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COUNTING SUBRINGS OF THE RING Z,, X Z,
LAszLo ToTH

ABSTRACT. Let m,n € N. We represent the additive subgroups of the
ring Zm X Zn, which are also (unital) subrings, and deduce explicit formu-
las for N(®)(m,n) and N(“*)(m,n), denoting the number of subrings of
the ring Zy, X Zy and its unital subrings, respectively. We show that the
functions (m,n) — N (m,n) and (m,n) — N (m,n) are multiplica-
tive, viewed as functions of two variables, and their Dirichlet series can
be expressed in terms of the Riemann zeta function. We also establish

an asymptotic formula for the sum >, N(5>(m,n), the error term

of which is closely related to the Dirichlet divisor problem.

1. Motivation and preliminaries

Throughout the paper we use the following notation: N := {1,2,...}, Ny :=
{0,1,2,...}; the prime power factorization of n € N is n = prVP("), the
product being over the primes p, where all but a finite number of the exponents
vp(n) are zero; ged(m,n) and lem(m,n) denote the greatest common divisor
and the least common multiple of m,n € N, respectively; Z,, denotes the set
of residue classes modulo n (n € N); 7(n) is the number of divisors of n; ¢ is
Euler’s arithmetic function.

Consider the ring (Z,, X Zy,,+, ), where m,n € N. If ged(m,n) = 1, then it
is isomorphic to the ring (Z.n, +, ). Hence, all of its additive subgroups are
subrings, i.e., are closed under multiplication. In fact, all additive subgroups
are ideals of the given ring. If ged(m,n) > 1, then this is not the case. For
example, K := {(2¢,i+35) : 0 < 4,7 < 5} is an additive subgroup of Z13 X Z1s,
(2,7) € K, (4,5) € K, but (2,7)(4,5) = (8,17) ¢ K. At the same time,
the subgroup L := {(2¢,2i + 3j) : 0 < i,5 < 5} is a subring of Z1s X Z1g,
as a direct check shows. Here L is not an ideal, since, e.g., (2,5) € L, but
(2,5)(1,3) = (2,15) ¢ L.

Therefore, the following natural questions arise: Let m,n € N. What are
the subrings of the ring Z,, x Z,,7 What are its unital subrings, i.e., subrings
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including the multiplicative unity (1,1)? What are its ideals? What are the
number of subrings, unital subrings, respectively ideals of Z,, x Z,?

Subrings and ideals of direct products of rings were investigated by Anderson
and Camillo [1], Anderson and Kintzinger [2], Chajda, Eigenthaler and Langer
[6]. Versions of Goursat’s lemma for ideals and subrings of a direct product
of rings were given in [1, Th. 11]. The ideals of the ring Z,, X Z,, were also
discussed in a recent paper by Chebolu and Henry [7]. In fact, the ideals of
Lo, X L, are exactly of the form I x J, where I and J are additive subgroups of
L., and Z,, respectively. This follows from a well known property concerning
the ideals of the direct product of two arbitrary rings with unity, and has a
simple proof. See [1, Prop. 9]. Hence, the number of ideals of Z,, X Z, is
T(m)7(n).

However, there are no direct results in the above papers concerning the
subrings and unital subrings of Z,, x Z,, and we are not aware of related
results in the literature. We remark that the ideals and subrings of the ring
mZ x nZ were discussed in [1, Ex. 12]. Subrings and unital subrings (called
sublattices and subrings, respectively) of a fixed index of the ring Z" were
studied by Liu [11], and in recent preprints by Atanasov, Kaplan, Krakoff and
Menzel [3], Chimni and Takloo-Bighash [8].

The following results on the representation and the number of subgroups
of the group (Z,, x Z,,+) with m,n € N were deduced by the author [14],
using Goursat’s lemma for groups. See also the papers [10,13], using different
approaches.

Theorem 1.1 ([14, Th. 3.1]). Let m,n € N. For every m,n € N let
Jm’n::{(a,b,c,dj) eEN’:a|m,b|a,c|n,d]| ¢, =5,0<%, ged (f,%)zl}.

