CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

Dong Hyun Cho and Il Yoo

Abstract

Let $C[0, t]$ denote the space of real-valued continuous functions on $[0, t]$ and define a random vector $Z_{n}: C[0, t] \rightarrow \mathbb{R}^{n}$ by $Z_{n}(x)=$ $\left(\int_{0}^{t_{1}} h(s) d x(s), \ldots, \int_{0}^{t_{n}} h(s) d x(s)\right)$, where $0<t_{1}<\cdots<t_{n}=t$ is a partition of $[0, t]$ and $h \in L_{2}[0, t]$ with $h \neq 0$ a.e. Using a simple formula for a conditional expectation on $C[0, t]$ with Z_{n}, we evaluate a generalized analytic conditional Wiener integral of the function $G_{r}(x)=F(x) \Psi\left(\int_{0}^{t} v_{1}(s) d x(s), \ldots, \int_{0}^{t} v_{r}(s) d x(s)\right)$ for F in a Banach algebra and for $\Psi=f+\phi$ which need not be bounded or continuous, where $f \in L_{p}\left(\mathbb{R}^{r}\right)(1 \leq p \leq \infty),\left\{v_{1}, \ldots, v_{r}\right\}$ is an orthonormal subset of $L_{2}[0, t]$ and ϕ is the Fourier transform of a measure of bounded variation over \mathbb{R}^{r}. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of G_{r} with the conditioning function Z_{n}.

1. Introduction

Let $C_{0}[0, t]$ denote the Wiener space, the space of continuous real-valued functions x on $[0, t]$ with $x(0)=0$. As mentioned in [14] the Wiener measure and Wiener measurability behave badly under change of scale transformation and under translation [1, 2]. Various kinds of the change of scale formulas for Wiener integrals of bounded functions were developed on the classical and abstract Wiener spaces [3, 12, 13, 15]. Chang, Kim, Song and Yoo [14] established a change of scale formula for the Wiener integral of function on the abstract Wiener space \mathbb{B} which have the form

$$
F_{1}(x)=G(x) \Psi\left(\left(e_{1}, x\right)^{\sim}, \ldots,\left(e_{r}, x\right)^{\sim}\right)
$$

for $G \in \mathcal{F}(\mathbb{B})$, the Fresnel class [5] and $\Psi=\psi+\phi$, where $\psi \in L_{p}\left(\mathbb{R}^{r}\right), 1 \leq$ $p<\infty,(\cdot, \cdot)^{\sim}$ denotes a stochastic inner product on $\mathbb{B}[10]$ and ϕ is the Fourier

[^0]transform of a measure of bounded variation over \mathbb{R}^{r}. Furthermore the author and his coauthors $[6,8,11]$ introduced various kinds of the change of scale formulas for the conditional Wiener integrals of the function of the form F_{1} defined on $C_{0}[0, t], C_{0}(\mathbb{B})$, the infinite dimensional Wiener space and $C[0, t]$, an analogue of Wiener space [9] which is the space of real-valued continuous paths on $[0, t]$.

Let $h \in L_{2}[0, t]$ with $h \neq 0$ a.e. on $[0, t]$. Define a stochastic process Z : $C[0, t] \times[0, t] \rightarrow \mathbb{R}$ by $Z(x, s)=\int_{0}^{s} h(u) d x(u)$ for $x \in C[0, t]$ and $s \in[0, t]$, where the integral denotes the Paley-Wiener-Zygmund integral, and let

$$
Z_{n}(x)=\left(Z\left(x, t_{1}\right), \ldots, Z\left(x, t_{n}\right)\right)
$$

On the space $C[0, t]$ the author [7] derived a simple formula for a generalized conditional Wiener integral given the vector-valued conditioning function Z_{n}.

