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Abstract. In the paper A new parameter for Ramanujan’s theta-functions and explicit

values, Arab J. Math. Sc., 18 (2012), 105-119, Saikia studied the parameter Ak,n involv-

ing Ramanujan’s theta-functions ϕ(q) and ψ(q) for any positive real numbers k and n and

applied it to find explicit values of ψ(q). As more application to the parameter Ak,n, in

this paper we prove a new general theorem for explicit evaluation of Ramanujan-Göllnitz-

Gordon continued fraction K(q) in terms of the parameter Ak,n and give examples. We

also find some new explicit values of the parameter Ak,n and offer reciprocity theorems for

the continued fraction K(q).

1. Introduction

For q := e2πiz, Im(z) > 0, define Ramanujan’s theta-functions ϕ(q), ψ(q), and
f(−q) as

ϕ(q) :=
∞∑

n=−∞
qn

2

=
(−q;−q)∞
(q;−q)∞

= ϑ3(0, 2z)

and

ψ(q) :=

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

= 2−1q−1/8ϑ2(0, z),

where ϑ2 and ϑ3 [11, p.464] are classical theta-functions and

(a; q)∞ :=
∞∏
k=0

(1− aqk).
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For any positive real numbers k and n, Saikia [7, p.107, (1.7)] defined the
parameter Ak,n as

(1.1) Ak,n =
ϕ(−q)

2 k1/4qk/4ψ(q2k)
, q = e−π

√
n/k

and studied its several properties. Saikia [7] also evaluated many explicit values of
Ak,n and some of the explicit values of Ak,n are used to find some particular values
of the Ramanujan’s theta-function ψ(q).

As more application of the parameter Ak,n, in this paper we use the particular
case A2,n of the parameter Ak,n to prove a general theorem for the explicit evalua-
tions of the Ramanujan-Göllnitz-Gordon continued fraction K(q) [6, p.299] defined
by

(1.2) K(q) := q1/2
(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

=
q1/2

1 + q+

q2

1 + q3 +

q4

1 + q5 +···
, |q| < 1

We also evaluate some new explicit values of the parameter A2,n by proving two
new theta-function identities. Previously, Baruah and Saikia [1] established some
general theorems for explicit evaluations of K(q) and evaluated some values. Chan
and Huang [4] also proved general formulas for explicit evaluation of the continued
fraction K(q) in terms of Ramanujan’s class invariants. For more results on the
continued fraction K(q) see [8] and [9].

The famous Rogers-Ramanujan continued fraction R(q) is defined by

(1.3) R(q) :=
q1/5

1 +

q

1+

q2

1 +

q3

1 +···
, |q| < 1.

On page 204 of his second notebook [6], Ramanujan stated that if α and β are both
positive and αβ = 1, then

(1.4)

(√
5 + 1

2
+R(e−2πα)

)(√
5 + 1

2
+R(e−2πβ)

)
=

5 +
√
5

2

and

(1.5)

(√
5− 1

2
−R(e−2πα)

)(√
5− 1

2
−R(e−2πβ)

)
=

5−
√
5

2
.

The reciprocity theorems (1.4) and (1.5) are proved by Watson [10]. Ramanthan
[5] also proved some reciprocity theorems for R(q) which are analogous to (1.4)
and (1.5). Chan [3] proved some reciprocity theorems for the Ramanujan’s cubic
continued fraction. In this paper, we also prove two reciprocity theorems for the
Ramanujan-Göllnitz-Gordon continued fraction K(q) akin to (1.4) and (1.5).

In Section 2, we record some preliminary results for ready references in this
paper. In section 3, we prove two new theta-function identities. In section 4, we
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prove general theorem for explicit evaluation of K(q) and find some new explicit
values of the parameter A2,n. Finally, in section 5, we prove a reciprocity theorem
for the continued fraction K(q).