For (a,b,c,d, l) € Jp, n define
(1) Kapear:={(2,i2+j2):0<i<a—1,0<j<d—1}.

Then the following hold true:

i) The map (a,b,c,d, ) — Kqpcare is a bijection between the set Jy, , and
the set of subgroups of (L, X L, +).

ii) The invariant factor decomposition of the subgroup Kqp.c.d.e s

Kopede > Zgedv,d) X Liem(a,c)-

ili) The order of the subgroup Kqpc,q.e is ad and its exponent is lem(a, c).

iv) The subgroup Kqp.cae is cyclic if and only if ged(b,d) = 1.

We note that by the condition a/b = ¢/d we have lem(a, ¢) = lem(a, ad/b) =
lem(ad/d,ad/b) = ad/ged(b,d). That is, ged(b,d) - lem(a,c¢) = ad. Also,
ged(b, d) | lem(a, c).

Figure 1 represents the subgroup K¢ 2 18,6,2 of Z12 X Z1g. It has order 36 and

is iSOIIlOI‘phiC to ZQ X le. Here K6,2,18,6,2 = {(21722 + 3]) : 0 < Z,j < 5} = L,
quoted above, and it is also a subring.
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Theorem 1.2 ([14, Th. 4.1]). Let m,n € N. The number s(m,n) of subgroups
of the group (Zy, X Zn,+) is given by

s(m,n) = chd(i,j) = Z o) (?) T (%) .

ilm tlged(m,n)

iln
16 - | |
15 N . |
14 | : |
13 - | |
12 N : ]
11 ] . |
10 - | |
9 N . |
8 | - i
7 ] - |
6 N : ]
5 | |
4 | . |
3 N . |

0o 1 2 3 4 5 6 7 8 9 10 11
Figure 1. The subgroup K6,2,18,6,2 of Zlg X Zlg
We recall that a nonzero arithmetic function of two variables (m,n) —
f(m,n) is said to be multiplicative if f(miny, mang) = f(my,mz)f(n1,n2),
provided that ged(mima,ning) = 1. We refer to our survey paper [15] regard-
ing this concept. If f is multiplicative, then it is determined by the values

f(p*,p?), where p is prime and «, 8 € Ng. More exactly, f(1,1) = 1 and for
any m,n € N|

fem,n) =[] Fetm™), pe™).

The function (m,n) — s(m,n) is multiplicative and for any prime powers
p*, p? with 1 < o < 3, its values are given by

(2)
st pf) = Bmat D= (B—a-1p™ —(a+ B+ 3p+ (a+ B+1)
7 (p—1)? '

In this paper we characterize the subgroups Kg p.c.a,¢ of Zp X Zy, given
by (1), which are also (unital) subrings, and deduce explicit formulas for
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N®)(m,n) and N®)(m,n), denoting the number of subrings and unital sub-
rings, respectively. We show that the functions (m,n) — N (m,n) and
(m,n) — N®)(m,n) are also multiplicative, and their Dirichlet series can
be expressed in terms of the Riemann zeta function. We establish an asymp-
totic formula for the sum -, N () (m, n), the error term of which is closely
related to the Dirichlet divisor problem. Our results are included in Section 2
and their proofs are given in Section 3.

2. Main results

Theorem 2.1. Let m,n € N and consider the additive subgroup Kqpc.d.e of
Loy X L, given by (1).

i) The subgroup K, pc,d.e i a subring of Z., x Ly, if and only if

c,..n m

(3) Fl A

ii) The subgroup Ko pc.ae 15 a unital subring of Z,, X Z,, if and only if a = m,
c=mn,{=1. HereKmbndl—{(z z—l—]d) :0<i<m—-1,0<j5<d-1},
whereb|m dln, =15

iii) The subgroup K p.c.a.¢ is an ideal of Zy, X Zy, if and only ifa =b, ¢ =d,
¢ =1. In this case Kqace1 = {1 :0<i<a—1} x {j2:0<j <c—1},
where a | m, ¢ | n.

