General Theorem for Explicit Evaluations and Reciprocity Theorems for Ramanujan-Göllnitz-Gordon Continued Fraction

Nipen Saikia
Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh791112, Arunachal Pradesh, India
e-mail: nipennak@yahoo.com
Abstract. In the paper A new parameter for Ramanujan's theta-functions and explicit values, Arab J. Math. Sc., 18 (2012), 105-119, Saikia studied the parameter $A_{k, n}$ involving Ramanujan's theta-functions $\phi(q)$ and $\psi(q)$ for any positive real numbers k and n and applied it to find explicit values of $\psi(q)$. As more application to the parameter $A_{k, n}$, in this paper we prove a new general theorem for explicit evaluation of Ramanujan-GöllnitzGordon continued fraction $K(q)$ in terms of the parameter $A_{k, n}$ and give examples. We also find some new explicit values of the parameter $A_{k, n}$ and offer reciprocity theorems for the continued fraction $K(q)$.

1. Introduction

For $q:=e^{2 \pi i z}, \operatorname{Im}(z)>0$, define Ramanujan's theta-functions $\phi(q), \psi(q)$, and $f(-q)$ as

$$
\phi(q):=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{(-q ;-q)_{\infty}}{(q ;-q)_{\infty}}=\vartheta_{3}(0,2 z)
$$

and

$$
\psi(q):=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}=2^{-1} q^{-1 / 8} \vartheta_{2}(0, z)
$$

where ϑ_{2} and $\vartheta_{3}[11$, p.464] are classical theta-functions and

$$
(a ; q)_{\infty}:=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

Received February 13, 2014; accepted August 21, 2014. 2010 Mathematics Subject Classification: 33D90, 11F20.
Key words and phrases: Ramanujan's theta-functions, Ramanujan-Göllnitz-Gordon continued fraction.

For any positive real numbers k and n, Saikia [7, p.107, (1.7)] defined the parameter $A_{k, n}$ as

$$
\begin{equation*}
A_{k, n}=\frac{\phi(-q)}{2 k^{1 / 4} q^{k / 4} \psi\left(q^{2 k}\right)}, \quad q=e^{-\pi \sqrt{n / k}} \tag{1.1}
\end{equation*}
$$

and studied its several properties. Saikia [7] also evaluated many explicit values of $A_{k, n}$ and some of the explicit values of $A_{k, n}$ are used to find some particular values of the Ramanujan's theta-function $\psi(q)$.

As more application of the parameter $A_{k, n}$, in this paper we use the particular case $A_{2, n}$ of the parameter $A_{k, n}$ to prove a general theorem for the explicit evaluations of the Ramanujan-Göllnitz-Gordon continued fraction $K(q)$ [6, p.299] defined by

$$
\begin{equation*}
K(q):=q^{1 / 2} \frac{\left(q ; q^{8}\right)_{\infty}\left(q^{7} ; q^{8}\right)_{\infty}}{\left(q^{3} ; q^{8}\right)_{\infty}\left(q^{5} ; q^{8}\right)_{\infty}}=\frac{q^{1 / 2}}{1+q_{+}} \frac{q^{2}}{1+q^{3}}+\frac{q^{4}}{1+q^{5}}+\ldots . \quad|q|<1 \tag{1.2}
\end{equation*}
$$

We also evaluate some new explicit values of the parameter $A_{2, n}$ by proving two new theta-function identities. Previously, Baruah and Saikia [1] established some general theorems for explicit evaluations of $K(q)$ and evaluated some values. Chan and Huang [4] also proved general formulas for explicit evaluation of the continued fraction $K(q)$ in terms of Ramanujan's class invariants. For more results on the continued fraction $K(q)$ see [8] and [9].

The famous Rogers-Ramanujan continued fraction $R(q)$ is defined by

$$
\begin{equation*}
R(q):=\frac{q^{1 / 5}}{1}+\frac{q}{1}+\frac{q^{2}}{1}+\frac{q^{3}}{1}+\ldots, \quad|q|<1 \tag{1.3}
\end{equation*}
$$

On page 204 of his second notebook [6], Ramanujan stated that if α and β are both positive and $\alpha \beta=1$, then

$$
\begin{equation*}
\left(\frac{\sqrt{5}+1}{2}+R\left(e^{-2 \pi \alpha}\right)\right)\left(\frac{\sqrt{5}+1}{2}+R\left(e^{-2 \pi \beta}\right)\right)=\frac{5+\sqrt{5}}{2} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\sqrt{5}-1}{2}-R\left(e^{-2 \pi \alpha}\right)\right)\left(\frac{\sqrt{5}-1}{2}-R\left(e^{-2 \pi \beta}\right)\right)=\frac{5-\sqrt{5}}{2} . \tag{1.5}
\end{equation*}
$$

The reciprocity theorems (1.4) and (1.5) are proved by Watson [10]. Ramanthan [5] also proved some reciprocity theorems for $R(q)$ which are analogous to (1.4) and (1.5). Chan [3] proved some reciprocity theorems for the Ramanujan's cubic continued fraction. In this paper, we also prove two reciprocity theorems for the Ramanujan-Göllnitz-Gordon continued fraction $K(q)$ akin to (1.4) and (1.5).

