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MAXIMAL FUNCTIONS ALONG TWISTED SURFACES

ON PRODUCT DOMAINS

Ahmad Al-Salman

Abstract. In this paper, we introduce a class of maximal functions along

twisted surfaces in Rn×Rm of the form

{(φ(|v|)u, ϕ(|u|)v) : (u, v) ∈ Rn×Rm}.
We prove Lp bounds when the kernels lie in the space Lq(Sn−1×Sm−1).
As a consequence, we establish the Lp boundedness for such class of

operators provided that the kernels are in L logL(Sn−1×Sm−1) or in the

Block spaces B0,0
q

(
Sn−1×Sm−1

)
(q > 1).

1. Introduction and statement of results

Let Rd, (d ≥ 2) be the d-dimensional Euclidean space and Sd−1 be the
unit sphere in Rd equipped with the normalized Lebesgue measure dσd. Let
R+ = [0,∞) and let U be the class of all measurable functions h : R+×R+ → R
that satisfy

‖h‖L2(R+×R+,r−1s−1drds) =

(∫ ∞
0

∫ ∞
0

|h(r, s)|2 r−1s−1drds

) 1
2

≤ 1.

Let Γ : Rn×Rm → Rn×Rm be a mapping given by

(1) Γ(u, v) = (φ(|v|)u, ϕ(|u|)v),

where φ and ϕ are real valued functions defined on [0,∞). Let Ω be an inte-
grable function on Sn−1×Sm−1 that satisfies

(2) Ω(tx, sy) = Ω(x, y) for all t, s > 0

and

(3)

∫
Sn−1

Ω (u′, ·) dσn (u′) =

∫
Sm−1

Ω (·, v′) dσm (v′) = 0.
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Consider the maximal function MΩ,φ,ϕ given by

(4) MΩ,φ,ϕ(f)(x, y) = sup
h∈U
|SΓ,Ω,h(f)(x, y)| ,

where

SΓ,Ω,h(f)(x, y) =

∫∫
Rn×Rm

f((x, y)− Γ(u, v))
h(|u| , |v|)Ω (u′, v′)

|u|n |v|m
dudv.

When φ(t) = ϕ(t) = c-constant, the operator MΩ,φ,ϕ reduces to the classical
operator MΩ introduced by Ding in 1999 in [12]. Ding proved that the operator
MΩ is bounded on L2(Rn×Rm) provided that the function |Ω| (log+ |Ω|)2 is in-
tegrable on Sn−1×Sm−1. Subsequently, Al-Salman proved the Lp boundedness
for all 2 ≤ p < ∞ under the weaker condition that Ω ∈ L logL(Sn−1×Sm−1),
i.e., the function |Ω| (log+ |Ω|) is integrable on Sn−1×Sm−1 [3]. In the same
paper, Al-Salman showed that the condition Ω ∈ L logL(Sn−1×Sm−1) can not
be replaced by any condition of the form Ω ∈ L(logL)1−ε(Sn−1×Sm−1), ε > 0.
For further results concerning the operator MΩ, we advise readers to consult
[2, 3, 10], among others.

For non constant functions φ and ϕ, the Lp boundedness of the corresponding
operator MΩ,φ,ϕ is not known even for power functions. In fact, the operator
MΩ,φ,ϕ is considered to be hard and its treatment is very involved due to the
twisted nature of the surface Γ. It is our aim in this paper to consider the Lp

boundedness of the operator MΩ,φ,ϕ for non classical surfaces Γ.
By duality, it follows that the maximal function MΩ,φ,ϕ is given by

(5) MΩ,φ,ϕ(f)(x, y) =

(∫ ∞
0

∫ ∞
0

|Nφ,ϕ,Ω(f)(r, s)|2 drds
rs

) 1
2

,

where

Nφ,ϕ,Ω(f)(r, s) =

∫
Sn−1

∫
Sm−1

f(x− φ(s)ru′, y − ϕ(r)sv′)Ω (u′, v′) dσndσm.

We are interested in surfaces Γ where the functions φ and ϕ satisfy certain
growth conditions. Let F be the class of smooth functions Φ : (0, ∞) → R
which satisfy the following growth conditions:

(6) |Φ(t)| ≤ C1t
dΦ , C2t

dΦ−2 ≤
∣∣∣Φ′′(t)∣∣∣ ≤ C3t

dΦ−2

for some dΦ 6= 0. We notice here that if ϕ(t) = φ(t) = t, then there exists
a smooth f such that MΩ,φ,ϕ(f) = ∞. On the other hand if ϕ(t) = t and
φ(t) = td, d 6= 1, then the corresponding operator MΩ,φ,ϕ is bounded on Lp

for all 2 ≤ p < ∞ under the weak condition Ω ∈ L logL(Sn−1×Sm−1). In
fact, it can be shown that MΩ,φ,ϕ(f)(x, y) = (1/ |1− d|)MΩ(f)(x, y). Thus,
we are interested in surfaces Γ where the functions ϕ, φ ∈ F with dϕ 6= 1 and
dφ 6= 1. For convenience, we shall let F1 be the class of all ϕ ∈ F with dϕ 6= 1.
Examples of functions in the class F1 are widely available such as the power
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functions ϕ(t) = tβ(β 6= 1) and the function ϕ(t) = t2
(

1 + e−
1
t2

)
. Our main

result is the following:

Theorem 1.1. Suppose that Ω ∈ Lq(Sn−1×Sm−1), q > 1 and satisfies (2)-(3)
with ‖Ω‖1 ≤ 1 and ‖Ω‖q ≤ 2a for some a > 1. If ϕ, φ ∈ F1 with dϕdφ 6= 1,
then

(7) ‖MΩ,φ,ϕ(f)‖p ≤ aCp ‖f‖p
for p ≥ 2 with constant Cp independent of a.