Using the simple formula on $C[0, t]$ with the conditioning function Z_{n}, we evaluate a generalized analytic conditional Wiener integral of the function G_{r} having the form

$$
G_{r}(x)=F(x) \Psi\left(\int_{0}^{t} v_{1}(s) d x(s), \ldots, \int_{0}^{t} v_{r}(s) d x(s)\right)
$$

for F in a Banach algebra which corresponds to the Cameron-Storvick's Banach algebra \mathcal{S} [4] and for $\Psi=f+\phi$ which need not be bounded or continuous, where $f \in L_{p}\left(\mathbb{R}^{r}\right)(1 \leq p \leq \infty),\left\{v_{1}, \ldots, v_{r}\right\}$ is an orthonormal subset of $L_{2}[0, t]$ and ϕ is the Fourier transform of a measure of bounded variation over \mathbb{R}^{r}. Finally we establish various kinds of new change of scale transformations for the generalized analytic conditional Wiener integral of G_{r} with the conditioning function Z_{n}. We note that the results of this paper are different from those in $[6,8,11]$.

2. A generalized conditional Wiener integral

Let $\mathbb{C}, \mathbb{C}_{+}$and \mathbb{C}_{+}^{\sim} denote the sets of complex numbers, complex numbers with positive real parts and nonzero complex numbers with nonnegative real parts, respectively.

Let $\left(C[0, t], \mathcal{B}(C[0, t]), w_{\varphi}\right)$ be the analogue of Wiener space associated with a probability measure φ on the Borel class of \mathbb{R}, where $\mathcal{B}(C[0, t])$ denotes the Borel class of $C[0, t][9]$. For $v \in L_{2}[0, t]$ and $x \in C[0, t]$ let $(v, x)=\int_{0}^{t} v(s) d x(s)$ denote the Paley-Wiener-Zygmund integral of v according to x. The inner product on the real Hilbert space $L_{2}[0, t]$ is denoted by $\langle\cdot, \cdot\rangle$. Furthermore the dot product on the r-dimensional Euclidean space \mathbb{R}^{r} is also denoted by $\langle\cdot, \cdot\rangle_{\mathbb{R}^{r}}$.

Let $F: C[0, t] \rightarrow \mathbb{C}$ be integrable and let X be a random vector on $C[0, t]$. Then we have the conditional expectation $E[F \mid X]$ given X from a well-known probability theory. Furthermore there exists a P_{X}-integrable function ψ on the value space of X such that $E[F \mid X](x)=(\psi \circ X)(x)$ for w_{φ}-a.e. $x \in C[0, t]$, where P_{X} is the probability distribution of X. The function ψ is called the conditional Wiener w_{φ}-integral of F given X and it is also denoted by $E[F \mid X]$.

Let $0=t_{0}<t_{1}<\cdots<t_{n}=t$ be a partition of $[0, t]$, where n is a positive integer. Let $h \in L_{2}[0, t]$ be of bounded variation with $h \neq 0$ a.e. For $j=1, \ldots, n$ let $\alpha_{j}=\frac{1}{\left\|\chi_{\left(t_{j-1}, t_{j}\right]} h\right\|} \chi_{\left(t_{j-1}, t_{j}\right]} h$ and let V be the subspace of $L_{2}[0, t]$ generated by $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Let V^{\perp} be the orthogonal complement of V. Let $\mathcal{P}: L_{2}[0, t] \rightarrow V$ be the orthogonal projection given by

$$
\mathcal{P} v=\sum_{j=1}^{n}\left\langle v, \alpha_{j}\right\rangle \alpha_{j}
$$

and $\mathcal{P}^{\perp}: L_{2}[0, t] \rightarrow V^{\perp}$ be the orthogonal projection. For $x \in C[0, t]$ define the stochastic integral by

$$
Z(x, s)=\int_{0}^{s} h(u) d x(u), \quad 0 \leq s \leq t
$$

and let $Z_{n}: C[0, t] \rightarrow \mathbb{R}^{n}$ be given by

$$
\begin{equation*}
Z_{n}(x)=\left(Z\left(x, t_{1}\right), \ldots, Z\left(x, t_{n}\right)\right) . \tag{1}
\end{equation*}
$$

