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COUNTING SUBRINGS OF THE RING Zm × Zn

László Tóth

Abstract. Let m,n ∈ N. We represent the additive subgroups of the

ring Zm×Zn, which are also (unital) subrings, and deduce explicit formu-

las for N(s)(m,n) and N(us)(m,n), denoting the number of subrings of
the ring Zm ×Zn and its unital subrings, respectively. We show that the

functions (m,n) 7→ N(s)(m,n) and (m,n) 7→ N(us)(m,n) are multiplica-

tive, viewed as functions of two variables, and their Dirichlet series can
be expressed in terms of the Riemann zeta function. We also establish

an asymptotic formula for the sum
∑

m,n≤x N(s)(m,n), the error term

of which is closely related to the Dirichlet divisor problem.

1. Motivation and preliminaries

Throughout the paper we use the following notation: N := {1, 2, . . .}, N0 :=
{0, 1, 2, . . .}; the prime power factorization of n ∈ N is n =

∏
p p

νp(n), the
product being over the primes p, where all but a finite number of the exponents
νp(n) are zero; gcd(m,n) and lcm(m,n) denote the greatest common divisor
and the least common multiple of m,n ∈ N, respectively; Zn denotes the set
of residue classes modulo n (n ∈ N); τ(n) is the number of divisors of n; ϕ is
Euler’s arithmetic function.

Consider the ring (Zm×Zn,+, ·), where m,n ∈ N. If gcd(m,n) = 1, then it
is isomorphic to the ring (Zmn,+, ·). Hence, all of its additive subgroups are
subrings, i.e., are closed under multiplication. In fact, all additive subgroups
are ideals of the given ring. If gcd(m,n) > 1, then this is not the case. For
example, K := {(2i, i+ 3j) : 0 ≤ i, j ≤ 5} is an additive subgroup of Z12×Z18,
(2, 7) ∈ K, (4, 5) ∈ K, but (2, 7)(4, 5) = (8, 17) /∈ K. At the same time,
the subgroup L := {(2i, 2i + 3j) : 0 ≤ i, j ≤ 5} is a subring of Z12 × Z18,
as a direct check shows. Here L is not an ideal, since, e.g., (2, 5) ∈ L, but
(2, 5)(1, 3) = (2, 15) /∈ L.

Therefore, the following natural questions arise: Let m,n ∈ N. What are
the subrings of the ring Zm × Zn? What are its unital subrings, i.e., subrings
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including the multiplicative unity (1, 1)? What are its ideals? What are the
number of subrings, unital subrings, respectively ideals of Zm × Zn?

Subrings and ideals of direct products of rings were investigated by Anderson
and Camillo [1], Anderson and Kintzinger [2], Chajda, Eigenthaler and Länger
[6]. Versions of Goursat’s lemma for ideals and subrings of a direct product
of rings were given in [1, Th. 11]. The ideals of the ring Zm × Zn were also
discussed in a recent paper by Chebolu and Henry [7]. In fact, the ideals of
Zm×Zn are exactly of the form I×J , where I and J are additive subgroups of
Zm and Zn, respectively. This follows from a well known property concerning
the ideals of the direct product of two arbitrary rings with unity, and has a
simple proof. See [1, Prop. 9]. Hence, the number of ideals of Zm × Zn is
τ(m)τ(n).

However, there are no direct results in the above papers concerning the
subrings and unital subrings of Zm × Zn, and we are not aware of related
results in the literature. We remark that the ideals and subrings of the ring
mZ × nZ were discussed in [1, Ex. 12]. Subrings and unital subrings (called
sublattices and subrings, respectively) of a fixed index of the ring Zn were
studied by Liu [11], and in recent preprints by Atanasov, Kaplan, Krakoff and
Menzel [3], Chimni and Takloo-Bighash [8].

The following results on the representation and the number of subgroups
of the group (Zm × Zn,+) with m,n ∈ N were deduced by the author [14],
using Goursat’s lemma for groups. See also the papers [10, 13], using different
approaches.

Theorem 1.1 ([14, Th. 3.1]). Let m,n ∈ N. For every m,n ∈ N let

Jm,n :=
{

(a, b, c, d, `) ∈ N5 : a | m, b | a, c | n, d | c, ab = c
d , ` ≤

a
b , gcd

(
`, ab
)

=1
}
.

