DOI QR코드

DOI QR Code

CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE

  • Received : 2013.01.12
  • Accepted : 2013.04.04
  • Published : 2013.05.15

Abstract

Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $Xn:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}:C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\cdots},x(t_n),x(t_{n+1}))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions which have the form $${\int}_{L_2[0,t]}{{\exp}\{i(v,x)\}d{\sigma}(v)}{{\int}_{\mathbb{R}^r}}\;{\exp}\{i{\sum_{j=1}^{r}z_j(v_j,x)\}dp(z_1,{\cdots},z_r)$$ for $x{\in}C[0,t]$, where $\{v_1,{\cdots},v_r\}$ is an orthonormal subset of $L_2[0,t]$ and ${\sigma}$ and ${\rho}$ are the complex Borel measures of bounded variations on $L_2[0,t]$ and $\mathbb{R}^r$, respectively. We then investigate the inverse transforms of the function with their relationships and finally prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the products of the conditional Fourier-Feynman transforms of each function.

Keywords

References

  1. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Mathematics 798, Springer, Berlin-New York, 1980.
  2. K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song and I. Yoo, Conditional Fourier- Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235. https://doi.org/10.1080/1065246031000081652
  3. S. J. Chang and D. Skoug, The effect of drift on conditional Fourier-Feynman transforms and conditional convolution products, Int. J. Appl. Math. 2 (2000), no. 4, 505-527.
  4. D. H. Cho, A time-independent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Honam J. Math. (2013), to appear.
  5. D. H. Cho, A time-dependent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Houston J. Math. (2012), submitted.
  6. D. H. Cho, A conditional integral transform and conditional convolution product on a function space, Integral Transforms Spec. Funct. 23 (2012), no 6, 405-420. https://doi.org/10.1080/10652469.2011.596482
  7. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications II, Czechoslovak Math. J. 59 (2009), no. 2, 431-452. https://doi.org/10.1007/s10587-009-0030-6
  8. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795-3811. https://doi.org/10.1090/S0002-9947-08-04380-8
  9. D. H. Cho, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an Lp theory, J. Korean Math. Soc. 41 (2004), no. 2, 265-294. https://doi.org/10.4134/JKMS.2004.41.2.265
  10. D. H. Cho, B. J. Kim and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438. https://doi.org/10.1016/j.jmaa.2009.05.023
  11. M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801
  12. M. J. Kim, Conditional Fourier-Feynman transform and convolution product on a function space, Int. J. Math. Anal. 3 (2009), no. 10, 457-471.
  13. K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
  14. K. S. Ryu, M. K. Im, and K. S. Choi, Survey of the theories for analogue of Wiener measure space, Interdiscip. Inform. Sci. 15 (2009), no. 3, 319-337.