Since modular equations are key in proving theta-function identities in section 2,
we end this introduction by defining Ramanujan’s modular equation from Berndt’s
book [2]. Let K, K ′, L, and L′ denote the complete elliptic integrals of the first kind
associated with the moduli k, k′, l, and l′, respectively. Suppose that the equality

(1.6) n
K ′

K
=
L′

L

holds for some positive integer n. Then a modular equation of degree n is a relation
between the moduli k and l which is implied by (1.6). Ramanujan recorded his
modular equations in terms of α and β, where α = k2 and β = l2. We say that β
has degree n over α. By denoting zr = ϕ2(qr), where q = exp(−πK ′/K), |q| < 1,
the multiplier m connecting α and β is defined by m = z1/zn.

2. Preliminary Results

Lemma 2.1.([7, p.111, Theorem 4.1]) For all positive real numbers k and n, we
have

(i)Ak,1 = 1 and (ii)Ak,1/n = 1/Ak,n.

Lemma 2.2.([6, p.299]) We have

(2.1)
1

K(q)
−K(q) =

ϕ(q2)

q1/2ψ(q4)

and

(2.2)
1

K(q)
+K(q) =

ϕ(q)

q1/2ψ(q4)
.

Proofs of (2.1) and (2.2) can be found in Berndt’s book [2, p.221].

Lemma 2.3.([2, p.43, Entry 27(ii)]) If α and β are such that the modulus of each
exponential argument is less than 1 and αβ = π, then

(2.3) 2
√
α ψ(e−2α2

) =
√
β eα

2/4ϕ(−e−β2

)

and

(2.4)
√
αϕ(e−α2

) =
√
βϕ(e−β2

).

Lemma 2.4. We have

(2.5) ϕ(−q) =
√
z1(1− α)1/4,
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(2.6) ψ(q4) =

√
z1{1−

√
1− α }1/2

2
√
2 q1/2

,

For (2.5) see [2, p.122,Entry 10(ii)] and for (2.6) see [2, p.123, ntry 11(iv)].
We also note that if we replace q by qn in the Lemma 2.4 then z1 and α will be

replaced by zn and β, respectively, where β has degree n over α.

Lemma 2.5.([2, p.40, Entry 25(vi)]) We have

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2).

Lemma 2.6.([2, p.280, Entry 13(i)]) If β has degree 5 over α, then

(αβ)1/2 + {(1− α)(1− β)}1/2 + 2 {αβ(1− α)(1− β)}1/6 = 1.

Lemma 2.7.([2, p.314, Entry 19(i)]) If β has degree 7 over α, then

(αβ)1/8 + {(1− α)(1− β)}1/8 = 1.

3. Theta-Function Identities

The section is devoted to prove two new theta-function identities which will be
used in section 4 to find new explicit values of the parameter A2,n.

Theorem 2.8. If P =
ϕ(−q)

q1/2ψ(q4)
and Q =

ϕ(−q5)
q5/4ψ(q20)

then

(
P

Q

)3

−
(
Q

P

)3

+

(
32

PQ

)2

+ (PQ)2 + 320

(
1

Q2
+

1

P 2

)
+ 20

(
P 2

Q2
+
Q2

P 2

)

(3.1) +5

(
P

Q
− Q

P

)
+ 10(P 2 +Q2) + 120 = 0.

Proof. Transcribing P and Q by using (2.5) and (2.6) and simplifying, we obtain

(3.2)
√
1− α =

P 2

8 + P 2
and

√
1− β =

Q2

8 +Q2
,

where β has degree 5 over α. Equivalently,

(3.3) α = 1−
(

P 2

8 + P 2

)2

and β = 1−
(

Q2

8 +Q2

)2

.

From Lemma 2.6, we note that

(3.4) 2(16xy2)1/6 = (1− y)−
√
x,
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where

(3.5) x := αβ and y := {(1− α)(1− β)}1/2 .

Squaring (3.4) and simplifying, we obtain

(3.6) 42(16xy2)1/3 = s− 2r
√
x,

where

(3.7) r = 1− y and s = (1− y)2 + x.