For (a, b, c, d, `) ∈ Jm,n define

(1) Ka,b,c,d,` :=
{(
ima , i`

n
c + j nd

)
: 0 ≤ i ≤ a− 1, 0 ≤ j ≤ d− 1

}
.

Then the following hold true:
i) The map (a, b, c, d, `) 7→ Ka,b,c,d,` is a bijection between the set Jm,n and

the set of subgroups of (Zm × Zn,+).
ii) The invariant factor decomposition of the subgroup Ka,b,c,d,` is

Ka,b,c,d,` ' Zgcd(b,d) × Zlcm(a,c).

iii) The order of the subgroup Ka,b,c,d,` is ad and its exponent is lcm(a, c).
iv) The subgroup Ka,b,c,d,` is cyclic if and only if gcd(b, d) = 1.

We note that by the condition a/b = c/d we have lcm(a, c) = lcm(a, ad/b) =
lcm(ad/d, ad/b) = ad/ gcd(b, d). That is, gcd(b, d) · lcm(a, c) = ad. Also,
gcd(b, d) | lcm(a, c).

Figure 1 represents the subgroup K6,2,18,6,2 of Z12×Z18. It has order 36 and
is isomorphic to Z2 × Z18. Here K6,2,18,6,2 = {(2i, 2i+ 3j) : 0 ≤ i, j ≤ 5} = L,
quoted above, and it is also a subring.
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Theorem 1.2 ([14, Th. 4.1]). Let m,n ∈ N. The number s(m,n) of subgroups
of the group (Zm × Zn,+) is given by

s(m,n) =
∑
i|m
j|n

gcd(i, j) =
∑

t|gcd(m,n)

ϕ(t)τ
(m
t

)
τ
(n
t

)
.

17 · · � · · · · · � · · ·
16 · · · · � · · · · · � ·
15 � · · · · · � · · · · ·
14 · · � · · · · · � · · ·
13 · · · · � · · · · · � ·
12 � · · · · · � · · · · ·
11 · · � · · · · · � · · ·
10 · · · · � · · · · · � ·
9 � · · · · · � · · · · ·
8 · · � · · · · · � · · ·
7 · · · · � · · · · · � ·
6 � · · · · · � · · · · ·
5 · · � · · · · · � · · ·
4 · · · · � · · · · · � ·
3 � · · · · · � · · · · ·
2 · · � · · · · · � · · ·
1 · · · · � · · · · · � ·
0 � · · · · · � · · · · ·

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1. The subgroup K6,2,18,6,2 of Z12 × Z18

We recall that a nonzero arithmetic function of two variables (m,n) 7→
f(m,n) is said to be multiplicative if f(m1n1,m2n2) = f(m1,m2)f(n1, n2),
provided that gcd(m1m2, n1n2) = 1. We refer to our survey paper [15] regard-
ing this concept. If f is multiplicative, then it is determined by the values
f(pα, pβ), where p is prime and α, β ∈ N0. More exactly, f(1, 1) = 1 and for
any m,n ∈ N,

f(m,n) =
∏
p

f(pνp(m), pνp(n)).

The function (m,n) 7→ s(m,n) is multiplicative and for any prime powers
pα, pβ with 1 ≤ α ≤ β, its values are given by
(2)

s(pα, pβ) =
(β − α+ 1)pα+2 − (β − α− 1)pα+1 − (α+ β + 3)p+ (α+ β + 1)

(p− 1)2
.

In this paper we characterize the subgroups Ka,b,c,d,` of Zm × Zn, given
by (1), which are also (unital) subrings, and deduce explicit formulas for
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N (s)(m,n) and N (us)(m,n), denoting the number of subrings and unital sub-
rings, respectively. We show that the functions (m,n) 7→ N (s)(m,n) and
(m,n) 7→ N (us)(m,n) are also multiplicative, and their Dirichlet series can
be expressed in terms of the Riemann zeta function. We establish an asymp-
totic formula for the sum

∑
m,n≤xN

(s)(m,n), the error term of which is closely
related to the Dirichlet divisor problem. Our results are included in Section 2
and their proofs are given in Section 3.