In Section 2, we record some preliminary results for ready references in this paper. In section 3, we prove two new theta-function identities. In section 4, we
prove general theorem for explicit evaluation of $K(q)$ and find some new explicit values of the parameter $A_{2, n}$. Finally, in section 5, we prove a reciprocity theorem for the continued fraction $K(q)$.

Since modular equations are key in proving theta-function identities in section 2, we end this introduction by defining Ramanujan's modular equation from Berndt's book [2]. Let K, K^{\prime}, L, and L^{\prime} denote the complete elliptic integrals of the first kind associated with the moduli k, k^{\prime}, l, and l^{\prime}, respectively. Suppose that the equality

$$
\begin{equation*}
n \frac{K^{\prime}}{K}=\frac{L^{\prime}}{L} \tag{1.6}
\end{equation*}
$$

holds for some positive integer n. Then a modular equation of degree n is a relation between the moduli k and l which is implied by (1.6). Ramanujan recorded his modular equations in terms of α and β, where $\alpha=k^{2}$ and $\beta=l^{2}$. We say that β has degree n over α. By denoting $z_{r}=\phi^{2}\left(q^{r}\right)$, where $q=\exp \left(-\pi K^{\prime} / K\right),|q|<1$, the multiplier m connecting α and β is defined by $m=z_{1} / z_{n}$.

2. Preliminary Results

Lemma 2.1.([7, p.111, Theorem 4.1]) For all positive real numbers k and n, we have

$$
\text { (i) } A_{k, 1}=1 \quad \text { and } \quad(i i) A_{k, 1 / n}=1 / A_{k, n}
$$

Lemma 2.2.([6, p.299]) We have

$$
\begin{equation*}
\frac{1}{K(q)}-K(q)=\frac{\phi\left(q^{2}\right)}{q^{1 / 2} \psi\left(q^{4}\right)} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{K(q)}+K(q)=\frac{\phi(q)}{q^{1 / 2} \psi\left(q^{4}\right)} \tag{2.2}
\end{equation*}
$$

Proofs of (2.1) and (2.2) can be found in Berndt's book [2, p.221].
Lemma 2.3.([2, p.43, Entry 27(ii)]) If α and β are such that the modulus of each exponential argument is less than 1 and $\alpha \beta=\pi$, then

$$
\begin{equation*}
2 \sqrt{\alpha} \psi\left(e^{-2 \alpha^{2}}\right)=\sqrt{\beta} e^{\alpha^{2} / 4} \phi\left(-e^{-\beta^{2}}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{\alpha} \phi\left(e^{-\alpha^{2}}\right)=\sqrt{\beta} \phi\left(e^{-\beta^{2}}\right) \tag{2.4}
\end{equation*}
$$

Lemma 2.4. We have

$$
\begin{equation*}
\phi(-q)=\sqrt{z_{1}}(1-\alpha)^{1 / 4} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\psi\left(q^{4}\right)=\frac{\sqrt{z_{1}}\{1-\sqrt{1-\alpha}\}^{1 / 2}}{2 \sqrt{2} q^{1 / 2}} \tag{2.6}
\end{equation*}
$$

For (2.5) see [2, p.122,Entry 10(ii)] and for (2.6) see [2, p.123, ntry 11(iv)].
We also note that if we replace q by q^{n} in the Lemma 2.4 then z_{1} and α will be replaced by z_{n} and β, respectively, where β has degree n over α.
Lemma 2.5.([2, p.40, Entry 25(vi)]) We have

$$
\phi^{2}(q)+\phi^{2}(-q)=2 \phi^{2}\left(q^{2}\right)
$$

Lemma 2.6.([2, p.280, Entry 13(i)]) If β has degree 5 over α, then

$$
(\alpha \beta)^{1 / 2}+\{(1-\alpha)(1-\beta)\}^{1 / 2}+2\{\alpha \beta(1-\alpha)(1-\beta)\}^{1 / 6}=1
$$

Lemma 2.7.([2, p.314, Entry 19(i)]) If β has degree 7 over α, then

$$
(\alpha \beta)^{1 / 8}+\{(1-\alpha)(1-\beta)\}^{1 / 8}=1
$$

3. Theta-Function Identities

The section is devoted to prove two new theta-function identities which will be used in section 4 to find new explicit values of the parameter $A_{2, n}$.

Theorem 2.8. If $P=\frac{\phi(-q)}{q^{1 / 2} \psi\left(q^{4}\right)} \quad$ and $\quad Q=\frac{\phi\left(-q^{5}\right)}{q^{5 / 4} \psi\left(q^{20}\right)}$
then $\left(\frac{P}{Q}\right)^{3}-\left(\frac{Q}{P}\right)^{3}+\left(\frac{32}{P Q}\right)^{2}+(P Q)^{2}+320\left(\frac{1}{Q^{2}}+\frac{1}{P^{2}}\right)+20\left(\frac{P^{2}}{Q^{2}}+\frac{Q^{2}}{P^{2}}\right)$

$$
\begin{equation*}
+5\left(\frac{P}{Q}-\frac{Q}{P}\right)+10\left(P^{2}+Q^{2}\right)+120=0 \tag{3.1}
\end{equation*}
$$