Let $b(s)=\int_{0}^{s}(h(u))^{2} d u$ and for $x \in C[0, t]$ define the polygonal function $[Z(x, \cdot)]_{b}$ of $Z(x, \cdot)$ by

$$
\begin{align*}
& {[Z(x, \cdot)]_{b}(s) } \tag{2}\\
= & \sum_{j=1}^{n} \chi_{\left(t_{j-1}, t_{j}\right]}(s)\left(Z\left(x, t_{j-1}\right)+\frac{b(s)-b\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\left(Z\left(x, t_{j}\right)-Z\left(x, t_{j-1}\right)\right)\right)
\end{align*}
$$

for $s \in[0, t]$, where $\chi_{\left(t_{j-1}, t_{j}\right]}$ denotes the indicator function on the interval $\left(t_{j-1}, t_{j}\right]$. Similarly for $\vec{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ the polygonal function $[\vec{\xi}]_{b}$ of $\vec{\xi}$ is given by (2) replacing $Z\left(x, t_{j}\right)$ by $\xi_{j}(j=1, \ldots, n)$ with $\xi_{0}=0$. For a function $F: C[0, t] \rightarrow \mathbb{C}$ such that $F(Z(x, \cdot))$ is integrable over x, we have by Theorem 2.12 in [7]

$$
\begin{equation*}
E\left[F(Z(x, \cdot)) \mid Z_{n}\right](\vec{\xi})=E\left[F\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \tag{3}
\end{equation*}
$$

for $P_{Z_{n}}$-a.e. $\vec{\xi} \in \mathbb{R}^{n}$ (for a.e. $\vec{\xi} \in \mathbb{R}^{n}$), where $P_{Z_{n}}$ is the probability distribution of Z_{n} on the Borel class of \mathbb{R}^{n}. For $\lambda>0$ let $F_{Z}^{\lambda}(x)=F\left(\lambda^{-\frac{1}{2}} Z(x, \cdot)\right)$ and $Z_{n}^{\lambda}(x)=Z_{n}\left(\lambda^{-\frac{1}{2}} x\right)$ for $x \in C[0, t]$, where Z_{n} is given by (1). Suppose that $E\left[F_{Z}^{\lambda}\right]$ exists. By the definition of the conditional Wiener w_{φ}-integral and (3)

$$
\begin{equation*}
E\left[F_{Z}^{\lambda} \mid Z_{n}^{\lambda}\right](\vec{\xi})=E\left[F\left(\lambda^{-\frac{1}{2}}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}\right)+[\vec{\xi}]_{b}\right)\right] \tag{4}
\end{equation*}
$$

for $P_{Z_{n}^{\lambda}}$-a.e. $\vec{\xi} \in \mathbb{R}^{n}$, where $P_{Z_{n}^{\lambda}}$ is the probability distribution of Z_{n}^{λ} on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$. Let $I_{F_{Z}}^{\lambda}(\vec{\xi})$ be the right-hand side of (4). If $I_{F_{Z}}^{\lambda}(\vec{\xi})$ has the analytic extension $J_{F_{Z}}^{\lambda}(\vec{\xi})$ on \mathbb{C}_{+}, then it is called the conditional analytic Wiener w_{φ}-integral of F_{Z} given Z_{n} with the parameter λ and denoted by

$$
E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})=J_{F_{Z}}^{\lambda}(\vec{\xi})
$$

for $\vec{\xi} \in \mathbb{R}^{n}$. Moreover if for nonzero real $q, E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})$ has the limit as λ approaches $-i q$ through \mathbb{C}_{+}, then it is called the conditional analytic Feynman w_{φ}-integral of F_{Z} given Z_{n} with the parameter q and denoted by

$$
E^{a n f_{q}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})=\lim _{\lambda \rightarrow-i q} E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})
$$

Lemma 2.1. Let $v \in L_{2}[0, t]$. Then for w_{φ}-a.e. $x \in C[0, t]$

$$
\left(v,[Z(x, \cdot)]_{b}\right)=(\mathcal{P}(v h), x)
$$

Proof. By the definition of the Paley-Wiener-Zygmund integral

$$
\begin{aligned}
& \left(v,[Z(x, \cdot)]_{b}\right) \\
= & \sum_{j=1}^{n} \frac{Z\left(x, t_{j}\right)-Z\left(x, t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)} \int_{t_{j-1}}^{t_{j}} v(s) d b(s) \\
= & \sum_{j=1}^{n} \frac{\int_{t_{j-1}}^{t_{j}} v(s)(h(s))^{2} d s}{\left\|\chi_{\left(t_{j-1}, t_{j}\right]} h\right\|^{2}}\left(\int_{0}^{t_{j}} h(s) d x(s)-\int_{0}^{t_{j-1}} h(s) d x(s)\right) \\
= & \sum_{j=1}^{n}\left\langle v h, \alpha_{j}\right\rangle\left(\alpha_{j}, x\right)=(\mathcal{P}(v h), x)
\end{aligned}
$$

which completes the proof.