Theorem 2.2. Let m,n € N,
i) The number of subrings of the ring Z,, X L, is given by

(4) NG (m,n) Zh i,7),
i
where
S o(d)
(5) h(i,j) = d|g§(:i,j) eIk

ged(d,i/d)=ged(d,j /d)=t

it) The number of unital subrings of the ring L, X Zyn is N (m,n) =
7(ged(m, n)).
iii) The number of ideals of the ring Zy, X Zy, is T(m)71(n).

It is clear that N()(m,n) and N(“*)(m,n) are symmetric in the variables.

Theorem 2.3. The functions (m,n) — h(m,n), (m,n) — N©)(m,n) and
(m,n) — N (m,n) are multiplicative, viewed as arithmetic functions of two
variables. For any prime powers p®,p® (0 < o < ) their values are given by
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the following polynomials in p:

Y+l _
pp_117 Oézﬂ:Q%
P, a=2y<p,
6 h(p®,p’) = -
( ) ( ) 2pw_pp_’yll_17 Oz:BZQ’Y—l,
p'y—l’ a:27_1<ﬁv

(7)
N (p,p%)
P +10377 jp

=Gz P8+ —10(y + 1)p+107),  a=B=2y,
(B—=2y+1)p" +237_ (55 + 8 —27)p~7

= oz (B =27+ Dp? 2 +8p7+ — (B — 27 — 1)p?

_ =2(8+3y+5)p+2(8 - 37)), a=2y<p,
537 -1(25 = p7
:(p_f)l)z (p7+1+p7*(27+1)]9+27*1), a=p3=2y-1,

71 (105 +28 — 4y = 3)p*~
= o (2B =4y + )7 — (28 — 4y = 3)p7
—(28+67v+T)p+28+6vy—3), a=2y—-1< 8,
N (us) (pa7p,3) = min(a, 8) + 1.
Remark that for every m,n € N,

N (m,n) = 7(ged(m, n)) < 7(mn) < 7(m)7(n) < N (m,n) < s(m,n),
which follow from the definitions and properties of the 7 function. Here 7(mn)

is the number of cyclic subproducts of Z,, X Z,. See [10, Th. 5].

To illustrate the applicability of our results, we note that the ring Zi5 X Z1g
has

N®)(12,18) = N (22.3,2.3%) = N (2,22)N)(3,3%) = 7.7 = 49

subrings and N(“*)(12,18) = 7(ged(12,18)) = 7(6) = 4 unital subrings. The
number of its ideals is 7(12)7(18) = 36. The number of subgroups is s(12,18) =
5(2,2%)s(3,3%) = 8- 10 = 80, by using (2).

Now consider the case m = n. Let h(n) = h(n,n). Furthermore, let
N®)(n) := N©®)(n,n) and N®)(n) := N®)(n, n) denote the number of sub-
rings, respectively unital subrings of the ring Z2.

Corollary 2.4. The functions n +— h(n), n — N®)(n) and n — N®*)(n) are
multiplicative, viewed as arithmetic functions of one variable. For everyn € N

we have
N () = 3 hi),
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where

N p(d)
MO = 2 ST e 77

and N (n) = 7(n).
Let 0 be the exponent in the Dirichlet divisor problem for 7(n), that is
(8) Z 7(n) = zlogz + (2C — 1)z + O(2779)

n<z

for every € > 0, where C is Euler’s constant. Note that 1/4 <8 < 517/1648 =
0.313713, the upper bound being a recent result due to Bourgain and Watt [5].

Theorem 2.5. i) For z,w € C with Rz > 1, Rw > 1 we have

() $ ¥O(mm) _ G+ w)2s+ 2w = 1)
m,n=1 men® a C(Z + QM)C(QZ + w) ’
ii) For every e > 0,
(10) Z N (m7n) = 72 (Al 10g2 z+ Aslogz + Ag) + O(I1+9+E),
m,n<x

where Ay = ((2)/((3), A, Az are explicit constants.