Proof. Transcribing P and Q by using (2.5) and (2.6) and simplifying, we obtain

$$
\begin{equation*}
\sqrt{1-\alpha}=\frac{P^{2}}{8+P^{2}} \quad \text { and } \quad \sqrt{1-\beta}=\frac{Q^{2}}{8+Q^{2}} \tag{3.2}
\end{equation*}
$$

where β has degree 5 over α. Equivalently,

$$
\begin{equation*}
\alpha=1-\left(\frac{P^{2}}{8+P^{2}}\right)^{2} \quad \text { and } \quad \beta=1-\left(\frac{Q^{2}}{8+Q^{2}}\right)^{2} \tag{3.3}
\end{equation*}
$$

From Lemma 2.6, we note that

$$
\begin{equation*}
2\left(16 x y^{2}\right)^{1 / 6}=(1-y)-\sqrt{x} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
x:=\alpha \beta \quad \text { and } \quad y:=\{(1-\alpha)(1-\beta)\}^{1 / 2} . \tag{3.5}
\end{equation*}
$$

Squaring (3.4) and simplifying, we obtain

$$
\begin{equation*}
42\left(16 x y^{2}\right)^{1 / 3}=s-2 r \sqrt{x}, \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
r=1-y \quad \text { and } \quad s=(1-y)^{2}+x \tag{3.7}
\end{equation*}
$$

Cubing (3.6) and simplifying, we obtain

$$
\begin{equation*}
1024 x y^{2}-s^{3}-12 s r^{2} x=-\left(6 s^{2} r \sqrt{x}+8 r^{3} x^{3 / 2}\right) \tag{3.8}
\end{equation*}
$$

Squaring (3.8) and simplifying, we obtain

$$
\begin{equation*}
\left(1024 x y^{2}-s^{3}-12 r^{2} s x\right)^{2}=36 s^{4} r^{2} x+64 r^{6} x^{3}+96 s^{2} r^{4} x^{2} \tag{3.9}
\end{equation*}
$$

Combining (3.5), (3.7), and (3.9), employing (3.2) and (3.3), and then factorizing with the help of Mathematika, we find that

$$
\begin{equation*}
f(P, Q) g(P, Q) j(P, Q)=0 \tag{3.10}
\end{equation*}
$$

where

$$
\begin{aligned}
f(P, Q)= & P^{6}-1024 P Q-320 P^{3} Q-20 P^{5} Q+5 P^{4} Q^{2}-320 P Q^{3}-120 P^{3} Q^{3}-10 P^{5} Q^{3} \\
& -5 P^{2} Q^{4}-20 P Q^{5}-10 P^{3} Q^{5}-P^{5} Q^{5}-Q^{6}, \\
g(P, Q)= & P^{6}+1024 P Q+320 P^{3} Q+20 P^{5} Q+5 P^{4} Q^{2}+320 P Q^{3}+120 P^{3} Q^{3}+10 P^{5} Q^{3} \\
& -5 P^{2} Q^{4}+20 P Q^{5}+10 P^{3} Q^{5}+P^{5} Q^{5}-Q^{6},
\end{aligned}
$$

and

$$
\begin{aligned}
j(P, Q)=P^{12} & +1048576 P^{2} Q^{2}+655360 P^{4} Q^{2}+143360 P^{6} Q^{2}+12800 P^{8} Q^{2}+378 P^{10} Q^{2} \\
& +655360 P^{2} Q^{4}+319488 P^{4} Q^{4}+44544 P^{6} Q^{4}+975 P^{8} Q^{4}-112 P^{10} Q^{4} \\
& +143360 P^{2} Q^{6}+44544 P^{4} Q^{6}-2708 P^{6} Q^{6}-1680 P^{8} Q^{6}-116 P^{10} Q^{6} \\
& +12800 P^{2} Q^{8}+975 P^{4} Q^{8}-1680 P^{6} Q^{8}-360 P^{8} Q^{8}-20 P^{10} Q^{8} \\
& +378 P^{2} Q^{10}-112 P^{4} Q^{10}-116 P^{6} Q^{10}-20 P^{8} Q^{10}-P^{10} Q^{10}+Q^{12} .
\end{aligned}
$$

By examining the behavior of the first factors $f(P, Q)$ and the last factor $j(P, Q)$ in the left hand side of (3.10) near $q=0$, it can be seen that there is a neighborhood about the origin, where these factors are not zero. Then the second factor $g(P, Q)$
is zero in this neighborhood. By the identity theorem $g(P, Q)$ is identically zero. Thus, we have
$g(P, Q)=P^{6}+1024 P Q+320 P^{3} Q+20 P^{5} Q+5 P^{4} Q^{2}+320 P Q^{3}+120 P^{3} Q^{3}+10 P^{5} Q^{3}$

$$
\begin{equation*}
-5 P^{2} Q^{4}+20 P Q^{5}+10 P^{3} Q^{5}+P^{5} Q^{5}-Q^{6}=0 . \tag{3.11}
\end{equation*}
$$

Dividing (3.11) by $P^{3} Q^{3}$ and rearranging the terms, we arrive at the desired result. \square
Theorem 2.9. If $P=\frac{\phi(-q)}{q^{1 / 2} \psi\left(q^{4}\right)} \quad$ and $\quad Q=\frac{\phi\left(-q^{7}\right)}{q^{7 / 4} \psi\left(q^{28}\right)} \quad$ then
$P^{8}-32768 P Q-14336 P^{3} Q-1792 P^{5} Q-56 P^{7} Q+7168 P^{2} Q^{2}+2688 P^{4} Q^{2}+252 P^{6} Q^{2}$
$-14336 P Q^{3}-7168 P^{3} Q^{3}-1064 P^{5} Q^{3}-56 P^{7} Q^{3}+2688 P^{2} Q^{4}+1078 P^{4} Q^{4}+84 P^{6} Q^{4}$ $-1792 P Q^{5}-1064 P^{3} Q^{5}-224 P^{5} Q^{5}-14 P^{7} Q^{5}+252 P^{2} Q^{6}+84 P^{4} Q^{6}+7 P^{6} Q^{6}$

$$
\begin{equation*}
-56 P Q^{7}-56 P^{3} Q^{7}-14 P^{5} Q^{7}-P^{7} Q^{7}+Q^{8}=0 \tag{3.12}
\end{equation*}
$$

