• Title/Summary/Keyword: Int(${\mathbb{Z}}$)

Search Result 24, Processing Time 0.02 seconds

A DOUBLE INTEGRAL CHARACTERIZATION OF A BERGMAN TYPE SPACE AND ITS MÖBIUS INVARIANT SUBSPACE

  • Yuan, Cheng;Zeng, Hong-Gang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1643-1653
    • /
    • 2019
  • This paper shows that if $1<p<{\infty}$, ${\alpha}{\geq}-n-2$, ${\alpha}>-1-{\frac{p}{2}}$ and f is holomorphic on the unit ball ${\mathbb{B}}_n$, then $${\int_{{\mathbb{B}}_n}}{\mid}Rf(z){\mid}^p(1-{\mid}z{\mid}^2)^{p+{\alpha}}dv_{\alpha}(z)<{\infty}$$ if and only if $${\int_{{\mathbb{B}}_n}}{\int_{{\mathbb{B}}_n}}{\frac{{\mid}f(z)-F({\omega}){\mid}^p}{{\mid}1-(z,{\omega}){\mid}^{n+1+s+t-{\alpha}}}}(1-{\mid}{\omega}{\mid}^2)^s(1-{\mid}z{\mid}^2)^tdv(z)dv({\omega})<{\infty}$$ where s, t > -1 with $min(s,t)>{\alpha}$.

COMPOSITION OPERATORS ON 𝓠K-TYPE SPACES AND A NEW COMPACTNESS CRITERION FOR COMPOSITION OPERATORS ON 𝓠s SPACES

  • Rezaei, Shayesteh
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • For -2 < ${\alpha}$ < ${\infty}$ and 0 < p < ${\infty}$, the $\mathcal{Q}_K$-type space is the space of all analytic functions on the open unit disk ${\mathbb{D}}$ satisfying $$_{{\sup} \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^p(1-{{\mid}z{\mid}^2})^{\alpha}K(g(z,a))dA(z)<{\infty}$$, where $g(z,a)=log\frac{1}{{\mid}{\sigma}_a(z){\mid}}$ is the Green's function on ${\mathbb{D}}$ and K : [0, ${\infty}$) [0, ${\infty}$), is a right-continuous and non-decreasing function. For 0 < s < ${\infty}$, the space $\mathcal{Q}_s$ consists of all analytic functions on ${\mathbb{D}}$ for which $$_{sup \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^2(g(z,a))^sdA(z)<{\infty}$$. Boundedness and compactness of composition operators $C_{\varphi}$ acting on $\mathcal{Q}_K$-type spaces and $\mathcal{Q}_s$ spaces is characterized in terms of the norms of ${\varphi}^n$. Thus the author announces a solution to the problem raised by Wulan, Zheng and Zhou.

TWO POINTS DISTORTION ESTIMATES FOR CONVEX UNIVALENT FUNCTIONS

  • Okada, Mari;Yanagihara, Hiroshi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.957-965
    • /
    • 2018
  • We study the class $C{\mathcal{V}} ({\Omega})$ of analytic functions f in the unit disk ${\mathbb{D}}=\{z{\in}{\mathbb{C}}$ : ${\mid}z{\mid}$ < 1} of the form $f(z)=z+{\sum}_{n=2}^{\infty}a_nz^n$ satisfying $$1+\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}{\in}{\Omega},\;z{\in}{\mathbb{D}}$$, where ${\Omega}$ is a convex and proper subdomain of $\mathbb{C}$ with $1{\in}{\Omega}$. Let ${\phi}_{\Omega}$ be the unique conformal mapping of $\mathbb{D}$ onto ${\Omega}$ with ${\phi}_{\Omega}(0)=1$ and ${\phi}^{\prime}_{\Omega}(0)$ > 0 and $$k_{\Omega}(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\exp}\({\displaystyle\smashmargin{2}{\int\nolimits_{0}}^t}{\zeta}^{-1}({\phi}_{\Omega}({\zeta})-1)d{\zeta}\)dt$$. Let $z_0,z_1{\in}{\mathbb{D}}$ with $z_0{\neq}z_1$. As the first result in this paper we show that the region of variability $\{{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0)\;:\;f{\in}C{\mathcal{V}}({\Omega})\}$ coincides wth the set $\{{\log}\;k^{\prime}_{\Omega}(z_1z)-{\log}\;k^{\prime}_{\Omega}(z_0z)\;:\;{\mid}z{\mid}{\leq}1\}$. The second result deals with the case when ${\Omega}$ is the right half plane ${\mathbb{H}}=\{{\omega}{\in}{\mathbb{C}}$ : Re ${\omega}$ > 0}. In this case $CV({\Omega})$ is identical with the usual normalized class of convex univalent functions on $\mathbb{D}$. And we derive the sharp upper bound for ${\mid}{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0){\mid}$, $f{\in}C{\mathcal{V}}(\mathbb{H})$. The third result concerns how far two functions in $C{\mathcal{V}}({\Omega})$ are from each other. Furthermore we determine all extremal functions explicitly.

