DOI QR코드

DOI QR Code

CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS

  • Kim, Aeran (Department of Mathematics and Institute of Pure and Applied Mathematics Chonbuk National University) ;
  • Kim, Daeyeoul (National Institute for Mathematical Sciences) ;
  • Yan, Li (Department of Applied Mathematics China Agriculture University)
  • Received : 2012.03.26
  • Published : 2013.03.01

Abstract

Let ${\sigma}_s(N)$ denote the sum of the sth powers of the positive divisors of a positive integer N and let $\tilde{\sigma}_s(N)={\sum}_{d|N}(-1)^{d-1}d^s$ with $d$, N, and s positive integers. Hahn [12] proved that $$16\sum_{k. In this paper, we give a generalization of Hahn's result. Furthermore, we find the formula ${\sum}_{k=1}^{N-1}\tilde{\sigma}_1(2^{n-m}k)\tilde{\sigma}_3(2^nN-2^nk)$ for $m(0{\leq}m{\leq}n)$.

Keywords

References

  1. A. Alaca, S. Alaca, and K. S. Williams, The convolution sum ${\Sigma}_{m, Canad. Math. Bull. 51 (2008), no. 1, 3-14. https://doi.org/10.4153/CMB-2008-001-1
  2. A. Alaca, S. Alaca, and K. S. Williams, The convolution sums ${\Sigma}_{l+24m=n}{\sigma}(l){\sigma}(m)$ and ${\Sigma}_{3l+8m=n}{\sigma}(l){\sigma}(m)$, Math. J. Okayama Univ. 49 (2007), 93-111.
  3. B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.
  4. B. Cho, D. Kim, and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76 (2010), no. 3-4, 495-508.
  5. B. Cho, D. Kim, and J.-K. Koo , Modular forms arising from divisor functions, J. Math. Anal. Appl. 356 (2009), no. 2, 537-547. https://doi.org/10.1016/j.jmaa.2009.03.003
  6. F. Diamond and J. Shurman, A First Course in Modular Forms, Springer-Verlag, 2005.
  7. L. E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., New York 1966.
  8. N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical Society, Providence, RI, 1988.
  9. J. W. L. Glaisher, On the square of the series in which the coecients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.
  10. J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.
  11. J. W. L. Glaisher, Expressions for the five powers of the series in which the coeffcients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
  12. H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), no. 5, 1593-1622. https://doi.org/10.1216/rmjm/1194275937
  13. J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number theory for the millennium, II (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.
  14. D. Kim and M. Kim, Divisor functions and Weierstrass functions arising from q series, Bull. Korean Math. Soc. 49 (2012), no. 4, 693-704. https://doi.org/10.4134/BKMS.2012.49.4.693
  15. M.-S. Kim, A p-adic view of mutiple sums of powers, Int. J. Number Theory 7 (2011), no. 8, 2273-2288. https://doi.org/10.1142/S1793042111005027
  16. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1993.
  17. S. Lang, Elliptic Functions, Addison-Wesly, 1973.
  18. G. Melfi, On Some Modular Identities, Number theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998.
  19. J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, 1994.
  20. K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.

Cited by

  1. CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1389
  2. A REMARK OF ODD DIVISOR FUNCTIONS AND WEIERSTRASS ℘-FUNCTIONS vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.55
  3. ON THE CONVOLUTION SUMS OF CERTAIN RESTRICTED DIVISOR FUNCTIONS vol.35, pp.2, 2013, https://doi.org/10.5831/HMJ.2013.35.2.251
  4. Combinatorial convolution sums derived from divisor functions and Faulhaber sums vol.49, pp.2, 2014, https://doi.org/10.3336/gm.49.2.09
  5. CONVOLUTION SUMS OF ODD AND EVEN DIVISOR FUNCTIONS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.445
  6. CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS vol.52, pp.3, 2015, https://doi.org/10.4134/JKMS.2015.52.3.537
  7. Convolution identities for twisted Eisenstein series and twisted divisor functions vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-81
  8. Eisenstein series and their applications to some arithmetic identities and congruences vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-84