Proof. Transcribing P and Q by using (2.5) and (2.6) and simplifying, we obtain

$$
\begin{equation*}
\sqrt{1-\alpha}=\frac{P^{2}}{8+P^{2}} \quad \text { and } \quad \sqrt{1-\beta}=\frac{Q^{2}}{8+Q^{2}} \tag{3.13}
\end{equation*}
$$

where β has degree 7 over α. Equivalently,

$$
\begin{equation*}
\alpha=1-\left(\frac{P^{2}}{8+P^{2}}\right)^{2} \quad \text { and } \quad \beta=1-\left(\frac{Q^{2}}{8+Q^{2}}\right)^{2} \tag{3.14}
\end{equation*}
$$

From Lemma 2.7, we note that

$$
\begin{equation*}
y^{1 / 4}=1-x^{1 / 8} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
x:=\alpha \beta \quad \text { and } \quad y:=\{(1-\alpha)(1-\beta)\}^{1 / 2} . \tag{3.16}
\end{equation*}
$$

Squaring (3.15) and simplifying, we obtain

$$
\begin{equation*}
z-x^{1 / 4}=-2 x^{1 / 8} \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\sqrt{y}-1 . \tag{3.18}
\end{equation*}
$$

Squaring (3.17) and simplifying, we obtain

$$
\begin{equation*}
z^{2}+\sqrt{x}=(4+2 z) x^{1 / 4} . \tag{3.19}
\end{equation*}
$$

Squaring (3.19) and simplifying, we deduce that

$$
\begin{equation*}
z^{4}+x=\left(16+2 z^{2}+16 z\right) \sqrt{x} . \tag{3.20}
\end{equation*}
$$

From (3.18), we deduce that

$$
\begin{equation*}
z^{2}=y-1-2(\sqrt{y}-1) \quad \text { and } \quad z^{4}=(y+1)^{2}+4 y-4(y+1) \sqrt{y} \tag{3.21}
\end{equation*}
$$

Employing (3.19) and (3.21) in (3.20) and simplifying, we obtain

$$
\begin{equation*}
k-4(y+1) \sqrt{y}=(s+12 \sqrt{y}) \sqrt{x} \tag{3.22}
\end{equation*}
$$

where

$$
\begin{equation*}
k=y^{2}+6 y+x+1 \quad \text { and } \quad s=2+2 y \tag{3.23}
\end{equation*}
$$

Squaring (3.22) and rearranging the terms, we arrive at

$$
\begin{equation*}
k^{2}+16(y+1)^{2} y-\left(s^{2}+144 y\right) x=(24 s x+8 k(y+1)) \sqrt{y} \tag{3.24}
\end{equation*}
$$

Squaring (3.24), we obtain

$$
\begin{equation*}
\left(k^{2}+16(y+1)^{2} y-\left(s^{2}+144 y\right) x\right)^{2}=(24 s x+8 k(y+1))^{2} y \tag{3.25}
\end{equation*}
$$

Combining (3.23) and (3.25), employing (3.13) and (3.14), and then factorizing with the help of Mathematika, we find that

$$
\begin{equation*}
f(P, Q) g(P, Q)=0 \tag{3.26}
\end{equation*}
$$

where

$$
\begin{gathered}
f(P, Q)=P^{8}+32768 P Q+14336 P^{3} Q+1792 P^{5} Q+56 P^{7} Q+7168 P^{2} Q^{2}+2688 P^{4} Q^{2} \\
+252 P^{6} Q^{2}+14336 P Q^{3}+7168 P^{3} Q^{3}+1064 P^{5} Q^{3}+56 P^{7} Q^{3}+2688 P^{2} Q^{4}+1078 P^{4} Q^{4} \\
+84 P^{6} Q^{4}+1792 P Q^{5}+1064 P^{3} Q^{5}+224 P^{5} Q^{5}+14 P^{7} Q^{5}+252 P^{2} Q^{6}+84 P^{4} Q^{6}+7 P^{6} Q^{6} \\
+56 P Q^{7}+56 P^{3} Q^{7}+14 P^{5} Q^{7}+P^{7} Q^{7}+Q^{8}
\end{gathered}
$$

and

$$
\begin{aligned}
& g(P, Q)=P^{8}-32768 P Q-14336 P^{3} Q-1792 P^{5} Q-56 P^{7} Q+7168 P^{2} Q^{2}+2688 P^{4} Q^{2} \\
& +252 P^{6} Q^{2}-14336 P Q^{3}-7168 P^{3} Q^{3}-1064 P^{5} Q^{3}-56 P^{7} Q^{3}+2688 P^{2} Q^{4}+1078 P^{4} Q^{4} \\
& +84 P^{6} Q^{4}-1792 P Q^{5}-1064 P^{3} Q^{5}-224 P^{5} Q^{5}-14 P^{7} Q^{5}+252 P^{2} Q^{6}+84 P^{4} Q^{6}+7 P^{6} Q^{6}
\end{aligned}
$$