The formulas (9) and (10) may be compared to

i s(m,n) _ () (w)¢(z+w—1)
m,n=1 mn¥ C(Z + w)
and
(11) Z s(m,n) = 2* (B1 log® x + By log® z 4+ Bslog z + 34) +O(x%+5),

m,n<lx

respectively, where By = 2/m2, B, B3, By are explicit constants, proved by
Nowak and the author [12, Th. 2.1, 2.2]. The error term of (11) was improved
into O(z%/?(log 2)'3/2) by the author and Zhai [16, Th. 1.1]. We also remark
that for N (m,n) = 7(gcd(m,n)),

> (us) (m, n
S P _ etz + ),

and
Z N (m,n) = ¢(2)2% + O(zlog x),

mn<x

which easily follows from the identity -, . 7(ged(m,n)) = 3, [z/d]*.
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3. Proofs
Proof of Theorem 2.1. i) Let 0 < iy,is <a—1,0 < j1,j2 < d—1. Assume that

m ..omn . n\/.m . n .n
(21*#15* +31f) (zzf,zsz —|—j2*)
a c d a c d

(v ()"t (2" iy (5))

(sz i ‘ﬁ)
a’ ¢ ]d

for some ¢ and j. This holds true if and only if

2
i = 1102 (@) (mod m),
a a

equals

that is

(12) z‘zm@% (mod a),

and

(13) 2 + 2 = iyl (E)Q—F(i jo + i ')€ﬁ+ 1 (2)2 (mod n)
- ]d—12 v 1J2 2J1 od J1J2 d .

By using (12) and the fact that § = 2 - £, (13) is equivalent to
(14) (ivia™ + ka) £+ 55 = iriaf® 2 + (inja +inji) 05 + jujazs  (mod o),
with some k € Z.

Here (14) is a linear congruence in j, and since ged(c/d,c) = ¢/d, it has

solutions in j if and only if
2 | ’L.liggzg — (2112% + k'(l)g7

which is equivalent, by using that ged(¢,¢/d) =1 and ¢/d = a/b | a, to

§|m2 (z%—%)

For i; = iy = 1 we have the necessary condition § | £ — ™ which is also
sufficient for every i1, is.

ii) The subgroup Kgp c.a,¢, given by (1), contains the identity (1,1) if and
only if

m .n n
(z;,zﬁz +]a) =(1,1)
for some 7 and j. This holds true if and only if a = m, ¢ =n and ¢ = 1 (with
i1 =1, j =0). In this case, condition (3) is satisfied.

iii) Let R and S be two commutative rings with identity. Then every ideal
of Rx S is of the form I x J, where I and J are ideals of R and S, respectively.
This follows from [1, Prop. 9], as already referred in Section 1. Since the ideals
of Z, are its subgroups, we deduce that K, q,¢ is an ideal if and only if
it is a subproduct of Z,, x Z,. That is, Kqpcae¢ = I x J, where I and J
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are subgroups of Z,, and Z,, respectively. Then J is the second projection of
Kb, namely {jn/d:0<j<d—1} <Z,. Also, for every i and j there is
k such that if% + 54 = k%. Fori =1, j = 0 we get £% = k%, that is £ = k¢,
where d | c. Using that ged(4, ) =1 and ¢ < 5, we deduce that ¢ = d, hence
a=>b,and ¢/ =1. O

To prove Theorem 2.2 we need the following known auxiliary result. See
[9, Th. 2] and [4, Th. 3.1] for its proofs.

Lemma 3.1. Let n € N, a,b € Z. The linear congruence ax = b (mod n)
admits solutions x such that ged(x,n) = 1 if and only if ged(a,n) = ged(b,n) =
d. In this case the number of solutions (mod n) is p(n)/p(n/d).