As a consequence of the above result and suitable decomposition of the
function Ω, we have the following result:

Theorem 1.2. Suppose that Ω ∈ L(logL)(Sn−1×Sm−1) and satisfies (2)-(3).
If ϕ, φ ∈ F1 with dϕdφ 6= 1, then MΩ,φ,ϕ is bounded on Lp(Rn×Rm) for all
2 ≤ p <∞.

An immediate consequence of Theorem 1.2 is the following result concerning
singular integral operators:

Corollary 1.3. Let ϕ, φ ∈ F1 with dϕdφ 6= 1. Suppose that h ∈ L2(R+×R+,

r−1s−1drds). If Ω ∈ L(logL)(Sn−1×Sm−1) and satisfies (2)-(3), then the sin-
gular integral operator

Tφ,ϕ(f)(x, y) =

∫∫
Rn×Rm

f(x− φ(|v|)u, y − ϕ(|u|)v)
h(|u| , |v|)Ω (u′, v′)

|u|n |v|m
dudv

is bounded on Lp(Rn×Rm) for all 1 < p <∞.

Singular integrals on product domains have been extensively studied by
many authors, we cite [6], [7], [13], [14], [17], [18], among others.

By Theorem 1.2 and change of variables, we immediately obtain the following
result concerning Marcinkiewicz integral operators considered in [9, 11]:

Corollary 1.4. Let ϕ, φ ∈ F1 with dϕdφ 6= 1. Suppose that h ∈ L2(R+×R+,

r−1s−1drds). If Ω ∈ L(logL)(Sn−1×Sm−1) and satisfies (2)-(3), then the
Marcinkiewicz integral operator

µφ,ϕf(x, y)

=

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣
∫
|u|≤2t

∫
|v|≤2s

f(x− φ(|v|)u, y − ϕ(|u|)v)
Ω (u′, v′)

|u|n−1 |v|m−1 dudv

∣∣∣∣∣
2
dtds

22(t+s)

 1
2

is bounded on Lp(Rn×Rm) for all 2 ≤ p <∞.

The author would like to thank the anonymous referee for the very valuable
comments on the first version of the paper. Reviewer comments have led to
substantial improvement of the presentation of the paper.

Throughout this paper the letter C will stand for a constant that may vary
at each occurrence, but it is independent of the essential variables.
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2. Preparation

The twisted nature of the surface Γ involves lacunary sequences of multi-
indexes. This requires a fundamental extension of existing theory. To this end,
we prove the following generalization of Lemma 2.1 in [3]:

Lemma 2.1. Let L : Rn→ Rn and Q : Rm→ Rm be nonzero linear transfor-
mations. Suppose that γ1, γ2 > 0 with γ1γ2 6= 1, a > 1, and α, β, C > 0.
Suppose that σa = {σa,r,s : r, s ∈ R} is a family of measures satisfying

(i) sup
r,s∈R

‖σa,r,s‖ ≤ C;

(ii)

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr

≤ a2C min

{∣∣2aj2aγ1kL(ξ)
∣∣−αa , ∣∣2ak2aγ2jQ(η)

∣∣− βa}
for (ξ, η) ∈ Rn×Rm;

(iii)

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr

≤ a2C min

{∣∣∣2a(j+1)2aγ1(k+1) |L(ξ)|
∣∣∣αa , ∣∣∣2a(k+1)2aγ2(j+1) |Q(η)|

∣∣∣ βa}
for (ξ, η) ∈ Rn×Rm;

(iv) For 1 < p < ∞, there exists a constant Cp > 0 that is independent of
a such that the maximal function

(8) σ∗a(f)(x, y) = sup
j,k∈Z

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
||σa,r,s| ∗ f(x)| dsdr

sr

satisfies

‖σ∗a(f)‖p ≤ a
2Cp ‖f‖p .

Then the square function

S
σ
(f)(x, y) =

(∫ ∞
0

∫ ∞
0

|σa,r,s ∗ f(x, y)|2 dsdr
rs

) 1
2

satisfies

‖S
σ
(f)‖p ≤ aC ‖f‖p

for all 2 ≤ p <∞ with Lp bounds independent of the parameter a and
the linear transformations L and Q.

Proof. By similar argument as in [15] (see also [8]), we may assume that L(ξ) =
πnnL(ξ) and Qs(η) = πmmQ(η) where nL = rank(L), mQ = rank(Q),

πnnL(ξ1, . . . , ξn) = (ξ1, . . . , ξnL) and πmmQ(η1, . . . , ηm) = (η1, . . . , ηmQ).