Cubing (3.6) and simplifying, we obtain

(3.8) 1024xy2 − s3 − 12sr2x = −(6s2r
√
x+ 8r3x3/2).

Squaring (3.8) and simplifying, we obtain

(3.9) (1024xy2 − s3 − 12r2sx)2 = 36s4r2x+ 64r6x3 + 96s2r4x2.

Combining (3.5), (3.7), and (3.9), employing (3.2) and (3.3), and then factorizing
with the help of Mathematika, we find that

(3.10) f(P,Q) g(P,Q) j(P,Q) = 0,

where

f(P,Q) = P 6−1024PQ−320P 3Q−20P 5Q+5P 4Q2−320PQ3−120P 3Q3−10P 5Q3

−5P 2Q4 − 20PQ5 − 10P 3Q5 − P 5Q5 −Q6,

g(P,Q) = P 6+1024PQ+320P 3Q+20P 5Q+5P 4Q2+320PQ3+120P 3Q3+10P 5Q3

−5P 2Q4 + 20PQ5 + 10P 3Q5 + P 5Q5 −Q6,
and

j(P,Q) = P 12+1048576P 2Q2+655360P 4Q2+143360P 6Q2+12800P 8Q2+378P 10Q2

+655360P 2Q4 + 319488P 4Q4 + 44544P 6Q4 + 975P 8Q4 − 112P 10Q4

+143360P 2Q6 + 44544P 4Q6 − 2708P 6Q6 − 1680P 8Q6 − 116P 10Q6

+12800P 2Q8 + 975P 4Q8 − 1680P 6Q8 − 360P 8Q8 − 20P 10Q8

+378P 2Q10 − 112P 4Q10 − 116P 6Q10 − 20P 8Q10 − P 10Q10 +Q12.

By examining the behavior of the first factors f(P,Q) and the last factor j(P,Q)
in the left hand side of (3.10) near q = 0, it can be seen that there is a neighborhood
about the origin, where these factors are not zero. Then the second factor g(P,Q)
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is zero in this neighborhood. By the identity theorem g(P,Q) is identically zero.
Thus, we have

g(P,Q) = P 6+1024PQ+320P 3Q+20P 5Q+5P 4Q2+320PQ3+120P 3Q3+10P 5Q3

(3.11) −5P 2Q4 + 20PQ5 + 10P 3Q5 + P 5Q5 −Q6 = 0.

Dividing (3.11) by P 3Q3 and rearranging the terms, we arrive at the desired result.2

Theorem 2.9. If P =
ϕ(−q)

q1/2ψ(q4)
and Q =

ϕ(−q7)
q7/4ψ(q28)

then

P 8−32768PQ−14336P 3Q−1792P 5Q−56P 7Q+7168P 2Q2+2688P 4Q2+252P 6Q2

−14336PQ3−7168P 3Q3−1064P 5Q3−56P 7Q3+2688P 2Q4+1078P 4Q4+84P 6Q4

−1792PQ5 − 1064P 3Q5 − 224P 5Q5 − 14P 7Q5 + 252P 2Q6 + 84P 4Q6 + 7P 6Q6

(3.12) −56PQ7 − 56P 3Q7 − 14P 5Q7 − P 7Q7 +Q8 = 0.

Proof. Transcribing P and Q by using (2.5) and (2.6) and simplifying, we obtain

(3.13)
√
1− α =

P 2

8 + P 2
and

√
1− β =

Q2

8 +Q2
,

where β has degree 7 over α. Equivalently,

(3.14) α = 1−
(

P 2

8 + P 2

)2

and β = 1−
(

Q2

8 +Q2

)2

.

From Lemma 2.7, we note that

(3.15) y1/4 = 1− x1/8,

where

(3.16) x := αβ and y := {(1− α)(1− β)}1/2 .