Proof of Theorem 2.2. i) By i) of Theorem 2.1 the number of subrings is

(15) V) =33 Z o

b=c/d=e
b|a d||c gcd(f e) 1 é\eniﬂ
Let m = ax, a = by, n = ¢z, ¢ = dt. Then, by the condition a/b=c¢/d = ¢
we have y =t = e. Rearranging the terms of (15),

N(S (m,n) Z Z 1.

bre=m
dze=n gcd(@ e)
z0=z (mod e)

Using Lemma 3.1, we deduce that

B

bre=m

dze=n
ged(z,e)=ged(z,e)=t

> > = h(i,j).

bi=m re=i ilm
dj=n ze=j jln
ged(z,e)=gcd(z,e)=t

ii) By ii) of Theorem 2.1 the number of unital subrings is

N (m,n) = Z 1= Z 1= Z 1 =7(ged(m,n)).

blm bj=m jlged(m,n)
d|n dj=n
m/b=n/d
iii) Follows at once by iii) of Theorem 2.1. O

Proof of Theorem 2.3. First we show that the function (m,n) — h(m,n) is
multiplicative. Let ged(mimg,ning) = 1. Then, by using that the function
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(m,n) — ged(m,n) is multiplicative, we deduce that

h(ming, mong) = E
d|ged(mini,mansg)
ged(d,miny/d)=gcd(d,mans/d)=t

_ Z p(d)
d|ged(mi,m2) ged(ny,n2) @(d/t)
gcd(d,m1n1 /d):gcd(d,mgnz/d):t

¢(d)
p(d/t)

where ged(my, mg) and ged(ng, ng) are relatively prime. Let d = ab such that
a | ged(my,me) and b | ged(ng, n2). Then

ged(d, myny /d) = ged(ab, miny /(ab)) = ged(a, my/a) ged(b, ny/b)
and
ged(d, mana/d) = ged(ab, mana/(ab)) = ged(a, ma/a) ged(b, na /b).

Also, the condition ged(d, miny/d) = ged(d, mang/d) implies that ged(a, my/a)
= ged(a, me/a) and ged(b,ny /b) = ged(b, ne/b). We deduce that

h(ming, mang)

_ 3 ¢(a) 3 ¢(b)
alged(mi,m2) (,D(G/A) blged(n,n2) SD(b/B)
ged(a,m1/a)=ged(a,ma2/a)=A ged(b,ny /b)=gcd(b,n2/b)=B

= h(ml, mg)h(nl, ng).

Now it follows that the function N(*)(m,n) is also multiplicative, being the
convolution of h(m,n) with the constant 1 function, according to (4).
Let p®, p® be any prime powers with 0 < a < 3. By (5) we have

(16) h(p®,p°) = e(d)
dm% %) p(d/t)

ged(d,p® /d)=ged(d,p? /d)=t

_ za: o(p’)
= o(p/1)
ged(p?,p* ) =ged(p? ,p” )=t

If « = 3, then
o )
e(p’)
h pozypoz) = —
( jZ:(:) (p(pj—mm(J;Oé—J)>
which gives for a = 2y > 0,

2y , 2 . i - @(PVH) - i - j
h(p™, ™) =Y o)+ : =p7+Zp”*J=Zp”*J,

©(p¥)

Jj=0 Jj=1
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and fora =2y —-12>1,

’Y+J

2
h(p* =, p* ™) Zw ZQP ) —p”*1+Zp”’j.
j=1

By (16), if « = 2y < B, then

§
h(p™,p%) =Y e’

7=0
and if & = 2y — 1 < 3, then
y—1
he 0% =) o) ="
j=0

This proves identities (6). From (4) we deduce that

N(s a Zzhpgp

7=0 k=0

and by using (6), identities (7) are obtained by some direct computations,
which are omitted. 0