3. Generalized analytic conditional Feynman integrals

Throughout this paper let $h \in L_{2}[0, t]$ be of bounded variation with $h \neq$ 0 a.e. and $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be an orthonormal subset of $L_{2}[0, t]$ such that $\left\{\mathcal{P}^{\perp}\left(h v_{1}\right), \ldots, \mathcal{P}^{\perp}\left(h v_{r}\right)\right\}$ is an independent set. Let

$$
\begin{equation*}
\left\{e_{1}, \ldots, e_{r}\right\} \tag{5}
\end{equation*}
$$

be the orthonormal set obtained from $\left\{\mathcal{P}^{\perp}\left(h v_{1}\right), \ldots, \mathcal{P}^{\perp}\left(h v_{r}\right)\right\}$ by the GramSchmidt orthonormalization process. Now for $l=1, \ldots, r$ let $\mathcal{P}^{\perp}\left(h v_{l}\right)=$ $\sum_{j=1}^{r} \alpha_{l j} e_{j}$ be the linear combinations of the $e_{j} \mathrm{~s}$ and let

$$
A=\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1 r} \tag{6}\\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{r 1} & \alpha_{r 2} & \cdots & \alpha_{r r}
\end{array}\right]
$$

be the coefficient matrix of the combinations. We can also regard A as the linear transformation $T_{A}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ given by $T_{A}(\vec{z})=\vec{z} A$, where \vec{z} is an arbitrary row-vector in \mathbb{R}^{r}. We note that A is invertible so that T_{A} is an isomorphism.
Remark 3.1. An example of h and $\left\{v_{1}, \ldots, v_{r}\right\}$ satisfying the above conditions can be obtained by the following process. Let

$$
h(s)=\sum_{j=1}^{n} \chi_{\left(t_{j-1}, t_{j}\right]}(s) \frac{2(-1)^{j}}{t_{j}-t_{j-1}}\left(s-\frac{t_{j-1}+t_{j}}{2}\right)+\chi_{\{0\}}(s)
$$

and for $l=1, \ldots, r$ let

$$
h_{l}(s)=\sum_{j=1}^{n} \chi_{\left(t_{j-1}, t_{j}\right]}(s) \frac{(-1)^{j} 2^{2 l-1}}{\left(t_{j}-t_{j-1}\right)^{2 l-1}}\left(s-\frac{t_{j-1}+t_{j}}{2}\right)^{2 l-1}+\chi_{\{0\}}(s)
$$

for $s \in[0, t]$. For a.e $s \in[0, t]$ let $\sum_{l=1}^{r} c_{l} h_{l}(s)=0$. Fix $k \in\{1, \ldots, n\}$ and take distinct points a_{1}, \ldots, a_{r} in ($\frac{t_{k-1}+t_{k}}{2}, t_{k}$) satisfying the above equality. Let $b_{m}=\frac{2}{t_{k}-t_{k-1}} a_{m}-\frac{t_{k}+t_{k-1}}{t_{k}-t_{k-1}}$ for $m=1, \ldots, r$. Replacing s by a_{m} we have the linear equation system with unknowns $c_{1}, \ldots, c_{r} ; \sum_{l=1}^{r} b_{m}^{2 l-1} c_{l}=0$ for $m=1, \ldots, r$. The determinant of the coefficient matrix is given by

$$
\left|\begin{array}{cccc}
b_{1} & b_{1}^{3} & \cdots & b_{1}^{2 r-1} \\
\vdots & \vdots & \ddots & \vdots \\
b_{r} & b_{r}^{3} & \cdots & b_{r}^{2 r-1}
\end{array}\right|=\left(\prod_{m=1}^{r} b_{m}\right)\left(\prod_{1 \leq j<k \leq r}\left(b_{k}^{2}-b_{j}^{2}\right)\right) \neq 0
$$