Squaring (3.15) and simplifying, we obtain

(3.17) z − x1/4 = −2x1/8,

where

(3.18) z =
√
y − 1.
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Squaring (3.17) and simplifying, we obtain

(3.19) z2 +
√
x = (4 + 2z)x1/4.

Squaring (3.19) and simplifying, we deduce that

(3.20) z4 + x = (16 + 2z2 + 16z)
√
x.

From (3.18), we deduce that

(3.21) z2 = y − 1− 2(
√
y − 1) and z4 = (y + 1)2 + 4y − 4(y + 1)

√
y.

Employing (3.19) and (3.21) in (3.20) and simplifying, we obtain

(3.22) k − 4(y + 1)
√
y = (s+ 12

√
y)
√
x,

where

(3.23) k = y2 + 6y + x+ 1 and s = 2 + 2y.

Squaring (3.22) and rearranging the terms, we arrive at

(3.24) k2 + 16(y + 1)2y − (s2 + 144y)x = (24sx+ 8k(y + 1))
√
y.

Squaring (3.24), we obtain

(3.25) (k2 + 16(y + 1)2y − (s2 + 144y)x)2 = (24sx+ 8k(y + 1))2y.

Combining (3.23) and (3.25), employing (3.13) and (3.14), and then factorizing with
the help of Mathematika, we find that

(3.26) f(P,Q) g(P,Q) = 0,

where

f(P,Q) = P 8+32768PQ+14336P 3Q+1792P 5Q+56P 7Q+7168P 2Q2+2688P 4Q2

+252P 6Q2+14336PQ3+7168P 3Q3+1064P 5Q3+56P 7Q3+2688P 2Q4+1078P 4Q4

+84P 6Q4+1792PQ5+1064P 3Q5+224P 5Q5+14 P 7Q5+252P 2Q6+84P 4Q6+7P 6Q6

+56PQ7 + 56P 3Q7 + 14P 5Q7 + P 7Q7 +Q8

and

g(P,Q) = P 8−32768PQ−14336P 3Q−1792P 5Q−56P 7Q+7168P 2Q2+2688P 4Q2

+252P 6Q2−14336PQ3−7168P 3Q3−1064P 5Q3−56P 7Q3+2688P 2Q4+1078P 4Q4

+84P 6Q4−1792PQ5−1064P 3Q5−224P 5Q5−14P 7Q5+252P 2Q6+84P 4Q6+7P 6Q6
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−56PQ7 − 56P 3Q7 − 14P 5Q7 − P 7Q7 +Q8.

By examining the behavior of the first factor f(P,Q) of the left hand side of
(3.26) near q = 0, it can be seen that there is a neighborhood about the origin,
where f(P,Q) factors are not zero. Then the second factor g(P,Q) is zero in this
neighborhood. By the identity theorem g(P,Q) is identically zero. Thus, we have
g(P,Q) = 0. This completes the proof. 2

3. Explicit Evaluations of K(q)

In this section we prove a general theorem for the explicit evaluation of
Ramanujan-Göllnitz-Gordon continued fraction K(q) and give example.

Theorem 3.1. We have

K2(q)− 6 +
1

K2(q)
=

(
ϕ(−q)

q1/2ψ(q4)

)2

.

Proof. Combining (2.1) and (2.2), we deduce that

(3.1) 2

(
1

K(q)
−K(q)

)2

−
(

1

K(q)
+K(q)

)2

= 2

(
ϕ(q2)

q1/2ψ(q4)

)2

−
(

ϕ(q)

q1/2ψ(q4)

)2

.

Simplify (3.1), we obtain

(3.2) K2(q)− 6 +
1

K2(q)
=

2ϕ2(q2)− ϕ2(q)

qψ2(q4)

From Lemma 2.5, we note that

(3.3) 2ϕ2(q2)− ϕ2(q) = ϕ2(−q).

