References
- N. D. Baruah and N. Saikia, Explicit evaluations of Ramanujan-Gollnitz-Gordon continued fraction, Monatsh. Math., 154(2008), 271-288. https://doi.org/10.1007/s00605-007-0515-z
- B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
- H. H. Chan, On Ramanujan's cubic continued fraction, Acta Arith., 73(1995), 343-355. https://doi.org/10.4064/aa-73-4-343-355
- H. H. Chan and S.-S. Huang, On the Ramanujan-Gollnitz-Gordon continued fraction, Ramanujan J., 1(1997), 75-90. https://doi.org/10.1023/A:1009767205471
- K. G. Ramanathan, On Ramanujans continued fraction, Acta Arith., 43(1984), 209-226. https://doi.org/10.4064/aa-43-3-209-226
- S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
- N. Saikia, A new parameter for Ramanujan's theta-fucntions and explicit values, Arab J. Math. Sc., 18(2012), 105-119. https://doi.org/10.1016/j.ajmsc.2012.01.004
- N. Saikia, On modular identities of Ramanujan-Gollnitz-Gordon continued fraction, Far East J. Math. Sc., 54(1)(2011), 65-79.
- K. R. Vasuki and B. R. Srivatsa Kumar, Certain identities for Ramanujan-Gollnitz Gordon continued fraction, J. Comput. Appl. Math., 187(2006), 87-95. https://doi.org/10.1016/j.cam.2005.03.038
- G. N.Watson, Theorems stated by Ramanujan(ix): two continued fractions, J. London Math. Soc., 4(1929), 231237.
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1966. Indian edition is published by Universal Book Stall, New Delhi, 1991.
Cited by
- New theta-function identities and general theorems for the explicit evaluations of Ramanujan’s continued fractions vol.5, pp.3, 2016, https://doi.org/10.1007/s40065-016-0149-x