so that $c_{1}=\cdots=c_{r}=0$, which shows that $\left\{h_{1}, \ldots, h_{r}\right\}$ is an independent set. Let $\left\{v_{1}, \ldots, v_{r}\right\}$ be the orthonormal set obtained from $\left\{h_{1}, \ldots, h_{r}\right\}$ by the Gram-Schmidt orthonormalization process. Now let $v_{l}=\sum_{j=1}^{r} \beta_{l j} h_{j}$ for $l=1, \ldots, r$. Then we have

$$
\mathcal{P}^{\perp}\left(h v_{l}\right)=\sum_{j=1}^{r} \beta_{l j} h h_{j}-\sum_{j=1}^{r} \sum_{k=1}^{n} \beta_{l j}\left\langle h h_{j}, \alpha_{k}\right\rangle \alpha_{k} .
$$

We note that

$$
\left\langle h h_{j}, \alpha_{k}\right\rangle=\frac{1}{\left\|\chi_{\left(t_{k-1}, t_{k}\right]} h\right\|} \int_{t_{k-1}}^{t_{k}}(h(s))^{2} h_{j}(s) d s=0
$$

so that for a.e. $s \in[0, t]$

$$
\begin{aligned}
& \mathcal{P}^{\perp}\left(h v_{l}\right)(s) \\
= & \sum_{j=1}^{r} \sum_{p=1}^{n} \beta_{l j} \chi_{\left(t_{p-1}, t_{p}\right]}(s) \frac{2^{2 j}}{\left(t_{p}-t_{p-1}\right)^{2 j}}\left(s-\frac{t_{p-1}+t_{p}}{2}\right)^{2 j}+\sum_{j=1}^{r} \beta_{l j} \chi_{\{0\}}(s) .
\end{aligned}
$$

To prove the independence of $\left\{\mathcal{P}^{\perp}\left(h v_{l}\right): l=1, \ldots, r\right\}$ let

$$
\sum_{l=1}^{r} c_{l}^{\prime}\left(\mathcal{P}^{\perp}\left(h v_{l}\right)\right)(s)=0 \quad \text { for a.e. } s \in[0, t]
$$

Fix $p \in\{1, \ldots, n\}$ and take distinct points $a_{1}^{\prime}, \ldots, a_{r}^{\prime}$ in $\left(\frac{t_{p-1}+t_{p}}{2}, t_{p}\right)$ satisfying the above two equalities. Let $b_{m}^{\prime}=\frac{2}{t_{p}-t_{p-1}} a_{m}^{\prime}-\frac{t_{p}+t_{p-1}}{t_{p}-t_{p-1}}$ for $m=1, \ldots, r$. Replacing s by a_{m}^{\prime} we have $\sum_{l=1}^{r}\left(\sum_{j=1}^{r} \beta_{l j}\left(b_{m}^{\prime}\right)^{2 j}\right) c_{l}^{\prime}=0$ for $m=1, \ldots, r$. The determinant of the coefficient matrix is given by

$$
\left|\begin{array}{ccc}
\sum_{j=1}^{r}\left(b_{1}^{\prime}\right)^{2 j} \beta_{1 j} & \cdots & \sum_{j=1}^{r}\left(b_{1}^{\prime}\right)^{2 j} \beta_{r j} \\
\vdots & \ddots & \vdots \\
\sum_{j=1}^{r}\left(b_{r}^{\prime}\right)^{2 j} \beta_{1 j} & \cdots & \sum_{j=1}^{r}\left(b_{r}^{\prime}\right)^{2 j} \beta_{r j}
\end{array}\right|
$$

$$
=\left(\prod_{m=1}^{r}\left(b_{m}^{\prime}\right)^{2}\right)\left(\prod_{1 \leq j<m \leq r}\left(\left(b_{m}^{\prime}\right)^{2}-\left(b_{j}^{\prime}\right)^{2}\right)\right)\left|\begin{array}{cccc}
\beta_{11} & \beta_{21} & \cdots & \beta_{r 1} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{1 r} & \beta_{2 r} & \cdots & \beta_{r r}
\end{array}\right| \neq 0
$$

Hence $c_{1}^{\prime}=\cdots=c_{r}^{\prime}=0$, which shows the independence of $\left\{\mathcal{P}^{\perp}\left(h v_{l}\right): l=\right.$ $1, \ldots, r\}$.