Let

D(Z× Z) = {(u, v) : u = j + γ1k and v = k + γ2j for some j, k ∈ Z}.
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It is clear that D(Z×Z) is infinite countable. In fact, since γ1γ2 6= 1, the map-
ping (j, k)→ (j+γ1k, k+γ2j) ∈ D(Z×Z) is a bijection. Hence, |D(Z× Z)| =
|Z× Z|. Moreover, it can be shown that

∣∣D(1)(Z× Z)
∣∣ =

∣∣D(2)(Z× Z)
∣∣ =

|D(Z× Z)| where

D(1)(Z× Z) = {u : (u, v) ∈ D(Z× Z) for some v}

and

D(2)(Z× Z) = {v : (u, v) ∈ D(Z× Z) for some u}.
We also remark that the set D(Z × Z) is closed under the usual addition of
vectors in the plane, i.e., if (u, v), (u′, v′) ∈ D(Z × Z), then (u, v) + (u′, v′) =
(u+ u′, v + v′) ∈ D(Z× Z).

Now, we construct a sequence {ψ(1)
u (t)ψ(2)

v (s) : (u, v) ∈ D(Z × Z)} where

ψ(1)
u (t) and ψ(2)

v (s) are real valued functions on R such that ψ(1)
u (t), ψ(2)

v (s) ∈
C∞,

0 ≤ ψ(1)
u (t), ψ(2)

v (s) ≤ 1,
∑
(u,v)

(
ψ(1)
u (t)ψ(2)

v (s)
)2

= 1,(9)

ψ(1)
u (t) ⊆ (2−a(u+1+γ1), 2−a(u−1−γ1)),(10)

ψ(2)
v (s) ⊆ (2−a(v+1+γ2), 2−a(v−1−γ2)),(11)

(12)

∣∣∣∣∣dlψ(1)
u (t)

dtl

∣∣∣∣∣ ≤ Cl
tl
, and

∣∣∣∣∣dlψ(2)
v (s)

dsl

∣∣∣∣∣ ≤ Cl
sl
,

where Cl is independent of a, u, and v. For j, k ∈ Z, let Ψj,k,a be defined by

(13) Ψ̂j,k,a(ξ, η) =
(
ψ

(1)
j+γ1k

(|πnnξ|
2
)ψ

(2)
k+γ2j

(|πmmη|
2
)
)2

.

Then by making use of the identity in (9), we have the following

(14) S
σ
(f)(x, y) ≤

∑
j,k∈Z

Sj,k,a(f)(x, y),

where

Sj,k,a(f)(x, y)

=

∑
l,o∈Z

∫ 2a(l+1)

2al

∫ 2a(o+1)

2ao
|Ψj+l,k+o,a ∗ σa,r,s ∗ f(x, y)|2 dsdr

rs

 1
2

.(15)

By Littlewood-Paley theory [20], it can be shown that

(16)

∥∥∥∥∥∥∥
∑
l,o∈Z

|Ψj+l,k+o,a ∗ f |2
 1

2

∥∥∥∥∥∥∥
p

≤ Cp ‖f‖p
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for all p ≥ 2 with constant Cp independent of the parameter a. The indepen-
dence of the constant Cp on the parameter a is a consequence of the property
(12). Now, let

Aa,j,k =
{
ξ ∈ Rn : 2−a(j+1)2−a(k+1)γ1 <

∣∣πnnLξ∣∣ < 2−a(j−1)2−a(k−1)γ1

}
and

Ba,j,k =
{
η ∈ Rm : 2−a(k+1)2−a(j+1)γ2 <

∣∣∣πmmQη∣∣∣ < 2−a(k−1)2−a(j−1)γ2

}
.

Let

Fa,j,k,l,o(ξ, η) =

∫∫
Aa,j+l×Ba,k+o

∣∣∣f̂(ξ, η)
∣∣∣2 ∫ 2a(l+1)

2al

∫ 2a(o+1)

2a0

|σ̂a,r,s(ξ, η)|2 dsdr
sr

dξdη.

Now, by the assumptions (i)-(iii), we have

(17) Fa,j,k,l,o(ξ, η) ≤ 2α(2+γ1+γ2)a2

2α|j+kγ1|2α|k+jγ2|

∫∫
Aa,j+l×Ba,k+o

∣∣∣f̂(ξ, η)
∣∣∣2 dξdη.

Thus, by Placherel’s theorem and Fubini’s theorem, we have

(18) ‖Sj,k,a(f)‖2 ≤ aC2−α|j+kγ1|2−α|k+jγ2| ‖f‖2 .

Next, by the assumption (iv), (16), and duality argument, it can be shown that

(19) ‖Sj,k,a(f)‖p ≤ aCp ‖f‖p
for all p > 2 with constant Cp independent of the essential variables. By
interpolation between (18) and (19), we get

(20) ‖Sj,k,a(f)‖p ≤ aC2−ε|j+kγ1|2−ε|k+jγ2| ‖f‖p
for 2 ≤ p < ∞ where ε, ε, and Cp are positive constants independent of a, j,
and k (see [3] for details). Thus

‖Sj,k,a(f)‖p ≤ aC

∑
j,k∈Z

2−ε|j+kγ1|2−ε|k+jγ2|

 ‖f‖p ≤ aC ‖f‖p
for all p ≥ 2. This completes the proof. �

In order to obtain estimates of maximal functions in the form (8), we recall
the two parameter maximal functions introduced recently in [4]. For fixed

points z1 ∈ Sn−1, z2 ∈ Sm−1 and φ, ϕ ∈ F , let µ
(z1,z2)
φ,ϕ be the maximal function

given by

(21) µ
(z1,z2)
φ,ϕ (f)(x, y) = sup

j,k

∫ 2j+1

2j

∫ 2k+1

2k
|f(x− φ(s)rz1, y − ϕ(r)sz2)| drds

rs
.