$$
-56 P Q^{7}-56 P^{3} Q^{7}-14 P^{5} Q^{7}-P^{7} Q^{7}+Q^{8}
$$

By examining the behavior of the first factor $f(P, Q)$ of the left hand side of (3.26) near $q=0$, it can be seen that there is a neighborhood about the origin, where $f(P, Q)$ factors are not zero. Then the second factor $g(P, Q)$ is zero in this neighborhood. By the identity theorem $g(P, Q)$ is identically zero. Thus, we have $g(P, Q)=0$. This completes the proof.

3. Explicit Evaluations of $K(q)$

In this section we prove a general theorem for the explicit evaluation of Ramanujan-Göllnitz-Gordon continued fraction $K(q)$ and give example.

Theorem 3.1. We have

$$
K^{2}(q)-6+\frac{1}{K^{2}(q)}=\left(\frac{\phi(-q)}{q^{1 / 2} \psi\left(q^{4}\right)}\right)^{2}
$$

Proof. Combining (2.1) and (2.2), we deduce that
(3.1) $2\left(\frac{1}{K(q)}-K(q)\right)^{2}-\left(\frac{1}{K(q)}+K(q)\right)^{2}=2\left(\frac{\phi\left(q^{2}\right)}{q^{1 / 2} \psi\left(q^{4}\right)}\right)^{2}-\left(\frac{\phi(q)}{q^{1 / 2} \psi\left(q^{4}\right)}\right)^{2}$.

Simplify (3.1), we obtain

$$
\begin{equation*}
K^{2}(q)-6+\frac{1}{K^{2}(q)}=\frac{2 \phi^{2}\left(q^{2}\right)-\phi^{2}(q)}{q \psi^{2}\left(q^{4}\right)} \tag{3.2}
\end{equation*}
$$

From Lemma 2.5, we note that

$$
\begin{equation*}
2 \phi^{2}\left(q^{2}\right)-\phi^{2}(q)=\phi^{2}(-q) \tag{3.3}
\end{equation*}
$$

Employing (3.3) in (3.2) and simplifying, we complete the proof.
Theorem 3.2. For $q=e^{-\pi \sqrt{n / 2}}$, let

$$
A_{2, n}=\frac{\phi(-q)}{2^{5 / 4} q^{1 / 2} \psi\left(q^{4}\right)}
$$

Then

$$
\frac{1}{K^{2}\left(e^{-\pi \sqrt{n / 2}}\right)}+K^{2}\left(e^{-\pi \sqrt{n / 2}}\right)=4 \sqrt{2} A_{2, n}^{2}+6
$$

Proof. We set $q=e^{-\pi \sqrt{n / 2}}$ and use the definition of $A_{2, n}$ in Theorem 3.1 to complete the proof.

From Theorem 3.2 it is clear that explicit values of $K^{2}\left(e^{-\pi \sqrt{n / 2}}\right)$ can easily be evaluated if we know the corresponding values of $A_{2, n}$. Saikia [7] evaluated explicit values of $A_{2, n}$ for $n=1,2,1 / 2,3,1 / 3,4,1 / 4,9$, and $1 / 9$. Noting $A_{2,1}=1$ from Lemma 2.1(i), employing in Theorem 3.2 and solving the resulting equation, we evaluate

$$
K^{2}\left(e^{-\pi / \sqrt{2}}\right)=3+2 \sqrt{2}-2 \sqrt{(2+\sqrt{2})(1+\sqrt{2})}
$$

Next, we evaluate some new explicit values of the parameter $A_{2, n}$ which can be used to evaluate explicit values of $K^{2}\left(e^{-\pi / \sqrt{n / 2}}\right)$ by appealing to Theorem 3.2. First we state the following remark [7, p. 111, Remarks 4.2]:
Remark 3.3. By using the definitions of $\phi(q), \psi(q)$ and $A_{k, n}$, it can be seen that $A_{k, n}$ has positive real value and that the values of $A_{k, n}$ increases as n increases when $k>1$. Thus, by Lemma 2.1(i)(Theorem 2.1(i) in [7]), $A_{k, n}>1$ for all $n>1$ if $k>1$.

Theorem 3.4. We have
(i) $A_{2,5}=(6+4 \sqrt{2}+\sqrt{85+60 \sqrt{2}})^{1 / 2}$,
(ii) $A_{2,25}=\frac{1}{6}\left(52+40 \sqrt{2}+2 c+\sqrt{36+4(26+20 \sqrt{2}+c)^{2}}\right)$,
where

$$
\begin{aligned}
& c=(80120+56650 \sqrt{2}-60 \sqrt{33729+23850 \sqrt{2}})^{1 / 3} \\
& +(80120+56650 \sqrt{2}+60 \sqrt{33729+23850 \sqrt{2}})^{1 / 3} .
\end{aligned}
$$

Proof. Setting $q:=e^{-\pi \sqrt{n / 2}}$ in Theorem 2.8 and employing the definition of $A_{2, n}$, we find that

$$
\begin{equation*}
P=2^{5 / 4} A_{2, n} \quad \text { and } \quad Q=2^{5 / 4} A_{2,25 n} \tag{3.4}
\end{equation*}
$$

Setting $n=1 / 5$ in (3.4), employing in (3.1)and then simplifying by noting $A_{2,1 / 5}=$ $1 / A_{2,5}$ from Lemma 2.1, we obtain
(3.5) $A_{2,5}^{12}-12 A_{2,5}^{10}+(5-80 \sqrt{2}) A_{2,5}^{8}-184 A_{2,5}^{6}-5(1+16 \sqrt{2}) A_{2,5}^{4}-20 A_{2,5}^{2}-1=0$.