Let $\hat{\mathrm{M}}\left(\mathbb{R}^{r}\right)$ be the space of all functions ϕ on \mathbb{R}^{r} defined by

$$
\begin{equation*}
\phi(\vec{u})=\int_{\mathbb{R}^{r}} \exp \left\{i\langle\vec{u}, \vec{z}\rangle_{\mathbb{R}^{r}}\right\} d \rho(\vec{z}) \tag{7}
\end{equation*}
$$

where ρ is a complex Borel measure of bounded variation over \mathbb{R}^{r}. Let

$$
\mathcal{M}\left(L_{2}[0, t]\right)
$$

be the class of all \mathbb{C}-valued Borel measures of bounded variation over $L_{2}[0, t]$ and let $\mathcal{S}_{w_{\varphi}}$ be the space of all functions F which for $\sigma \in \mathcal{M}\left(L_{2}[0, t]\right)$ have the form

$$
\begin{equation*}
F(x)=\int_{L_{2}[0, t]} \exp \{i(v, x)\} d \sigma(v) \tag{8}
\end{equation*}
$$

for w_{φ}-a.e. $x \in C[0, t]$. We note that $\mathcal{S}_{w_{\varphi}}$ is a Banach algebra [4, 9].
Let $(\vec{v}, x)=\left(\left(v_{1}, x\right), \ldots,\left(v_{r}, x\right)\right)$ and $(h \vec{v}, x)=\left(\left(h v_{1}, x\right), \ldots,\left(h v_{r}, x\right)\right)$ for $x \in C[0, t]$. For a complete orthonormal basis $\left\{e_{1}, \ldots, e_{r}, e_{r+1}, \ldots\right\}$ containing (5) and $v \in L_{2}[0, t]$ let

$$
\begin{equation*}
c_{j}(v)=\left\langle v, e_{j}\right\rangle \quad \text { for } j=1, \ldots, r, r+1, \ldots \tag{9}
\end{equation*}
$$

Theorem 3.2. Let $\Psi(x)=\phi(\vec{v}, x) F(x)$, where ϕ and F are given by (7) and (8), respectively. For $\lambda \in \mathbb{C}_{+}^{\sim}, v \in L_{2},[0, t], \vec{\xi} \in \mathbb{R}^{n}$ and $\vec{z} \in \mathbb{R}^{r}$ let

$$
\begin{equation*}
A_{1}(\vec{\xi}, v, \vec{z})=\exp \left\{i\left[\left(v,[\vec{\xi}]_{b}\right)+\left\langle\left(\vec{v},[\vec{\xi}]_{b}\right), \vec{z}\right\rangle_{\mathbb{R}^{r}}\right]\right\} \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& A_{2}(\lambda, v, \vec{z}) \tag{11}\\
= & \exp \left\{-\frac{1}{2 \lambda}\left[\left\|\mathcal{P}^{\perp}(h v)\right\|^{2}-\left\|\vec{c}\left(\mathcal{P}^{\perp}(h v)\right)\right\|_{\mathbb{R}^{r}}^{2}+\left\|\vec{c}\left(\mathcal{P}^{\perp}(h v)\right)+T_{A} \vec{z}\right\|_{\mathbb{R}^{r}}^{2}\right]\right\}
\end{align*}
$$

where $\vec{c}=\left(c_{1}, \ldots, c_{r}\right)$ and the c_{j} s are given by (9). Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$

$$
E^{a n w_{\lambda}}\left[\Psi_{Z} \mid Z_{n}\right](\vec{\xi})=\int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) A_{2}(\lambda, v, \vec{z}) d \rho(\vec{z}) d \sigma(v)
$$

Moreover for a nonzero real q, $E^{a n f_{q}}\left[\Psi_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of the above equality replacing λ by $-i q$.