The following result can be found in [4]:
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Theorem 2.2 ([4]). The maximal function µ
(z1,z2)
φ,ϕ is bounded on Lp(Rn×Rm)

for p ∈ (1,∞) with Lp bounds independent of the points z1 and z2.

For convenience and completeness, we shall present in the next section a
proof of Theorem 2.2. Our proof here is slightly different from that given in
[4]. Our argument here is based on square functions approach.

3. A maximal function

As we pointed out in the previous section, this section is devoted for pre-
senting a proof of Theorem 2.2. We shall start by proving a general lemma
which will greatly simplify our argument. Let Ψ = {Ψt,s : t, s ∈ R} be a family
of real valued C∞ functions on Rn × Rm. Let ν = {νt,s : t, s ∈ R} be a family

of measures on Rn × Rm. For j, k ∈ Z, let J
(Ψ,ν)
j,k and G

(Ψ)
j,k be given by

(22) J
(Ψ,ν)
j,k (f)(x, y) =

(∫ ∞
−∞

∫ ∞
−∞
|νt,s ∗Ψt+j,s+k ∗ f(x, y)|2 dtds

) 1
2

and

(23) G
(Ψ)
j,k (f)(x, y) =

(∫ ∞
−∞

∫ ∞
−∞
|Ψt+j,s+k ∗ f(x)|2 dtds

) 1
2

.

For the family ν = {νt,s : t, s ∈ R}, we let ν∗ be the maximal function

(24) ν∗(f)(x, y) = sup
t,s∈R

|νt,s ∗ f(x, y)| .

We shall let ‖νt,s‖ to denote the total variation of the measure νt,s. Our main
lemma in this section is the following:

Lemma 3.1. Let ν = {νt,s : t, s ∈ R}, Ψ = {Ψt,s : t, s ∈ R} , J (Ψ,ν)
j,k , G

(Ψ)
j,k , and

ν∗ be as above. Let γ1, γ2, and ε be positive real numbers. Suppose that

(i) sup
t,s∈R

‖νt,s‖ ≤ 1;

(ii)
∥∥∥J (Ψ,ν)

j,k (f)
∥∥∥

2
≤ C2−ε|j+kγ1|2−ε|k+jγ2| ‖f‖2 for all j, k ∈ Z;

(iii) ‖ν∗(f)‖q ≤ Aq ‖f‖q for some q > 1.

(iv)
∥∥∥G(Ψ)

j,k (f)
∥∥∥
p
≤ Bp ‖f‖p for all j, k ∈ Z and 1 < p <∞.

(v)
∑
j∈Z

∑
k∈Z

Ψt+j,s+k = 1 for all t, s ∈ R.

Then for p′0 < p < p0 where
∣∣∣ 12 − 1

p0

∣∣∣ = 1
2q , there exists a constant Cp > 0 such

that the operator

(25) S
ν
(f)(x, y) =

(∫ ∞
−∞

∫ ∞
−∞
|νt,s ∗ f(x, y)|2 dtds

) 1
2

satisfies

(26) ‖S
ν
f‖p ≤ Cp ‖f‖p .
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Proof. The proof is fairly standard. First, we show that there exists a constant
Cp0

> 0 such that

(27)
∥∥∥J (Ψ,ν)

j,k (f)
∥∥∥
p0

≤ Cp0 ‖f‖p0

for all j, k ∈ Z. To see (27), we argue as follows. By duality, we may assume

that p0 > 2. Let q = (p0

2 )
′
. Then there exists a non-negative function h ∈

Lq(Rn × Rm) with ‖h‖q = 1 such that∥∥∥J (Ψ,ν)
j,k (f)

∥∥∥2

p0

=

∫
Rn

∫
Rm

∫ ∞
−∞

∫ ∞
−∞
|νt,s ∗Ψt+j,s+k ∗ f(x, y)|2 h(x, y)dtdsdxdy

≤
∫
Rn

∫
Rm

(
G

(Ψ)
j,k (f)

)2

(x, y)ν∗(h)(−x,−y)dxdy

≤
∥∥∥G(Ψ)

j,k (f)
∥∥∥2

p0

‖ν∗(h)‖q

≤ B2
p0
Aq ‖f‖p0

which implies (27). Here, the last inequality follows by the assumptions (iii)
and (iv).

Next, by the assumption (v) and Minkowski’s inequality, we have

(28) S
ν
(f)(x, y) ≤

∑
j∈Z

∑
k∈Z

J
(Ψ,ν)
j,k (f)(x, y).

Now, by interpolation between the assumption (ii) and the estimate (27),
we get that

(29)
∥∥∥J (Ψ,ν)

j,k (f)
∥∥∥
p
≤ 2−εp|j+kγ1|2−εp|k+jγ2|C ‖f‖p

for all p′0 < p < p0 and some εp. Hence, (26) follows by (28) and (29). This
completes the proof. �

Proof of Theorem 2.2. First, we shall assume that dφ > 0 and dϕ > 0. The case
where dφ < 0 or dϕ < 0 follows by the same argument with minor modifications.