2. Main results

Theorem 2.1. Let m,n ∈ N and consider the additive subgroup Ka,b,c,d,` of
Zm × Zn, given by (1).

i) The subgroup Ka,b,c,d,` is a subring of Zm × Zn if and only if

(3)
c

d
| `n
c
− m

a
.

ii) The subgroup Ka,b,c,d,` is a unital subring of Zm×Zn if and only if a = m,
c = n, ` = 1. Here Km,b,n,d,1 = {

(
i, i+ j nd

)
: 0 ≤ i ≤ m − 1, 0 ≤ j ≤ d − 1},

where b | m, d | n, m
b = n

d .
iii) The subgroup Ka,b,c,d,` is an ideal of Zm×Zn if and only if a = b, c = d,

` = 1. In this case Ka,a,c,c,1 = {ima : 0 ≤ i ≤ a − 1} × {j nc : 0 ≤ j ≤ c − 1},
where a | m, c | n.

Theorem 2.2. Let m,n ∈ N.
i) The number of subrings of the ring Zm × Zn is given by

(4) N (s)(m,n) =
∑
i|m
j|n

h(i, j),

where

(5) h(i, j) =
∑

d|gcd(i,j)
gcd(d,i/d)=gcd(d,j/d)=t

ϕ(d)

ϕ(d/t)
.

ii) The number of unital subrings of the ring Zm × Zn is N (us)(m,n) =
τ(gcd(m,n)).

iii) The number of ideals of the ring Zm × Zn is τ(m)τ(n).

It is clear that N (s)(m,n) and N (us)(m,n) are symmetric in the variables.

Theorem 2.3. The functions (m,n) 7→ h(m,n), (m,n) 7→ N (s)(m,n) and
(m,n) 7→ N (us)(m,n) are multiplicative, viewed as arithmetic functions of two
variables. For any prime powers pα, pβ (0 ≤ α ≤ β) their values are given by
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the following polynomials in p:

(6) h(pα, pβ) =


pγ+1−1
p−1 , α = β = 2γ,

pγ , α = 2γ < β,
2pγ−pγ−1−1

p−1 , α = β = 2γ − 1,

pγ−1, α = 2γ − 1 < β,

(7)

N (s)(pα, pβ)

=



pγ + 10
∑γ
j=1 jp

γ−j

= 1
(p−1)2

(
pγ+2 + 8pγ+1 + pγ − 10(γ + 1)p+ 10γ

)
, α = β = 2γ,

(β − 2γ + 1)pγ + 2
∑γ
j=1(5j + β − 2γ)pγ−j

= 1
(p−1)2

(
(β − 2γ + 1)pγ+2 + 8pγ+1 − (β − 2γ − 1)pγ

−2(β + 3γ + 5)p+ 2(β − 3γ)) , α = 2γ < β,

5
∑γ
j=1(2j − 1)pγ−j

= 5
(p−1)2

(
pγ+1 + pγ − (2γ + 1)p+ 2γ − 1

)
, α = β = 2γ − 1,∑γ

j=1(10j + 2β − 4γ − 3)pγ−j

= 1
(p−1)2

(
(2β − 4γ + 7)pγ+1 − (2β − 4γ − 3)pγ

−(2β + 6γ + 7)p+ 2β + 6γ − 3) , α = 2γ − 1 < β,

N (us)(pα, pβ) = min(α, β) + 1.

Remark that for every m,n ∈ N,

N (us)(m,n) = τ(gcd(m,n)) ≤ τ(mn) ≤ τ(m)τ(n) ≤ N (s)(m,n) ≤ s(m,n),

which follow from the definitions and properties of the τ function. Here τ(mn)
is the number of cyclic subproducts of Zm × Zn. See [10, Th. 5].

To illustrate the applicability of our results, we note that the ring Z12×Z18

has

N (s)(12, 18) = N (s)(22 · 3, 2 · 32) = N (s)(2, 22)N (s)(3, 32) = 7 · 7 = 49

subrings and N (us)(12, 18) = τ(gcd(12, 18)) = τ(6) = 4 unital subrings. The
number of its ideals is τ(12)τ(18) = 36. The number of subgroups is s(12, 18) =
s(2, 22)s(3, 32) = 8 · 10 = 80, by using (2).