Proof. For $\lambda>0$ and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have by Lemma 2.1

$$
\begin{aligned}
I_{\Psi_{Z}}^{\lambda}(\vec{\xi})= & E\left[\Psi\left(\lambda^{-\frac{1}{2}}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}\right)+[\vec{\xi}]_{b}\right)\right] \\
= & \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{C[0, t]} \exp \left\{i \lambda^{-\frac{1}{2}}[(v h-\mathcal{P}(v h), x)\right. \\
& \left.\left.+\langle(h \vec{v}-\mathcal{P}(h \vec{v}), x), \vec{z}\rangle_{\mathbb{R}^{r}}\right]\right\} d w_{\varphi}(x) d \rho(\vec{z}) d \sigma(v) \\
= & \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{C[0, t]} \exp \left\{i \lambda ^ { - \frac { 1 } { 2 } } \left[\left(\mathcal{P}^{\perp}(v h), x\right)\right.\right. \\
& \left.\left.+\left\langle\left(\mathcal{P}^{\perp}(h \vec{v}), x\right), \vec{z}\right\rangle_{\left.\mathbb{R}^{r}\right]}\right]\right\} d w_{\varphi}(x) d \rho(\vec{z}) d \sigma(v),
\end{aligned}
$$

where for a functional $g: L_{2}[0, t] \rightarrow L_{2}[0, t]$

$$
(g(h \vec{v}), x)=\left(\left(g\left(h v_{1}\right), x\right), \ldots,\left(g\left(h v_{r}\right), x\right)\right) .
$$

By the same process as used in the proof of Theorem 2.6 in [8] we can obtain

$$
I_{\Psi_{Z}}^{\lambda}(\vec{\xi})=\int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) A_{2}(\lambda, v, \vec{z}) d \rho(\vec{z}) d \sigma(v)
$$

By the Morera's theorem and the dominated convergence theorem we have the theorem.

For $1 \leq p \leq \infty$ let $\mathcal{A}_{r}^{(p)}$ be the space of the cylinder functions having the following form

$$
\begin{equation*}
F_{r}(x)=f(\vec{v}, x) \tag{12}
\end{equation*}
$$

for w_{φ}-a.e. $x \in C[0, t]$, where $f \in L_{p}\left(\mathbb{R}^{r}\right)$. Without loss of generality we can take f to be Borel measurable.

Theorem 3.3. Let $1 \leq p \leq \infty$ and $F_{r} \in \mathcal{A}_{r}^{(p)}$ be given by (12). Then for $\lambda \in \mathbb{C}_{+}$we have

$$
E^{a n w_{\lambda}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})=\left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}\right\} d \vec{u}
$$

for a.e. $\vec{\xi} \in \mathbb{R}^{n}$, where A^{T} is the transpose of A given by (6). Furthermore if $p=1$, then for a non-zero real $q E^{a n f_{q}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of the above equality replacing λ by $-i q$.

Proof. By the same process as used in the proof of Theorem 3.1 in [8]

$$
\begin{aligned}
I_{\left(F_{r}\right)_{Z}}^{\lambda}(\vec{\xi}) & =E\left[F_{r}\left(\lambda^{-\frac{1}{2}}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}\right)+[\vec{\xi}]_{b}\right)\right] \\
& =\int_{C[0, t]} f\left(\lambda^{-\frac{1}{2}}\left(\mathcal{P}^{\perp}(h \vec{v}), x\right)+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x) \\
& =\left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}\right\} d \vec{u}
\end{aligned}
$$

for $\lambda>0$ and a.e. $\vec{\xi} \in \mathbb{R}^{n}$. By the Morera's theorem we have the first part of the theorem. If $p=1$, then the final result follows from the dominated convergence theorem.

Theorem 3.4. Let $G_{r}=F F_{r}$, where $F \in \mathcal{S}_{w_{\varphi}}$ and $F_{r} \in \mathcal{A}_{r}^{(p)}(1 \leq p \leq \infty)$ are given by (8) and (12), respectively. For $\lambda \in \mathbb{C}_{+}^{\sim}, v \in L_{2}[0, t]$ and $\vec{u} \in \mathbb{R}^{r}$ let

$$
\begin{align*}
A_{3}(\lambda, v, \vec{u})=\exp \{ & -\frac{1}{2 \lambda}\left[\left\|\mathcal{P}^{\perp}(h v)\right\|^{2}-\left\|\vec{c}\left(\mathcal{P}^{\perp}(h v)\right)\right\|_{\mathbb{R}^{r}}^{2}\right] \tag{13}\\
& \left.-\frac{\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}+i\left\langle\vec{c}\left(\mathcal{P}^{\perp}(h v)\right), \vec{u}\right\rangle_{\mathbb{R}^{r}}\right\}
\end{align*}
$$