Now, notice that

µ
(z1,z2)
φ,ϕ (f)(x, y) ≤ 4 sup

t,s∈R

1

2t+s

∫ 2t

0

∫ 2s

0

|f(x− φ(w)rz1, y − ϕ(r)wz2)| drdw

= 4 sup
t,s∈R

∣∣∣ν(0)
t,s ∗ f(x, y)

∣∣∣ = 4µν(0)(f)(x, y),(30)

where {ν(0)
t,s : t, s ∈ R} is the family of measures defined by

(31)

∫
fdν

(0)
t,s =

1

2t+s

∫ 2t

0

∫ 2s

0

f(φ(w)rz1, ϕ(r)wz2)drdw.
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Let ν(1) = {ν(1)
t,s : t, s ∈ R} and ν(2) = {ν(2)

t,s : t, s ∈ R} be the family of
measures defined by

(ν
(1)
t,s )̂(ξ, η) = ν̂t,s(ξ, 0) and

(ν
(2)
t,s )̂(ξ, η) = ν̂t,s(0, η).

Let

(32) (ν(i))∗(f)(x, y) = sup
t,s∈R

∣∣∣ν(i)
t,s ∗ f(x, y)

∣∣∣ , i = 1, 2.

Notice that

(ν(1))∗(f)(x, y) ≤ sup
t,s∈R

1

2t+s

∫ 2t

0

∫ 2s

0

|f(x− φ(w)rz1, y)| drdw

≤ sup
t,s∈R

1

2s

∫ 2s

0

(
1

2tφ(w)

∫ 2tφ(w)

0

|f(x− uz1, y)| du

)
dw

≤ C sup
t,s∈R

1

2s

∫ 2s

0

(Mz1 +M−z1)f(x, y)dw

= C(Mz1 +M−z1)f(x, y),(33)

where Mz is the directional Hardy-Littlewood maximal function in the direc-
tion of z acting on the x-variable. Similarly, we can show that

(34) (ν(2))∗(f)(x, y) ≤ C(Mz2 +M−z2)f(x, y).

Thus by the boundedness of the directional Hardy-Littlewood maximal func-
tion, we get

(35)
∥∥∥(ν(i))∗(f)

∥∥∥
p
≤ Cp ‖f‖p

for 1 < p <∞ with Cp independent of zi, i = 1, 2.
Next, it is straightforward to see that total variation ‖·‖ of the measure σa,r,s

satisfies

(36) sup
t,s∈R

∥∥∥ν(i)
t,s

∥∥∥ ≤ 1, i = 0, 1, 2.

Now, we estimate the Fourier transform of the measures ν
(i)
t,s. Notice that

for w ≥ 1 and r > 0, we have∣∣∣∣ d2

dw2

(
(ξ · z1)φ(2s−jw)r + (η · z2)2s−jwϕ(r)

)∣∣∣∣
= 22(s−j) ∣∣(ξ · z1)φ′′(2s−jw)r

∣∣ ≥ C22dφ(s−j) |ξ · z1| r.

Thus by Van der Corput Lemma [20] along with interpolation with the estimate∣∣∣∣∣ 1

2s

∫ 2s

0

ei(ξ,η)·(φ(w)rz1,ϕ(r)wz2)dw

∣∣∣∣∣ ≤ 1,
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we get ∣∣∣∣∣ 1

2s

∫ 2s

0

ei(ξ,η)·(φ(w)rz1,ϕ(r)wz2)dw

∣∣∣∣∣
≤

∞∑
j=1

2−j
∣∣∣∣∫ 2

1

ei(ξ,η)·(φ(2s−jw)rz1,ϕ(r)2s−jwz2)dw

∣∣∣∣
≤
∣∣C22dφs |ξ · z1| r

∣∣− 1
2(dφ+1)

∞∑
j=1

2−
j
2

≤ C
∣∣C22dφs |ξ · z1| r

∣∣− 1
2(dφ+1) .

Thus, by noticing that

1

2t

∫ 2t

0

r
− 1

2(dφ+1) dr =
2dφ + 2

2dφ + 1
2
− 1

2(dφ+1)
t
,

we get

(37)
∣∣∣(ν(0)

t,s )̂(ξ, η)
∣∣∣ ≤ C ∣∣2dφs2t |ξ · z1|

∣∣− 1
2(dφ+1) .

Similarly, we can show that the following hold:

(38)
∣∣∣(ν(0)

t,s )̂(ξ, η)
∣∣∣ ≤ C ∣∣2dϕt2s |η · z2|

∣∣− 1
2(dϕ+1) ,

(39)
∣∣∣(ν(1)

t,s )̂(ξ, η)
∣∣∣ ≤ C ∣∣2t2dφsξ · z1

∣∣− 1
2(dφ+1) ,

(40)
∣∣∣(ν(2)

t,s )̂(ξ, η)
∣∣∣ ≤ C ∣∣2dϕt2sη · z2

∣∣− 1
2(dϕ+1) .