ON THE DIVISOR-CLASS GROUP OF MONADIC SUBMONOIDS OF RINGS OF INTEGER-VALUED POLYNOMIALS

  • Reinhart, Andreas
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.233-260
    • /
    • 2017
  • Let R be a factorial domain. In this work we investigate the connections between the arithmetic of Int(R) (i.e., the ring of integer-valued polynomials over R) and its monadic submonoids (i.e., monoids of the form {$g{\in}Int(R){\mid}g{\mid}_{Int(R)}f^k$ for some $k{\in}{\mathbb{N}}_0$} for some nonzero $f{\in}Int(R)$). Since every monadic submonoid of Int(R) is a Krull monoid it is possible to describe the arithmetic of these monoids in terms of their divisor-class group. We give an explicit description of these divisor-class groups in several situations and provide a few techniques that can be used to determine them. As an application we show that there are strong connections between Int(R) and its monadic submonoids. If $R={\mathbb{Z}}$ or more generally if R has sufficiently many "nice" atoms, then we prove that the infinitude of the elasticity and the tame degree of Int(R) can be explained by using the structure of monadic submonoids of Int(R).

SOME PROPERTIES OF THE BEREZIN TRANSFORM IN THE BIDISC

  • Lee, Jaesung
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.779-787
    • /
    • 2017
  • Let m be the Lebesgue measure on ${\mathbb{C}}$ normalized to $m(D)=1,{\mu}$ be an invariant measure on D defined by $d_{\mu}(z)=(1-{\mid}z{\mid}^2)^{-2}dm(z)$. For $f{\in}L^1(D^n,m{\times}{\cdots}{\times}m)$, Bf the Berezin transform of f is defined by, $$(Bf)(z_1,{\ldots},z_n)={\displaystyle\smashmargin{2}{\int\nolimits_D}{\cdots}{\int\nolimits_D}}f({\varphi}_{z_1}(x_1),{\ldots},{\varphi}_{z_n}(x_n))dm(x_1){\cdots}dm(x_n)$$. We prove that if $f{\in}L^1(D^2,{\mu}{\times}{\mu})$ is radial and satisfies ${\int}{\int_{D^2}}fd{\mu}{\times}d{\mu}=0$, then for every bounded radial function ${\ell}$ on $D^2$ we have $$\lim_{n{\rightarrow}{\infty}}{\displaystyle\smashmargin{2}{\int\int\nolimits_{D^2}}}(B^nf)(z,w){\ell}(z,w)d{\mu}(z)d{\mu}(w)=0$$. Then, using the above property we prove n-harmonicity of bounded function which is invariant under the Berezin transform. And we show the same results for the weighted the Berezin transform in the polydisc.

CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

  • Cho, Dong Hyun;Yoo, Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1531-1548
    • /
    • 2016
  • Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.417-426
    • /
    • 2011
  • Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.

NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • Suppose that $\mu$ is a finite positive Borel measure on bounded symmetric domain $\Omega{\subset}\mathbb{C}^n\;and\;\nu$ is the Euclidean volume measure such that $\nu(\Omega)=1$. Suppose 1 < p < $\infty$ and r > 0. In this paper, we will show that the norms $sup\{\int_\Omega{\mid}k_z(w)\mid^2d\mu(w)\;:\;z\in\Omega\}$, $sup\{\int_\Omega{\mid}h(w)\mid^pd\mu(w)/\int_\Omega{\mid}h(w)^pd\nu(w)\;:\;h{\in}L_a^p(\Omega,d\nu),\;h\neq0\}$ and $$sup\{\frac{\mu(E(z,r))}{\nu(E(z,r))}\;:\;z\in\Omega\}$$ are are all equivalent. We will also show that the inclusion mapping $ip\;:\;L_a^p(\Omega,d\nu){\rightarrow}L^p(\Omega,d\mu)$ is compact if and only if lim $w\rightarrow\partial\Omega\frac{\mu(E(w,r))}{\nu(E(w,r))}=0$.

CHARACTERIZATIONS FOR THE FOCK-TYPE SPACES

  • Cho, Hong Rae;Ha, Jeong Min;Nam, Kyesook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.745-756
    • /
    • 2019
  • We obtain Lipschitz type characterization and double integral characterization for Fock-type spaces with the norm $${\parallel}f{\parallel}^p_{F^p_{m,{\alpha},t}}\;=\;{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{C}}^n}}\;{\left|{f(z){e^{-{\alpha}}{\mid}z{\mid}^m}}\right|^p}\;{\frac{dV(z)}{(1+{\mid}z{\mid})^t}}$$, where ${\alpha}>0$, $t{\in}{\mathbb{R}}$, and $m{\in}\mathbb{N}$. The results of this paper are the extensions of the classical weighted Fock space $F^p_{2,{\alpha},t}$.

ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Let $\mu$ be a finite positive Borel measure on the unit ball $B{\subset}\mathbb{C}^n$ and $\nu$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, $\sigma$ is the rotation-invariant measure on S such that ${\sigma}(S)=1$. Let $\mathcal{P}[f]$ be the invariant Poisson integral of f. We will show that there is a constant M > 0 such that $\int_B{\mid}{\mathcal{P}}[f](z){\mid}^{p}d{\mu}(z){\leq}M\;{\int}_B{\mid}{\mathcal{P}}[f](z)^pd{\nu}(z)$ for all $f{\in}L^p({\sigma})$ if and only if ${\parallel}{\mu}{\parallel_r}\;=\;sup_{z{\in}B}\;\frac{\mu(E(z,r))}{\nu(E(z,r))}\;<\;\infty$.

  • PDF