Now consider the case m = n. Let h(n) = h(n, n). Furthermore, let
N (s)(n) := N (s)(n, n) and N (us)(n) := N (us)(n, n) denote the number of sub-
rings, respectively unital subrings of the ring Z2

n.

Corollary 2.4. The functions n 7→ h(n), n 7→ N (s)(n) and n 7→ N (us)(n) are
multiplicative, viewed as arithmetic functions of one variable. For every n ∈ N
we have

N (s)(n) =
∑
i|n

h(i),
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where

h(i) =
∑
d|i

ϕ(d)

ϕ(d/ gcd(d, i/d))

and N (us)(n) = τ(n).

Let θ be the exponent in the Dirichlet divisor problem for τ(n), that is

(8)
∑
n≤x

τ(n) = x log x+ (2C − 1)x+O(xθ+ε)

for every ε > 0, where C is Euler’s constant. Note that 1/4 ≤ θ ≤ 517/1648
.
=

0.313713, the upper bound being a recent result due to Bourgain and Watt [5].

Theorem 2.5. i) For z, w ∈ C with <z > 1, <w > 1 we have

(9)

∞∑
m,n=1

N (s)(m,n)

mznw
=
ζ2(z)ζ2(w)ζ(z + w)ζ(2z + 2w − 1)

ζ(z + 2w)ζ(2z + w)
.

ii) For every ε > 0,

(10)
∑

m,n≤x

N (s)(m,n) = x2
(
A1 log2 x+A2 log x+A3

)
+O(x1+θ+ε),

where A1 = ζ(2)/ζ(3), A2, A3 are explicit constants.

The formulas (9) and (10) may be compared to

∞∑
m,n=1

s(m,n)

mznw
=
ζ2(z)ζ2(w)ζ(z + w − 1)

ζ(z + w)

and

(11)
∑

m,n≤x

s(m,n) = x2
(
B1 log3 x+B2 log2 x+B3 log x+B4

)
+O(x

3−θ
2−θ+ε),

respectively, where B1 = 2/π2, B2, B3, B4 are explicit constants, proved by
Nowak and the author [12, Th. 2.1, 2.2]. The error term of (11) was improved
into O(x3/2(log x)13/2) by the author and Zhai [16, Th. 1.1]. We also remark
that for N (us)(m,n) = τ(gcd(m,n)),

∞∑
m,n=1

N (us)(m,n)

mznw
= ζ(z)ζ(w)ζ(z + w),

and ∑
m,n≤x

N (us)(m,n) = ζ(2)x2 +O(x log x),

which easily follows from the identity
∑
m,n≤x τ(gcd(m,n)) =

∑
d≤x[x/d]2.
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3. Proofs

Proof of Theorem 2.1. i) Let 0 ≤ i1, i2 ≤ a−1, 0 ≤ j1, j2 ≤ d−1. Assume that(
i1
m

a
, i1`

n

c
+ j1

n

d

)(
i2
m

a
, i2`

n

c
+ j2

n

d

)
=

(
i1i2

(m
a

)2

, i1i2`
2
(n
c

)2

+ (i1j2 + i2j1)`
n2

cd
+ j1j2

(n
d

)2
)

equals (
i
m

a
, i`

n

c
+ j

n

d

)
for some i and j. This holds true if and only if

i
m

a
≡ i1i2

(m
a

)2

(mod m),

that is

(12) i ≡ i1i2
m

a
(mod a),

and

(13) i`
n

c
+ j

n

d
≡ i1i2`2

(n
c

)2

+ (i1j2 + i2j1)`
n2

cd
+ j1j2

(n
d

)2

(mod n).

By using (12) and the fact that n
d = n

c ·
c
d , (13) is equivalent to

(14)
(
i1i2

m

a
+ ka

)
`+ j

c

d
≡ i1i2`2

n

c
+ (i1j2 + i2j1)`

n

d
+ j1j2

nc

d2
(mod c),

with some k ∈ Z.
Here (14) is a linear congruence in j, and since gcd(c/d, c) = c/d, it has

solutions in j if and only if
c

d
| i1i2`2

n

c
− (i1i2

m

a
+ ka)`,

which is equivalent, by using that gcd(`, c/d) = 1 and c/d = a/b | a, to

c

d
| i1i2

(
`
n

c
− m

a

)
.