By the definitions of the involved measures, (36), and (37)-(40), we obtain the
following estimates

(41)
∣∣∣(ν(0)

t,s )̂(ξ, η)
∣∣∣ ≤ C ∣∣2dφs2t |ξ · z1|

∣∣− 1
4(dφ+1)

∣∣2dϕt2s |η · z2|
∣∣− 1

4(dϕ+1) ,

(42)
∣∣∣(ν(0)

t,s )̂(ξ, η)−(ν
(1)
t,s )̂(ξ, η)

∣∣∣ ≤ C ∣∣2t2dφsξ · z1

∣∣− 1
4(dφ+1)

∣∣2s2dϕtη · z2

∣∣ 1
4(dϕ+1) ,

(43)
∣∣∣(ν(0)

t,s )̂(ξ, η)−(ν
(2)
t,s )̂(ξ, η)

∣∣∣ ≤ C ∣∣2t2dφsξ · z1

∣∣ 1
4(dφ+1)

∣∣2s2dϕtη · z2

∣∣− 1
4(dϕ+1) ,∣∣∣(ν(0)

t,s )̂(ξ, η)− (ν
(1)
t,s )̂(ξ, η)− (ν

(2)
t,s )̂(ξ, η) + (ln 2)2

∣∣∣
≤ C

∣∣2t2dφsξ · z1

∣∣ 1
4(dφ+1)

∣∣2s2dϕtη · z2

∣∣ 1
4(dϕ+1) ,(44) ∣∣∣(ν(1)

t,s )̂(ξ, η)− (ln 2)2
∣∣∣ ≤ C

∣∣2t2dφsξ · z1

∣∣ 1
4(dφ+1) ,(45) ∣∣∣(ν(2)

t,s )̂(ξ, η)− (ln 2)2
∣∣∣ ≤ C

∣∣2s2dϕtη · z2

∣∣ 1
4(dϕ+1) .(46)
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Now, let θ ∈ S(R) be such that θ(t) = 1 if |t| < 1
2 and θ(t) = 0 if |t| > 1.

Define the family of measures {σt,s : t, s ∈ R} by

σ̂t,s(ξ, η)

= (ν
(0)
t,s )̂(ξ, η)− θ(

∣∣2t2dφsξ · z1

∣∣)(ν(1)
t,s )̂(ξ, η)− θ(2s2dϕtη · z2)(ν

(2)
t,s )̂(ξ, η)

+ θ(
∣∣2t2dφsξ · z1

∣∣)θ(∣∣2s2dϕtη · z2

∣∣)(ln 2)2.(47)

By (36) and (41)-(47), we get

sup
t,s∈R

‖σt,s‖ ≤ C,(48)

|σ̂t,s(ξ, η)| ≤
∣∣2t2dφsξ · z1

∣∣± 1
4(dφ+1)

∣∣2s2dϕtη · z2

∣∣± 1
4(dϕ+1) .(49)

It can be easily shown that the following inequality holds:

(50) µν(0)(f)(x, y) ≤ 2S
ν
(f)(x, y),

where S
ν

is given by (25). Let
{
ψ

(1)
t,s

}∞
−∞

and
{
ψ

(2)
t,s

}∞
−∞

be two families of C∞

functions satisfying the properties (9)-(12) with j and k are replaced by t and
s respectively and a = 2. Let Ψt,s be given by (13) with j and k are replaced
by t and s respectively and a = 2. Then by (47), (50), the property (9) and
Minkowski’s inequality, we have

(51) µν(0)(f)(x, y) ≤ G(Ψ,σ)(f)(x, y) + C

3∑
j=1

M(j)(f)(x, y),

(52) σ∗(f)(x, y) ≤ 2G(Ψ,σ)(f)(x, y) + 2C

3∑
j=1

M(j)(f)(x, y),

where

G(Ψ,σ)(f)(x, y) =
∑
j∈Z

∑
k∈Z

J
(Ψ,σ)
j,k (f)(x, y),

M(1)(f)(x, y) = ((MR ⊗ IRn−1)⊗ IRm) ((ν(1))∗(f))(x, y),

M(2)(f)(x, y) = ((MR ⊗ IRm−1)⊗ IRn) ((ν(2))∗(f))(x, y),

M(3)(f)(x, y) = ((MR ⊗ IRn−1)⊗ (MR ⊗ IRm−1)) (f)(x, y),

MR is the classical Hardy-Littlewood maximal function on R, and IRd denote
the identity operator on Rd (d ≥ 1).

By a well known argument (see [17,20]), it can be shown that

(53)
∥∥∥G(Ψ)

j,k (f)
∥∥∥
p
≤ Cp ‖f‖p

for all 1 < p <∞ with constant Cp independent of j and k.
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By (48)-(49) and Plancherel’s theorem, we get that J
(Ψ,σ)
j,k satisfies condi-

tion (ii) in Lemma 3.1. Thus, by (35), (48)-(52), Lp boundedness of Hardy-
Littlewood maximal function, Lemma 3.1, and the well known bootstrapping
argument as in [5] (see also [15]), the proof is complete. �

4. Proof of main results

Proof of Theorem 1.1. Suppose that Ω ∈ Lq(Sn−1×Sm−1), q > 1 and satisfies
(2)-(3) with ‖Ω‖1 ≤ 1 and ‖Ω‖q ≤ 2a for some a > 1. Let σa = {σ

a,r,s
: r, s ∈

R} be the family of measures defined by

(54) σ̂
a,r,s

(ξ, η) =

∫∫
Sn−1×Sm−1

e−i{ξ·u
′rφ(s)+η·v′sϕ(r)}Ω(u′, v′)dσ(u′)dσ(v′).

Then

(55) MΩ,φ,ϕ(f)(x, y) =

(∫ ∞
0

∫ ∞
0

∣∣σ
a,r,s
∗ f(x, y)

∣∣2 drds
rs

) 1
2

.