Proof of Theorem 2.5. i) By Theorem 2.3 the function h(m,n) is multiplicative.
Therefore its Dirichlet series can be expanded into the Euler product

o ﬁ
Z mznw H Z az—:-gw ’
m,n=1 P «,f=0

Taking into account identities (6) we deduce
o0
h(m,n h(p®, p? h(p®, p? h(p®, p?
SRR ¥ TR X e ¥ T
mn p p p
m,n=1 p 0<a=p 0<a<p <8<
where

h a’ﬁ ‘X’h 27’ 2 ‘X’h 2'y717 2v—1
Z(pp)zz(pp)+z(p p)

0os paz+6w = p2'y(z+w) = p(2'y—1)(z+:w)
0o pw+1;1 oo 2p77p71_171
_ p— pP—
(17) - p2'y(z+w) + Z p(2771)(z+w)
v=0 y=1

(- LN\ 1 L L 1
- _pz—i-w - p2z+2w—1 +pz+w - p2z+2w ?

Z h(p™,p°) Z h(p*,p?) n Z h(p* 1, p?)
paz+/3w - p2'yz+ﬁw p(2'yfl)z+ﬁw
0<a<p 0<2v<pB 0<2y—1<p
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(18) = Z Z 272+Bw Z Z p(Q’Y 1)z+pw

v=0p= 27-&-1 v=1p=2y
1\ " 1 “lra 1
=\1- ﬁ 1- p22+2w71 ﬁ + pz+2w ?
and by changing the role of z and w we get from (18) the identity

h(p®,p®) 1\ " 1 i 1
(19) Z paz+ﬁw = 1- ]? I - p22:+2w71 ]; + p2z+w :

<8<

Putting together (17), (18) and (19) we conclude that

(20) Z h(m,n)

m,n=1 mn'
1\"" 1\ " 1 \" 1 -
= H (1 - pz> (1 - pw> <1 - pz+w> <1 - p22+2w—1>
p

1 1
X <1 B pz+2w> <1 - p2z+w>
C(2)((w)¢(z + w)¢(2z + 2w — 1)
C(z + 2w)¢(22 + w) ’

Now the Dirichlet series representation (9) of the function N)(m,n) is
obtained from (20) by using that N()(m,n) is the convolution of h(m,n) with
the constant 1 function.

ii) From (9) we deduce the convolutional identity

(21) N (m,n) = Zfac 7(d),

ab=m
cd=n

valid for every m,n € N, where

(22) Z f(m,n) (z—|—w)((22—|—2w—1).

m*n® C(z +2w)((2z + w)

m,n=1

We will use that the series (22) is absolutely convergent provided that Rz >
0, Rw > 1, R(z + w) > 1. We obtain by (21),

S N mn) = Y fla.e)r(b)rd)

m,n<x ab<zx
cd<z

S jao| X w3 @

a,c<x b<z/a d<z/c



1610

L. TOTH

Using formula (8) and by denoting C; = 2C' — 1, 6; = 6 4+ ¢ we deduce

(23) > N@(m,n)

m,n<x

x x x z\ 61
a;acf(a,c) <aloga +CG1Z+0 ((a) >)
(Feeteai+o((2)"))

2*(log”z + 2C) logz + C7) fla,c)

a,c<x

_ x2(log:c + Cl) Z f(a, C)(loga + log C)

ac
a,c<zx

o 3 Lledloga)og

ac
a,c<x

ac
w0 3 Lad)volae 3 L8P
a’lc ac’t

a,c<zx
Here

S Jeo
a,c=1
where Z/

.. means that a > x or ¢ >

a,c<z

ZI f(av C)
~ ac ’
x (or both), and by (22),

 flao) (2
2;1 B

To handle the sum Z,’ we may assume that ¢ > x and have

fac |fac 1 1 & |f(a, o) 1
Z Z ety <
c>$ c>r

act pl—e’
a,c=1

1
l—e |7

> f(a,C)(loga)(logC)E+O( 1 )

since the latter series is convergent. In a similar way,

Z f(a,c)(losca+logc) :D—i—O(
a,c<x

ac 1—¢
a,c<x

with some explicit constants D and E. Finally, both error terms in (23) are
O(z'+%1). This completes the proof

O
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