For i1 = i2 = 1 we have the necessary condition c
d | `

n
c −

m
a , which is also

sufficient for every i1, i2.
ii) The subgroup Ka,b,c,d,`, given by (1), contains the identity (1, 1) if and

only if (
i
m

a
, i`

n

c
+ j

n

d

)
= (1, 1)

for some i and j. This holds true if and only if a = m, c = n and ` = 1 (with
i = 1, j = 0). In this case, condition (3) is satisfied.

iii) Let R and S be two commutative rings with identity. Then every ideal
of R×S is of the form I×J , where I and J are ideals of R and S, respectively.
This follows from [1, Prop. 9], as already referred in Section 1. Since the ideals
of Zm are its subgroups, we deduce that Ka,b,c,d,` is an ideal if and only if
it is a subproduct of Zm × Zn. That is, Ka,b,c,d,` = I × J , where I and J
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are subgroups of Zm and Zn, respectively. Then J is the second projection of
Ka,b,c,d,`, namely {jn/d : 0 ≤ j ≤ d− 1} ≤ Zn. Also, for every i and j there is
k such that i`nc + j nd = k nd . For i = 1, j = 0 we get `nc = k nd , that is ` = k cd ,
where d | c. Using that gcd(`, cd ) = 1 and ` ≤ c

d , we deduce that c = d, hence
a = b, and ` = 1. �

To prove Theorem 2.2 we need the following known auxiliary result. See
[9, Th. 2] and [4, Th. 3.1] for its proofs.

Lemma 3.1. Let n ∈ N, a, b ∈ Z. The linear congruence ax ≡ b (mod n)
admits solutions x such that gcd(x, n) = 1 if and only if gcd(a, n) = gcd(b, n) =
d. In this case the number of solutions (mod n) is ϕ(n)/ϕ(n/d).

Proof of Theorem 2.2. i) By i) of Theorem 2.1 the number of subrings is

(15) N (s)(m,n) =
∑
a|m
b|a

∑
c|n
d|c

e∑
`=1

gcd(`,e)=1

∑
a/b=c/d=e
e|`nc−

m
a

1.

Let m = ax, a = by, n = cz, c = dt. Then, by the condition a/b = c/d = e
we have y = t = e. Rearranging the terms of (15),

N (s)(m,n) =
∑

bxe=m
dze=n

e∑
`=1

gcd(`,e)=1
z`≡x (mod e)

1.

Using Lemma 3.1, we deduce that

N (s)(m,n) =
∑

bxe=m
dze=n

gcd(x,e)=gcd(z,e)=t

ϕ(e)

ϕ(e/t)

=
∑
bi=m
dj=n

∑
xe=i
ze=j

gcd(x,e)=gcd(z,e)=t

ϕ(e)

ϕ(e/t)
=
∑
i|m
j|n

h(i, j).

ii) By ii) of Theorem 2.1 the number of unital subrings is

N (us)(m,n) =
∑
b|m
d|n

m/b=n/d

1 =
∑
bj=m
dj=n

1 =
∑

j|gcd(m,n)

1 = τ(gcd(m,n)).

iii) Follows at once by iii) of Theorem 2.1. �

Proof of Theorem 2.3. First we show that the function (m,n) 7→ h(m,n) is
multiplicative. Let gcd(m1m2, n1n2) = 1. Then, by using that the function
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(m,n) 7→ gcd(m,n) is multiplicative, we deduce that

h(m1n1,m2n2) =
∑

d|gcd(m1n1,m2n2)
gcd(d,m1n1/d)=gcd(d,m2n2/d)=t

ϕ(d)

ϕ(d/t)

=
∑

d|gcd(m1,m2) gcd(n1,n2)
gcd(d,m1n1/d)=gcd(d,m2n2/d)=t

ϕ(d)

ϕ(d/t)
,

where gcd(m1,m2) and gcd(n1, n2) are relatively prime. Let d = ab such that
a | gcd(m1,m2) and b | gcd(n1, n2). Then

gcd(d,m1n1/d) = gcd(ab,m1n1/(ab)) = gcd(a,m1/a) gcd(b, n1/b)

and

gcd(d,m2n2/d) = gcd(ab,m2n2/(ab)) = gcd(a,m2/a) gcd(b, n2/b).