Employing (3.3) in (3.2) and simplifying, we complete the proof. 2

Theorem 3.2. For q = e−π
√

n/2, let

A2,n =
ϕ(−q)

25/4q1/2ψ(q4)
.

Then
1

K2(e−π
√

n/2)
+K2(e−π

√
n/2) = 4

√
2 A2

2,n + 6.

Proof. We set q = e−π
√

n/2 and use the definition of A2,n in Theorem 3.1 to
complete the proof. 2
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From Theorem 3.2 it is clear that explicit values of K2(e−π
√

n/2) can easily be
evaluated if we know the corresponding values of A2,n. Saikia [7] evaluated explicit
values of A2,n for n = 1, 2, 1/2, 3, 1/3, 4, 1/4, 9, and 1/9. Noting A2,1 = 1 from
Lemma 2.1(i), employing in Theorem 3.2 and solving the resulting equation, we
evaluate

K2(e−π/
√
2) = 3 + 2

√
2− 2

√
(2 +

√
2)(1 +

√
2).

Next, we evaluate some new explicit values of the parameter A2,n which can

be used to evaluate explicit values of K2(e−π/
√

n/2) by appealing to Theorem 3.2.
First we state the following remark [7, p. 111, Remarks 4.2]:

Remark 3.3. By using the definitions of ϕ(q), ψ(q) and Ak,n, it can be seen that
Ak,n has positive real value and that the values of Ak,n increases as n increases
when k > 1. Thus, by Lemma 2.1(i)(Theorem 2.1(i) in [7]), Ak,n > 1 for all n > 1
if k > 1.

Theorem 3.4. We have

(i) A2,5 =

(
6 + 4

√
2 +

√
85 + 60

√
2

)1/2

,

(ii) A2,25 =
1

6

(
52 + 40

√
2 + 2c+

√
36 + 4

(
26 + 20

√
2 + c

)2)
,

where

c =

(
80120 + 56650

√
2− 60

√
33729 + 23850

√
2

)1/3

+

(
80120 + 56650

√
2 + 60

√
33729 + 23850

√
2

)1/3

.

Proof. Setting q := e−π
√

n/2 in Theorem 2.8 and employing the definition of A2,n,
we find that

(3.4) P = 25/4A2,n and Q = 25/4A2,25n.

Setting n = 1/5 in (3.4), employing in (3.1)and then simplifying by noting A2,1/5 =
1/A2,5 from Lemma 2.1, we obtain

(3.5) A12
2,5−12A10

2,5+(5−80
√
2)A8

2,5−184A6
2,5−5(1+16

√
2)A4

2,5−20A2
2,5−1 = 0.

Solving (3.5) for A2,5 with the help of Mathematika and noting the facts in Remark
3.3, we arrive at (i).

Setting n = 1 in (3.4), employing in (3.1)and then simplifying by noting A2,1 = 1
from Lemma 2.1, we obtain

(3.6) A6
2,25 − 4(13 + 10

√
2)A5

2,25 + 5A4
2,25 − 40(3 + 2

√
2)A3

2,25
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−5A2
2,25 − 4(13 + 10

√
2)A2,25 − 1 = 0.

Dividing (3.6) by A3
2,25 and rearranging the terms, we obtain

(3.7)

(
A3

2,25 −
1

A3
2,25

)
− 4(13 + 10

√
2)

(
A2

2,25 +
1

A2
2,25

)

+5

(
A2,25 −

1

A2,25

)
− 40(3 + 2

√
2) = 0.

Set

(3.8) L = A2,25 −
1

A2,25
,

so that

(3.9) A2
2,25 +

1

A2
2,25

= L2 − 2 and A3
2,25 −

1

A3
2,25

= L3 + 3L.

Employing (3.8) and (3.9) in (3.7) and simplifying, we obtain

(3.10) L3 − 4(13 + 10
√
2)L2 + 8L− 32(7 + 5

√
2) = 0.