Solving (3.5) for $A_{2,5}$ with the help of Mathematika and noting the facts in Remark 3.3 , we arrive at (i).

Setting $n=1$ in (3.4), employing in (3.1)and then simplifying by noting $A_{2,1}=1$ from Lemma 2.1, we obtain

$$
\begin{equation*}
A_{2,25}^{6}-4(13+10 \sqrt{2}) A_{2,25}^{5}+5 A_{2,25}^{4}-40(3+2 \sqrt{2}) A_{2,25}^{3} \tag{3.6}
\end{equation*}
$$

$$
-5 A_{2,25}^{2}-4(13+10 \sqrt{2}) A_{2,25}-1=0
$$

Dividing (3.6) by $A_{2,25}^{3}$ and rearranging the terms, we obtain

$$
\begin{gather*}
\left(A_{2,25}^{3}-\frac{1}{A_{2,25}^{3}}\right)-4(13+10 \sqrt{2})\left(A_{2,25}^{2}+\frac{1}{A_{2,25}^{2}}\right) \tag{3.7}\\
\quad+5\left(A_{2,25}-\frac{1}{A_{2,25}}\right)-40(3+2 \sqrt{2})=0
\end{gather*}
$$

Set

$$
\begin{equation*}
L=A_{2,25}-\frac{1}{A_{2,25}}, \tag{3.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
A_{2,25}^{2}+\frac{1}{A_{2,25}^{2}}=L^{2}-2 \quad \text { and } \quad A_{2,25}^{3}-\frac{1}{A_{2,25}^{3}}=L^{3}+3 L \tag{3.9}
\end{equation*}
$$

Employing (3.8) and (3.9) in (3.7) and simplifying, we obtain

$$
\begin{equation*}
L^{3}-4(13+10 \sqrt{2}) L^{2}+8 L-32(7+5 \sqrt{2})=0 \tag{3.10}
\end{equation*}
$$

Solving (3.10) for L with the help of Mathematika, we obtain

$$
\begin{equation*}
L=\frac{2}{3}(26+20 \sqrt{2}+c), \tag{3.11}
\end{equation*}
$$

where

$$
\begin{aligned}
c & =(80120+56650 \sqrt{2}-60 \sqrt{33729+23850 \sqrt{2}})^{1 / 3} \\
& +(80120+56650 \sqrt{2}+60 \sqrt{33729+23850 \sqrt{2}})^{1 / 3}
\end{aligned}
$$

Employing (3.11) in (3.8), solving the resulting equation, and noting the facts in Remark 3.3, we complete the proof of (ii).
Remark 3.5. Explicit values of $A_{2,1 / 5}$ and $A_{2,1 / 25}$ can also be evaluated by employing the values of $A_{2,5}$ and $A_{2,25}$, respectively in the result $A_{2,1 / n}=1 / A_{2, n}$ of Lemma 2.1.
Theorem 3.6. We have
(i) $A_{2,7}$
$=\frac{1}{\sqrt{2}}(16+10 \sqrt{2}+2 \sqrt{130+92 \sqrt{2}}+\sqrt{-4+4(8+5 \sqrt{2}+\sqrt{130+92 \sqrt{2}})})^{1 / 2}$,
(ii) $A_{2,49}$

$$
=\frac{1}{2}\left(26+88 \sqrt{2}+3 c+\frac{d}{\sqrt{b}}+\frac{1}{\sqrt{c}}\left((-4 b+(126+88 \sqrt{2}+3 c) \sqrt{b}+d)^{2}\right)^{1 / 2}\right)
$$

where

$$
b=\sqrt{1743+1232 \sqrt{2}}, \quad c=\sqrt{3486+2462 \sqrt{2}}
$$

and

$$
d=\sqrt{14(263488+186314 \sqrt{2}+4463 \sqrt{b+3156 c})} .
$$

Proof. Setting $q=e^{-\pi \sqrt{n / 2}}$ in Theorem 2.9 and employing the definition of $A_{2, n}$, we find that

$$
\begin{equation*}
P=2^{5 / 4} A_{2, n} \quad \text { and } \quad Q=2^{5 / 4} A_{2,49 n} \tag{3.12}
\end{equation*}
$$

Setting $n=1 / 7$ in (3.12), employing in (3.12), and then simplifying by noting $A_{2,1 / 7}=1 / A_{2,7}$ from Lemma 2.1, we obtain
$A_{2,7}^{16}-56 A_{2,7}^{14}+(252-448 \sqrt{2}) A_{2,7}^{12}+56(-35+12 \sqrt{2}) A_{2,7}^{10}+(1526-2048 \sqrt{2}) A_{2,7}^{8}$

$$
\begin{equation*}
+56(-35+12 \sqrt{2}) A_{2,7}^{6}+(252-448 \sqrt{2}) A_{2,7}^{4}-56 A_{2,7}^{2}+1=0 . \tag{3.13}
\end{equation*}
$$