Also, the condition gcd(d,m1n1/d) = gcd(d,m2n2/d) implies that gcd(a,m1/a)
= gcd(a,m2/a) and gcd(b, n1/b) = gcd(b, n2/b). We deduce that

h(m1n1,m2n2)

=
∑

a|gcd(m1,m2)
gcd(a,m1/a)=gcd(a,m2/a)=A

ϕ(a)

ϕ(a/A)

∑
b|gcd(n1,n2)

gcd(b,n1/b)=gcd(b,n2/b)=B

ϕ(b)

ϕ(b/B)

= h(m1,m2)h(n1, n2).

Now it follows that the function N (s)(m,n) is also multiplicative, being the
convolution of h(m,n) with the constant 1 function, according to (4).

Let pα, pβ be any prime powers with 0 ≤ α ≤ β. By (5) we have

h(pα, pβ) =
∑

d|gcd(pα,pβ)

gcd(d,pα/d)=gcd(d,pβ/d)=t

ϕ(d)

ϕ(d/t)
(16)

=

α∑
j=0

gcd(pj ,pα−j)=gcd(pj ,pβ−j)=t

ϕ(pj)

ϕ(pj/t)
.

If α = β, then

h(pα, pα) =

α∑
j=0

ϕ(pj)

ϕ(pj−min(j,α−j))
,

which gives for α = 2γ ≥ 0,

h(p2γ , p2γ) =

γ∑
j=0

ϕ(pj) +

γ∑
j=1

ϕ(pγ+j)

ϕ(p2j)
= pγ +

γ∑
j=1

pγ−j =

γ∑
j=0

pγ−j ,
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and for α = 2γ − 1 ≥ 1,

h(p2γ−1, p2γ−1) =

γ−1∑
j=0

ϕ(pj) +

γ∑
j=1

ϕ(pγ+j−1)

ϕ(p2j−1)
= pγ−1 +

γ∑
j=1

pγ−j .

By (16), if α = 2γ < β, then

h(p2γ , pβ) =

γ∑
j=0

ϕ(pj) = pγ ,

and if α = 2γ − 1 < β, then

h(p2γ−1, pβ) =

γ−1∑
j=0

ϕ(pj) = pγ−1.

This proves identities (6). From (4) we deduce that

N (s)(pα, pβ) =

α∑
j=0

β∑
k=0

h(pj , pk),

and by using (6), identities (7) are obtained by some direct computations,
which are omitted. �

Proof of Theorem 2.5. i) By Theorem 2.3 the function h(m,n) is multiplicative.
Therefore its Dirichlet series can be expanded into the Euler product

∞∑
m,n=1

h(m,n)

mznw
=
∏
p

∞∑
α,β=0

h(pα, pβ)

pαz+βw
.

Taking into account identities (6) we deduce

∞∑
m,n=1

h(m,n)

mznw
=
∏
p

 ∑
0≤α=β

h(pα, pβ)

pαz+βw
+

∑
0≤α<β

h(pα, pβ)

pαz+βw
+

∑
0≤β<α

h(pα, pβ)

pαz+βw

 ,

where∑
0≤α=β

h(pα, pβ)

pαz+βw
=

∞∑
γ=0

h(p2γ , p2γ)

p2γ(z+w)
+

∞∑
γ=1

h(p2γ−1, p2γ−1)

p(2γ−1)(z+w)

=

∞∑
γ=0

pγ+1−1
p−1

p2γ(z+w)
+

∞∑
γ=1

2pγ−pγ−1−1
p−1

p(2γ−1)(z+w)
(17)

=

(
1− 1

pz+w

)−1(
1− 1

p2z+2w−1

)−1(
1+

1

pz+w
− 1

p2z+2w

)
,

∑
0≤α<β

h(pα, pβ)

pαz+βw
=

∑
0≤2γ<β

h(p2γ , pβ)

p2γz+βw
+

∑
0<2γ−1<β

h(p2γ−1, pβ)

p(2γ−1)z+βw
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=

∞∑
γ=0

∞∑
β=2γ+1

pγ

p2γz+βw
+

∞∑
γ=1

∞∑
β=2γ

pγ−1

p(2γ−1)z+βw
(18)