Solving (3.10) for L with the help of Mathematika, we obtain

(3.11) L =
2

3

(
26 + 20

√
2 + c

)
,

where

c =

(
80120 + 56650

√
2− 60

√
33729 + 23850

√
2

)1/3

+

(
80120 + 56650

√
2 + 60

√
33729 + 23850

√
2

)1/3

.

Employing (3.11) in (3.8), solving the resulting equation, and noting the facts in
Remark 3.3, we complete the proof of (ii). 2

Remark 3.5. Explicit values of A2,1/5 and A2,1/25 can also be evaluated by em-
ploying the values of A2,5 and A2,25, respectively in the result A2,1/n = 1/A2,n of
Lemma 2.1.

Theorem 3.6. We have

(i) A2,7

=
1√
2

(
16 + 10

√
2 + 2

√
130 + 92

√
2 +

√
−4 + 4

(
8 + 5

√
2 +

√
130 + 92

√
2

))1/2

,

(ii) A2,49

=
1

2

(
26 + 88

√
2 + 3c+

d√
b
+

1√
c

((
−4b+

(
126 + 88

√
2 + 3c

)√
b+ d

)2)1/2
)
,
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where

b =

√
1743 + 1232

√
2, c =

√
3486 + 2462

√
2,

and

d =

√
14
(
263488 + 186314

√
2 + 4463

√
b+ 3156c

)
.

Proof. Setting q = e−π
√

n/2 in Theorem 2.9 and employing the definition of A2,n,
we find that

(3.12) P = 25/4A2,n and Q = 25/4A2,49n.

Setting n = 1/7 in (3.12), employing in (3.12), and then simplifying by noting
A2,1/7 = 1/A2,7 from Lemma 2.1, we obtain

A16
2,7 − 56A14

2,7 + (252− 448
√
2)A12

2,7 + 56(−35 + 12
√
2)A10

2,7 + (1526− 2048
√
2)A8

2,7

(3.13) +56(−35 + 12
√
2)A6

2,7 + (252− 448
√
2)A4

2,7 − 56A2
2,7 + 1 = 0.

Dividing (3.13) by A8
2,7 and rearranging the terms, we obtain(

A8
2,7 +

1

A8
2,7

)
− 56

(
A6

2,7 +
1

A6
2,7

)
+ (252− 448

√
2)

(
A4

2,7 +
1

A4
2,7

)

(3.14) +56(−35 + 12
√
2)

(
A2

2,7 +
1

A2
2,7

)
+ (1526− 2048

√
2) = 0.

Next, set

(3.15) T = A2
2,7 +

1

A2
2,7

,

so that
(3.16)

A4
2,7 +

1

A4
2,7

= T 2 − 2, A6
2,7 +

1

A6
2,7

= T 3 − 3T and A8
2,7 +

1

A8
2,7

= (T 2 − 2)2 − 2.

Employing (3.15) and (3.16) in (3.14) and simplifying, we obtain

(3.17) T 4 − 56T 3 + (248− 448
√
2)T 2 + 224(−8 + 3

√
2)T + (1024− 1152

√
2) = 0.

Solving (3.17) for T , we obtain

(3.18) T = 2

(
8 + 5

√
2 +

√
130 + 92

√
2

)
.
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Employing (3.18) in (3.15), solving for A2,7, and noting the facts in Remarks 3.3,
we arrive at (i).

Again setting n = 1 in (3.12), employing in (3.12) and simplifying, we obtain

A8
2,49 − 8(63 + 44

√
2)A7

2,49 + 28(17 + 12
√
2)A6

2,49 − 56(27 + 20
√
2)A5

2,49

+14(77 + 48
√
2)A4

2,49 − 56(27 + 20
√
2)A3

2,49

(3.19) +28(17 + 12
√
2)A2

2,49 − 8(63 + 44
√
2)A2,49 + 1 = 0.