Now, we show that the family σa satisfies the following estimates

(56) sup
r,s∈R

‖σa,r,s‖ ≤ C;

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr

≤ a2C min
{∣∣2aj2adφkξ∣∣− 1

2aq′ ,
∣∣2ak2adϕjη

∣∣− 1
2aq′
}
,(57)

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr

≤ a2C min

{∣∣∣2a(j+1)2dφ(k+1)ξ
∣∣∣ 1

2aq′
,
∣∣∣2a(k+1)2adϕ(j+1)η

∣∣∣ 1
2aq′
}

(58)

for (ξ, η) ∈ Rn×Rm. Here, ‖σa,r,s‖ denote the total variation of the measure
σa,r,s.

The estimate (56) is clear. To verify the estimate in (57), we notice that∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr

≤
∫∫

Sn−1×Sm−1

∫∫
Sn−1×Sm−1

|Ω(u′, v′)| |Ω(z′, w′)| Ia,j,k(u′, v′, z′, w′)dσ(u′)dσ(v′)dσ(z′)dσ(w′).

The last inequality and Hölder’s inequality imply that∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr
(59)
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≤ ‖Ω‖2q

 ∫∫
Sn−1×Sm−1

Ia,j,k(z′, w′)dσ(z′)dσ(w′)


1
q′

,

where

Ia,j,k(z′, w′)(60)

=
∫∫

Sn−1×Sm−1

∣∣∣∣∣
∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
e−i{ξ·(u

′−z′)rφ(s)+η·(v′−w′)sϕ(r)} drds

rs

∣∣∣∣∣
q′

dσ(u′)dσ(v′)

and q′ = 1− (1/q). By Van der Corput Lemma [20], we have

|Ia,j,k(u′, v′, z′, w′)|

≤ amin
{∣∣2aj2akdφξ · (u′ − z′)∣∣− 1

2 ,
∣∣2ak2ajdϕη · (v′ − w′)

∣∣− 1
2

}
.(61)

By (61) and the observation that

(62) |Ia,j,k(u′, v′, z′, w′)| ≤ a2,

we get

|Ia,j,k(u′, v′, z′, w′)|

≤ a2 min
{∣∣2aj2akdφξ · (u′ − z′)∣∣− 1

2q′ ,
∣∣2ak2ajdϕη · (v′ − w′)

∣∣− 1
2q′
}
.(63)

By (59), (63), and the fact that

(64) sup
ζ′∈Sd−1

∫
Sd−1

∫
Sd−1

∣∣ζ ′ · (x′ − y′)∣∣−ε dσndσn ≤ C <∞

for all small ε > 0, d ≥ 2, we obtain∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr

≤ a2 ‖Ω‖2q min
{∣∣2aj2akdφξ∣∣− 1

2q′ ,
∣∣2ak2ajdϕη

∣∣− 1
2q′
}
.(65)

By interpolation between (65) and the trivial estimate

(66)

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr
≤ a2,

we get (57). Here, we used the observation that (‖Ω‖2q)
1
a ≤ (22a)

1
a = 4. To

verify (58), we first observe that

(67) σ̂
a,r,s

(0, η) = σ̂
a,r,s

(ξ, 0) = 0.

Thus∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
|σ̂a,r,s(ξ, η)|2 dsdr

sr
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≤
∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
min

{∣∣σ̂a,r,s(ξ, η)− σ̂
a,r,s

(0, η)
∣∣ , ∣∣σ̂a,r,s(ξ, η)− σ̂

a,r,s
(ξ, 0)

∣∣}2 dsdr

sr

≤ a2 ‖Ω‖21 min
{∣∣∣2a(j+1)2a(k+1)dφξ

∣∣∣ , ∣∣∣2a(k+1)2a(j+1)dϕη
∣∣∣}2

.

By combining the last inequality, the estimate (66), and the fact that ‖Ω‖1 ≤ 1,
we get (58).

Next, we estimate the Lp norms of the maximal function σ∗a. Notice that

σ∗a(f)(x, y)(68)

= sup
j,k∈Z

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak
||σa,r,s| ∗ f(x, y)| dsdr

sr

≤ sup
j,k∈Z

∫ 2a(j+1)

2aj

∫ 2a(k+1)

2ak

∫∫
Sn−1×Sm−1

|f(x− φ(s)ru′, y − ϕ(r)sv′)| |Ω(u′, v′)| dσ(u′)dσ(v′)
dsdr

sr

≤ a2

∫∫
Sn−1×Sm−1

|Ω(u′, v′)|µ(u′,v′)
φ,ϕ (f)(x, y)dσ(u′)dσ(v′),

where µ
(u′,v′)
φ,ϕ is given by (21) with z1 and z2 replaced by u′ and v′, respectively.

