References
-
A. Alaca, S. Alaca, and K. S. Williams, The convolution sum
${\Sigma}_{m https://doi.org/10.4153/CMB-2008-001-1, Canad. Math. Bull. 51 (2008), no. 1, 3-14. -
A. Alaca, S. Alaca, and K. S. Williams, The convolution sums
${\Sigma}_{l+24m=n}{\sigma}(l){\sigma}(m)$ and${\Sigma}_{3l+8m=n}{\sigma}(l){\sigma}(m)$ , Math. J. Okayama Univ. 49 (2007), 93-111. - B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.
- B. Cho, D. Kim, and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76 (2010), no. 3-4, 495-508.
- B. Cho, D. Kim, and J.-K. Koo , Modular forms arising from divisor functions, J. Math. Anal. Appl. 356 (2009), no. 2, 537-547. https://doi.org/10.1016/j.jmaa.2009.03.003
- F. Diamond and J. Shurman, A First Course in Modular Forms, Springer-Verlag, 2005.
- L. E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., New York 1966.
- N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical Society, Providence, RI, 1988.
- J. W. L. Glaisher, On the square of the series in which the coecients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.
- J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.
- J. W. L. Glaisher, Expressions for the five powers of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
- H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), no. 5, 1593-1622. https://doi.org/10.1216/rmjm/1194275937
- J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number theory for the millennium, II (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.
- D. Kim and M. Kim, Divisor functions and Weierstrass functions arising from q series, Bull. Korean Math. Soc. 49 (2012), no. 4, 693-704. https://doi.org/10.4134/BKMS.2012.49.4.693
- M.-S. Kim, A p-adic view of mutiple sums of powers, Int. J. Number Theory 7 (2011), no. 8, 2273-2288. https://doi.org/10.1142/S1793042111005027
- N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1993.
- S. Lang, Elliptic Functions, Addison-Wesly, 1973.
- G. Melfi, On Some Modular Identities, Number theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998.
- J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, 1994.
- K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.
Cited by
- CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1389
- A REMARK OF ODD DIVISOR FUNCTIONS AND WEIERSTRASS ℘-FUNCTIONS vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.55
- ON THE CONVOLUTION SUMS OF CERTAIN RESTRICTED DIVISOR FUNCTIONS vol.35, pp.2, 2013, https://doi.org/10.5831/HMJ.2013.35.2.251
- Combinatorial convolution sums derived from divisor functions and Faulhaber sums vol.49, pp.2, 2014, https://doi.org/10.3336/gm.49.2.09
- CONVOLUTION SUMS OF ODD AND EVEN DIVISOR FUNCTIONS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.445
- CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS vol.52, pp.3, 2015, https://doi.org/10.4134/JKMS.2015.52.3.537
- Convolution identities for twisted Eisenstein series and twisted divisor functions vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-81
- Eisenstein series and their applications to some arithmetic identities and congruences vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-84