Dividing (3.13) by $A_{2,7}^{8}$ and rearranging the terms, we obtain

$$
\begin{gathered}
\left(A_{2,7}^{8}+\frac{1}{A_{2,7}^{8}}\right)-56\left(A_{2,7}^{6}+\frac{1}{A_{2,7}^{6}}\right)+(252-448 \sqrt{2})\left(A_{2,7}^{4}+\frac{1}{A_{2,7}^{4}}\right) \\
\quad+56(-35+12 \sqrt{2})\left(A_{2,7}^{2}+\frac{1}{A_{2,7}^{2}}\right)+(1526-2048 \sqrt{2})=0
\end{gathered}
$$

Next, set

$$
\begin{equation*}
T=A_{2,7}^{2}+\frac{1}{A_{2,7}^{2}} \tag{3.15}
\end{equation*}
$$

so that
$A_{2,7}^{4}+\frac{1}{A_{2,7}^{4}}=T^{2}-2, \quad A_{2,7}^{6}+\frac{1}{A_{2,7}^{6}}=T^{3}-3 T \quad$ and $\quad A_{2,7}^{8}+\frac{1}{A_{2,7}^{8}}=\left(T^{2}-2\right)^{2}-2$.
Employing (3.15) and (3.16) in (3.14) and simplifying, we obtain
(3.17) $T^{4}-56 T^{3}+(248-448 \sqrt{2}) T^{2}+224(-8+3 \sqrt{2}) T+(1024-1152 \sqrt{2})=0$.

Solving (3.17) for T, we obtain

$$
\begin{equation*}
T=2(8+5 \sqrt{2}+\sqrt{130+92 \sqrt{2}}) \tag{3.18}
\end{equation*}
$$

Employing (3.18) in (3.15), solving for $A_{2,7}$, and noting the facts in Remarks 3.3, we arrive at (i).

Again setting $n=1$ in (3.12), employing in (3.12) and simplifying, we obtain

$$
\begin{gather*}
A_{2,49}^{8}-8(63+44 \sqrt{2}) A_{2,49}^{7}+28(17+12 \sqrt{2}) A_{2,49}^{6}-56(27+20 \sqrt{2}) A_{2,49}^{5} \\
+14(77+48 \sqrt{2}) A_{2,49}^{4}-56(27+20 \sqrt{2}) A_{2,49}^{3} \\
+28(17+12 \sqrt{2}) A_{2,49}^{2}-8(63+44 \sqrt{2}) A_{2,49}+1=0 \tag{3.19}
\end{gather*}
$$

Dividing (3.19) by $A_{2,49}^{4}$ and rearranging the terms, we obtain
$\left(A_{2,49}^{4}+\frac{1}{A_{2,49}^{4}}\right)-8(63+44 \sqrt{2})\left(A_{2,49}^{3}+\frac{1}{A_{2,49}^{3}}\right)+28(17+12 \sqrt{2})\left(A_{2,49}^{2}+\frac{1}{A_{2,49}^{2}}\right)$

$$
\begin{equation*}
-56(27+20 \sqrt{2})\left(A_{2,49}+\frac{1}{A_{2,49}}\right)+14(77+48 \sqrt{2})=0 \tag{3.20}
\end{equation*}
$$

Next, set

$$
\begin{equation*}
E=A_{2,49}+\frac{1}{A_{2,49}} \tag{3.21}
\end{equation*}
$$

so that
(3.22)
$A_{2,49}^{2}+\frac{1}{A_{2,49}^{2}}=E^{2}-2, \quad A_{2,49}^{3}+\frac{1}{A_{2,49}^{3}}=E^{3}-3 E, \quad$ and $\quad A_{2,49}^{4}+\frac{1}{A_{2,49}^{4}}=\left(E^{2}-2\right)^{2}-2$.
Employing (3.21) and (3.22) in (3.20) and simplifying, we obtain

$$
\begin{equation*}
E^{4}-8(63+44 \sqrt{2}) E^{3}+8(59+42 \sqrt{2}) E^{2}-64 \sqrt{2} E+128=0 \tag{3.23}
\end{equation*}
$$

Solving (3.23) for E using Mathematica, we obtain

$$
E=\frac{1}{4}(504+352 \sqrt{2})+3 \sqrt{3486+2462 \sqrt{2}}
$$

$$
\begin{equation*}
+\sqrt{2\left(31241+22092 \sqrt{2}+186314 \sqrt{\frac{14}{249+176 \sqrt{2}}}+\frac{1844416}{\sqrt{1743+1232 \sqrt{2}}}\right)} \tag{3.24}
\end{equation*}
$$

Employing (3.24) in (3.21), solving the resulting equation, and noting the facts in Remark 3.3, we complete the proof of (ii).

Remark 3.7. Explicit values of $A_{2,1 / 7}$ and $A_{2,1 / 49}$ can also be evaluated by employing the values of $A_{2,7}$ and $A_{2,49}$, respectively in the result $A_{2,1 / n}=1 / A_{2, n}$ of Lemma 2.1.