Dividing (3.19) by A4
2,49 and rearranging the terms, we obtain(

A4
2,49 +

1

A4
2,49

)
−8(63+44

√
2)

(
A3

2,49 +
1

A3
2,49

)
+28(17+12

√
2)

(
A2

2,49 +
1

A2
2,49

)

(3.20) −56(27 + 20
√
2)

(
A2,49 +

1

A2,49

)
+ 14(77 + 48

√
2) = 0.

Next, set

(3.21) E = A2,49 +
1

A2,49

so that
(3.22)

A2
2,49+

1

A2
2,49

= E2−2, A3
2,49+

1

A3
2,49

= E3−3E, and A4
2,49+

1

A4
2,49

= (E2−2)2−2.

Employing (3.21) and (3.22) in (3.20) and simplifying, we obtain

(3.23) E4 − 8(63 + 44
√
2)E3 + 8(59 + 42

√
2)E2 − 64

√
2E + 128 = 0.

Solving (3.23) for E using Mathematica, we obtain

E =
1

4
(504 + 352

√
2) + 3

√
3486 + 2462

√
2

(3.24)

+

√√√√2

(
31241 + 22092

√
2 + 186314

√
14

249 + 176
√
2
+

1844416√
1743 + 1232

√
2

)
.

Employing (3.24) in (3.21), solving the resulting equation, and noting the facts in
Remark 3.3, we complete the proof of (ii). 2
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Remark 3.7. Explicit values of A2,1/7 and A2,1/49 can also be evaluated by em-
ploying the values of A2,7 and A2,49, respectively in the result A2,1/n = 1/A2,n of
Lemma 2.1.

4. Reciprocity Theorem of K(q)

In this section we prove reciprocity theorems for the continued fraction K(q).

Theorem 4.1. If r and s are both positive and 2rs = 1, then(
K2(e−πr)− 6 +

1

K2(e−πr)

)(
K2(e−πs)− 6 +

1

K2(e−πs)

)
= 32.

Proof. From Theorem 3.1, we deduce that

(4.1)

(
K2(e−πr)− 6 +

1

K2(e−πr)

)(
K2(e−πs)− 6 +

1

K2(e−πs)

)

=

(
ϕ(−e−πr)ϕ(−e−πs)

e−π(r+s)/2ψ(e−4πr)ψ(e−4πs)

)2

.

Using (2.3) and noting 2rs = 1, we find that

(4.2)

(
ϕ(−e−πr)

e−πs/2 ψ(e−4πs)

)2

= 25/2
√
s

r
.

Similarly, interchanging the role of r and s, we obtain

(4.3)

(
ϕ(−e−πs)

e−πr/2 ψ(e−4πr)

)2

= 25/2
√
r

s
.

Employing (4.2) and (4.3) in (4.1) and simplifying, we arrive at the desired result.2

Theorem 4.2. If r and s are both positive and 2rs = 1, then(
1 +K2(e−πr)

1−K2(e−πr)

)(
1 +K2(e−πs)

1−K2(e−πs)

)
=

√
2.

Proof. Combining (2.1) and (2.2), we deduce that

(4.4)
1 +K2(q)

1−K2(q)
=

ϕ(q)

ϕ(q2)
.

Using (4.4), we find that

(4.5)

(
1 +K2(e−πr)

1−K2(e−πr)

)(
1 +K2(e−πs)

1−K2(e−πs)

)
=

ϕ(e−πr)ϕ(e−πs)

ϕ(e−2πr)ϕ(e−2πs)
.
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From (2.4), we deduce that

(4.6)
ϕ(e−πr)

ϕ(e−2πs)
= 21/4 (s/r)

1/4

and

(4.7)
ϕ(e−πs)

ϕ(e−2πr)
= 21/4(r/s)1/4.

Employing (4.6) and (4.7) in (4.5) and simplifying, we arrive at the desired result.2

Remark 4.3. If we know K(e−πr) (or K(e−πs)) then K(e−π/2r) (or K(e−π/2s))
can easily be evaluated by appealing to Theorem 4.1 or 4.2.
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