=

(
1− 1

pw

)−1(
1− 1

p2z+2w−1

)−1(
1

pw
+

1

pz+2w

)
,

and by changing the role of z and w we get from (18) the identity

(19)
∑

0≤β<α

h(pα, pβ)

pαz+βw
=

(
1− 1

pz

)−1(
1− 1

p2z+2w−1

)−1(
1

pz
+

1

p2z+w

)
.

Putting together (17), (18) and (19) we conclude that

∞∑
m,n=1

h(m,n)

mznw
(20)

=
∏
p

(
1− 1

pz

)−1(
1− 1

pw

)−1(
1− 1

pz+w

)−1(
1− 1

p2z+2w−1

)−1

×
(

1− 1

pz+2w

)(
1− 1

p2z+w

)
=
ζ(z)ζ(w)ζ(z + w)ζ(2z + 2w − 1)

ζ(z + 2w)ζ(2z + w)
.

Now the Dirichlet series representation (9) of the function N (s)(m,n) is
obtained from (20) by using that N (s)(m,n) is the convolution of h(m,n) with
the constant 1 function.

ii) From (9) we deduce the convolutional identity

(21) N (s)(m,n) =
∑
ab=m
cd=n

f(a, c)τ(b)τ(d),

valid for every m,n ∈ N, where

(22)

∞∑
m,n=1

f(m,n)

mznw
=
ζ(z + w)ζ(2z + 2w − 1)

ζ(z + 2w)ζ(2z + w)
.

We will use that the series (22) is absolutely convergent provided that <z >
0, <w > 1, <(z + w) > 1. We obtain by (21),∑

m,n≤x

N (s)(m,n) =
∑
ab≤x
cd≤x

f(a, c)τ(b)τ(d)

=
∑
a,c≤x

f(a, c)

 ∑
b≤x/a

τ(b)

 ∑
d≤x/c

τ(d)

 .
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Using formula (8) and by denoting C1 = 2C − 1, θ1 = θ + ε we deduce∑
m,n≤x

N (s)(m,n)(23)

=
∑
a,c≤x

f(a, c)

(
x

a
log

x

a
+ C1

x

a
+O

((x
a

)θ1))
(
x

c
log

x

c
+ C1

x

c
+O

((x
c

)θ1))
= x2(log2 x+ 2C1 log x+ C2

1 )
∑
a,c≤x

f(a, c)

ac

− x2(log x+ C1)
∑
a,c≤x

f(a, c)(log a+ log c)

ac

+ x2
∑
a,c≤x

f(a, c)(log a)(log c)

ac

+O

x1+θ1
∑
a,c≤x

f(a, c)

aθ1c

+O

x1+θ1
∑
a,c≤x

f(a, c)

acθ1

 .

Here ∑
a,c≤x

f(a, c)

ac
=

∞∑
a,c=1

f(a, c)

ac
−
∑′

a,c

f(a, c)

ac
,

where
∑′

a,c means that a > x or c > x (or both), and by (22),

∞∑
a,c=1

f(a, c)

ac
=
ζ(2)

ζ(3)
.

To handle the sum
∑′

a,c we may assume that c > x and have∑′

a,c
c>x

f(a, c)

ac
�
∑′

a,c
c>x

|f(a, c)|
acε

· 1

c1−ε
≤ 1

x1−ε

∞∑
a,c=1

|f(a, c)|
acε

� 1

x1−ε ,

since the latter series is convergent. In a similar way,∑
a,c≤x

f(a, c)(log a+ log c)

ac
= D +O

(
1

x1−ε

)
,

∑
a,c≤x

f(a, c)(log a)(log c)

ac
= E +O

(
1

x1−ε

)
,

with some explicit constants D and E. Finally, both error terms in (23) are
O(x1+θ1). This completes the proof. �
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[13] M. Tărnăuceanu, An arithmetic method of counting the subgroups of a finite abelian

group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53 (101) (2010), 373–386.
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