4. Reciprocity Theorem of $K(q)$

In this section we prove reciprocity theorems for the continued fraction $K(q)$.
Theorem 4.1. If r and s are both positive and $2 r s=1$, then

$$
\left(K^{2}\left(e^{-\pi r}\right)-6+\frac{1}{K^{2}\left(e^{-\pi r}\right)}\right)\left(K^{2}\left(e^{-\pi s}\right)-6+\frac{1}{K^{2}\left(e^{-\pi s}\right)}\right)=32 .
$$

Proof. From Theorem 3.1, we deduce that

$$
\begin{align*}
\left(K^{2}\left(e^{-\pi r}\right)\right. & \left.-6+\frac{1}{K^{2}\left(e^{-\pi r}\right)}\right)\left(K^{2}\left(e^{-\pi s}\right)-6+\frac{1}{K^{2}\left(e^{-\pi s}\right)}\right) \tag{4.1}\\
& =\left(\frac{\phi\left(-e^{-\pi r}\right) \phi\left(-e^{-\pi s}\right)}{e^{-\pi(r+s) / 2} \psi\left(e^{-4 \pi r}\right) \psi\left(e^{-4 \pi s}\right)}\right)^{2}
\end{align*}
$$

Using (2.3) and noting $2 r s=1$, we find that

$$
\begin{equation*}
\left(\frac{\phi\left(-e^{-\pi r}\right)}{e^{-\pi s / 2} \psi\left(e^{-4 \pi s}\right)}\right)^{2}=2^{5 / 2} \sqrt{\frac{s}{r}} \tag{4.2}
\end{equation*}
$$

Similarly, interchanging the role of r and s, we obtain

$$
\begin{equation*}
\left(\frac{\phi\left(-e^{-\pi s}\right)}{e^{-\pi r / 2} \psi\left(e^{-4 \pi r}\right)}\right)^{2}=2^{5 / 2} \sqrt{\frac{r}{s}} \tag{4.3}
\end{equation*}
$$

Employing (4.2) and (4.3) in (4.1) and simplifying, we arrive at the desired result.

Theorem 4.2. If r and s are both positive and $2 r s=1$, then

$$
\left(\frac{1+K^{2}\left(e^{-\pi r}\right)}{1-K^{2}\left(e^{-\pi r}\right)}\right)\left(\frac{1+K^{2}\left(e^{-\pi s}\right)}{1-K^{2}\left(e^{-\pi s}\right)}\right)=\sqrt{2} .
$$

Proof. Combining (2.1) and (2.2), we deduce that

$$
\begin{equation*}
\frac{1+K^{2}(q)}{1-K^{2}(q)}=\frac{\phi(q)}{\phi\left(q^{2}\right)} \tag{4.4}
\end{equation*}
$$

Using (4.4), we find that

$$
\begin{equation*}
\left(\frac{1+K^{2}\left(e^{-\pi r}\right)}{1-K^{2}\left(e^{-\pi r}\right)}\right)\left(\frac{1+K^{2}\left(e^{-\pi s}\right)}{1-K^{2}\left(e^{-\pi s}\right)}\right)=\frac{\phi\left(e^{-\pi r}\right) \phi\left(e^{-\pi s}\right)}{\phi\left(e^{-2 \pi r}\right) \phi\left(e^{-2 \pi s}\right)} \tag{4.5}
\end{equation*}
$$

From (2.4), we deduce that

$$
\begin{equation*}
\frac{\phi\left(e^{-\pi r}\right)}{\phi\left(e^{-2 \pi s}\right)}=2^{1 / 4}(s / r)^{1 / 4} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\phi\left(e^{-\pi s}\right)}{\phi\left(e^{-2 \pi r}\right)}=2^{1 / 4}(r / s)^{1 / 4} \tag{4.7}
\end{equation*}
$$

Employing (4.6) and (4.7) in (4.5) and simplifying, we arrive at the desired result. \square
Remark 4.3. If we know $K\left(e^{-\pi r}\right)\left(\right.$ or $\left.K\left(e^{-\pi s}\right)\right)$ then $K\left(e^{-\pi / 2 r}\right)$ (or $K\left(e^{-\pi / 2 s}\right)$) can easily be evaluated by appealing to Theorem 4.1 or 4.2.

References

[1] N. D. Baruah and N. Saikia, Explicit evaluations of Ramanujan-Göllnitz-Gordon continued fraction, Monatsh. Math., 154(2008), 271-288.
[2] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[3] H. H. Chan, On Ramanujan's cubic continued fraction, Acta Arith., 73(1995), 343355.
[4] H. H. Chan and S.-S. Huang, On the Ramanujan-Göllnitz-Gordon continued fraction, Ramanujan J., 1(1997), 75-90.
[5] K. G. Ramanathan, On Ramanujans continued fraction, Acta Arith., 43(1984), 209226.
[6] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
[7] N. Saikia, A new parameter for Ramanujan's theta-fucntions and explicit values, Arab J. Math. Sc., 18(2012), 105-119.
[8] N. Saikia, On modular identities of Ramanujan-Göllnitz-Gordon continued fraction, Far East J. Math. Sc., 54(1)(2011), 65-79.
[9] K. R. Vasuki and B. R. Srivatsa Kumar, Certain identities for Ramanujan-Göllnitz Gordon continued fraction, J. Comput. Appl. Math., 187(2006), 87-95.
[10] G. N. Watson, Theorems stated by Ramanujan(ix): two continued fractions, J. London Math. Soc., 4(1929), 231237.
[11] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1966. Indian edition is published by Universal Book Stall, New Delhi, 1991.

