3c2 + c3)x3 + (4c− c3)x2 + (4 + 2c− 3c2 − c3)x− 4c+ c3 = 0,

has a unique solution c =: c0 ≈ 0.42524 and x = x0 ≈ 0.85612, i.e., (c0, x0) is
a unique critical point of q4. Since clearly,

∂2q4
∂c2

(c0, x0) = 12(1− x20)c0 [(1− x0)c0 − 2x0]− 16(1− x0)(1− x20)− 8x0 < 0

and
∂2q4
∂x2

(c0, x0) = (4− c20)
[
6(4− 4c0 − c20)x0 − 2(4− c20)

]
> 0,

it follows that in (c0, x0) is a saddle point of q4.
III. On the edges we have:
F (c, 0, 0) = 4c2 − c4 ≤ 4, c ∈ [0, 2];
F (c, 1, 0) = F (c, 1, 1) = 4(4− c2) ≤ 16, c ∈ [0, 2];
F (0, x, 0) = 16x ≤ 16, x ∈ [0, 1];
F (2, x, 0) = F (2, x, 1) = 0, x ∈ [0, 1];
F (c, 0, 1) = (4− c2)2 ≤ 16, c ∈ [0, 2];
F (0, x, 1) = 16(x3 − x2 + 1) ≤ 16, x ∈ [0, 1];
F (0, 0, y) = 16y2 ≤ 16, y ∈ [0, 1];
F (0, 1, y) = 16, y ∈ [0, 1];
F (2, 0, y) = F (2, 1, y) = 0, y ∈ [0, 1].
Summarizing, from the cases I-III we state that the inequality (2.12) is true.

Thus from (2.11) it follows that |H3,1(f)| ≤ 4. For the function f given by (2.5)
which is in T , we have a2 = a4 = 0 and a3 = a5 = 2. Hence and by (1.2) we
get H3,1(f) = −4 which ends the proof of (2.4). �

We will now found the bound of H3,1(f) for f ∈ T (1/2).

Theorem 2.3.

(2.15) max{|H3,1(f)| : f ∈ T (1/2)} = 1

with the extremal function

(2.16) f(z) =
z

1− z3
, z ∈ D.

Proof. Let f ∈ T (1/2) be of the form (1.1). Then by (1.4) we have

(2.17) f(z) =
1

2
z(p(z) + 1), z ∈ D,

for some function p ∈ P of the form (1.3). As in the proof of Theorem 2.2 we
may assume that c := c1 ∈ [0, 2]. Substituting the series (1.1) and (1.3) into
(2.17) and equating the coefficients we get a2 = c/2, a3 = c2/2, a4 = c3/2 and
a5 = c4/2. Hence, and by (1.2) we have

(2.18) H3,1(f) =
1

8

(
2cc2c3 − c32 − 2c23 + 2c2c4 − c2c4

)
.
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Using (2.8) with t := 4− c2, we get

2c2c4 − c2c4 =
1

8

[
c4tζ + 3c2t2ζ2 + (4− 3c2)t2ζ3 + c2t2ζ4

+4t2(1− |ζ|2)(cζ− cζ2− |ζ|2η)η + 4t2(1− |ζ|2)(1− |η|2)ζξ
]
.

Substituting the above expression and (2.9) with t = 4− c2 to (2.18) we get

H3,1(f) =
1

16
(4− c2)2(1− |ξ|2)

[
−η2 + (1− |η|2)ζξ

]
.

Hence and by the fact that |ζ| ≤ 1 and |ξ| ≤ 1 we have

|H3,1(f)| ≤ 1

16
(4− c2)2(1− |ξ|2)

[
|η|2 + 1− |η|2

]
≤ 1

16
(4− c2)2(1− |ξ|2) ≤ 1.

Since a2 = a3 = a5 = 0 and a4 = 1 for the function (2.16) which is in T (1/2),
so H3,1(f) = −1. This makes equality in (2.15). �
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