Therefore, by Minkowski’s inequality, Theorem 2.2, and (68), we have

‖σ∗a(f)‖p ≤ a
2

∫∫
Sn−1×Sm−1

|Ω(u′, v′)|
∥∥∥µ(u′,v′)

φ,ϕ (f)
∥∥∥
p
dσ(u′)dσ(v′)

≤ a2Cp ‖Ω‖1 ‖f‖p ≤ a
2Cp ‖f‖p(69)

for all 1 < p < ∞ with constants Cp independent of the essential variables.
Hence, (7) follows by (56)-(58), (69), and Lemma 2.1. This completes the
proof. �

Now, we move to the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume that Ω ∈ L(log+ L)(Sn−1×Sm−1) and satisfies
(2)-(3). We shall use the estimates obtained in Theorem 1.2. To this end, we
decompose the function Ω into a sum of L2 functions with suitable sizes. By
similar argument as in [3], there exist a sequence of numbers {λl : l ∈ N ∪ {0}
and a sequence {Ω

l
: l ∈ N ∪ {0}} of functions on Sn−1 × Sm−1 such that∫

Sn−1

Ω
l
(u, ·) dσ (u) =

∫
Sm−1

Ω
l
(·, v) dσ (v) = 0,(70)

Ωl(tx, sy) = Ωl(x, y) for any t, s > 0;(71)

‖Ω
l
‖1 ≤ C, ‖Ω

l
‖2 ≤ C24(l+1),(72)

Ω(x, y) =

∞∑
l=0

λ
l
Ω
l
(x, y),(73)
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∞∑
l=0

(l + 1)λ
l
≤ C ‖Ω‖L(logL)(Sn−1×Sm−1) .(74)

Let MΩl,φ,ϕ be the maximal function given by (4) with Ω replaced by Ωl.
Then

(75) MΩ,φ,ϕ(f)(x, y) ≤
∞∑
l=0

λ
l
MΩl,φ,ϕ(f)(x, y).

Now, we can apply Theorem 1.1 with a = l + 1 to get

‖MΩ,φ,ϕ(f)‖p ≤
∞∑
l=0

λ
l
‖MΩl,φ,ϕ(f)‖p

≤

( ∞∑
l=0

(l + 1)λ
l

)
Cp ‖f‖p ≤ Cp ‖f‖p

for all p ≥ 2. This completes the proof. �

We end this section by pointing out that Corollary 1.3 and Corollary 1.4
follow by Theorem 1.1, the observation (5), and simple change of variables. We
omit the details.

5. Block spaces

In [18], Jiang and Lu introduced a special class of block spaces

B0,υ
q (Sn−1×Sm−1) (for υ > −1 and q > 1).

A cap I on Sn−1×Sm−1 is a subset defined by

I =
{
x′ ∈ Sn−1 : |x′ − x′0| < α

}
×
{
y′ ∈ Sm−1 : |y′ − y′0| < β

}
for some α, β > 0, x′0 ∈ Sn−1 and y′0 ∈ Sm−1.

Definition 5.1. For 1 < q ≤ ∞, a measurable function b(x, y) on Sn−1×Sm−1

is called a q-block if supp(b) ⊆ I and ‖b‖Lq ≤ |I|
− 1
q′ where 1/q + 1/q′ = 1 and

I is a cap on Sn−1×Sm−1.

Block functions can be defined using the Block decomposition which is given
by the following definition:

Definition 5.2. A function Ω ∈ L1(Sn−1×Sm−1) is in B0,υ
q (Sn−1×Sm−1),

1 < q ≤ ∞, if

Ω =

∞∑
µ=1

c
µ
b
µ
,

where each cµ is a complex number; each bµ is a q-block supported on a cap Iµ
on Sn−1 × Sm−1; and

(76) M0,υ
q

({
cµ
})

=

∞∑
µ=1

∣∣cµ ∣∣ (1 + (log
1

|Iµ|
)1+υ

)
<∞.
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It is known that

(77) Lq
(
Sn−1×Sm−1

)
⊂ B0,υ

(
Sn−1×Sm−1

)
⊂ L1

(
Sn−1×Sm−1

)
;

(78) B0,υ
q

(
Sn−1×Sm−1

)
⊆ Lp

(
Sn−1×Sm−1

)
for any v > −1;

(79) B0,υ
q

(
Sn−1×Sm−1

)
= Lq

(
Sn−1×Sm−1

)
;

(80)
⋃
q>1

Lq
(
Sn−1×Sm−1

)
⊂
⋃
q>1

B0,υ
q

(
Sn−1×Sm−1

)
.

For more information about Block spaces we refer the reader to consult [1],
[18], and [19], among others. By making use of Theorem 1.1 and the Block
decomposition above, we immediately obtain the following result:

Theorem 5.3. Suppose that Ω ∈ B0,0
q

(
Sn−1×Sm−1

)
(q > 1) and satisfies (2)-

(3). If ϕ, φ ∈ F1 with dϕdφ 6= 1, then MΩ,φ,ϕ is bounded on Lp(Rn×Rm) for
all 2 ≤ p <∞.

By following similar argument as that led to Corollaries 1.3 and 1.4, we
obtain the following:

Corollary 5.4. Let ϕ, φ ∈ F1 with dϕdφ 6= 1. Suppose that h ∈ L2(R+×R+,

r−1s−1drds). If Ω ∈ B0,0
q

(
Sn−1×Sm−1

)
(q > 1) and satisfies (2)-(3), then the

singular integral operator Tφ,φ given in Corollary 1.3 is bounded on Lp(Rn×Rm)
for all 1 < p <∞.

Corollary 5.5. Let ϕ, φ ∈ F1 with dϕdφ 6= 1. Suppose that h ∈ L2(R+×R+,

r−1s−1drds). If Ω ∈ B0,0
q

(
Sn−1×Sm−1

)
(q > 1) and satisfies (2)-(3), then

the Marcinkiewicz integral operator µφ,φ given in Corollary 1.4 is bounded on
Lp(Rn×Rm) for all 2 ≤ p <∞.
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