where $\vec{c}=\left(c_{1}, \ldots, c_{r}\right)$ and the c_{j} s are given by (9). Then we have for $\lambda \in \mathbb{C}_{+}$ and a.e. $\vec{\xi} \in \mathbb{R}^{n}$

$$
\begin{aligned}
E^{a n w_{\lambda}}\left[\left(G_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \\
& \times A_{3}(\lambda, v, \vec{u}) d \vec{u} d \sigma(v)
\end{aligned}
$$

where A^{T} is the transpose of A given by (6). Furthermore if $p=1$, then for a real $q E^{a n f_{q}}\left[\left(G_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of the above equality replacing λ by $-i q$.

Proof. By the same process as used in the proof of Theorem 3.3 in [8]

$$
\begin{aligned}
& I_{\left(G_{r}\right)_{Z}}^{\lambda}(\vec{\xi}) \\
= & E\left[G_{r}\left(\lambda^{-\frac{1}{2}}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}\right)+[\vec{\xi}]_{b}\right)\right] \\
= & \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{C[0, t]} \exp \left\{i \lambda^{-\frac{1}{2}}\left(\mathcal{P}^{\perp}(v h), x\right)\right\} f\left(\lambda^{-\frac{1}{2}}\left(\mathcal{P}^{\perp}(h \vec{v}), x\right)\right. \\
& \left.+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x) d \sigma(v) \\
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) A_{3}(\lambda, v, \vec{u}) d \vec{u} d \sigma(v)
\end{aligned}
$$

for $\lambda>0$ and a.e. $\vec{\xi} \in \mathbb{R}^{n}$. By the Morera's theorem we have the first part of the theorem. If $p=1$, then the final result follows from the dominated convergence theorem.

From Theorems 3.2 and 3.4 we have the following corollary by the linearities of the generalized conditional Wiener and Feynman integrals on the analogue of Wiener space.

Corollary 3.5. Let ϕ, F and $F_{r} \in \mathcal{A}_{r}^{(p)}(1 \leq p \leq \infty)$ be given by (7), (8) and (12), respectively. Furthermore let q be a nonzero real number. Then $E^{\text {anw }}{ }_{\lambda}\left[\left(\left(\phi(\vec{v}, \cdot)+F_{r}\right) F\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ exists for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$, and it is given by

$$
\begin{aligned}
& E^{a n w_{\lambda}}\left[\left(\left(\phi(\vec{v}, \cdot)+F_{r}\right) F\right)_{Z} \mid Z_{n}\right](\vec{\xi}) \\
= & \int_{L_{2}[0, t]}\left[\int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) A_{2}(\lambda, v, \vec{z}) d \rho(\vec{z})+\exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\}\right. \\
& \left.\times\left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) A_{3}(\lambda, v, \vec{u}) d \vec{u}\right] d \sigma(v),
\end{aligned}
$$

where A_{1}, A_{2} and A_{3} are given by (10), (11) and (13), respectively. In particular if $F_{r} \in \mathcal{A}_{r}^{(1)}$, then $E^{\text {anf } f_{q}}\left[\left(\left(\phi(\vec{v}, \cdot)+F_{r}\right) F\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ exists for a.e. $\vec{\xi} \in \mathbb{R}^{n}$ and it is obtained with replacing λ by -iq in the right-hand side of the above equality.

4. A change of scale formula using the polygonal function

In this section we derive change of scale formulas for the generalized conditional Wiener integrals of unbounded functions on the analogue of Wiener space using the polygonal function.

Let $\left\{e_{j}: j=1,2, \ldots\right\}$ be a complete orthonormal basis for $L_{2}[0, t]$ containing $\left\{e_{1}, \ldots, e_{r}\right\}$ which is given by (5). For $m \in \mathbb{N}, \lambda \in \mathbb{C}_{+}^{\sim}$ and $x \in C[0, t]$ let

$$
\begin{equation*}
K_{m}(\lambda, x)=\exp \left\{\frac{1-\lambda}{2} \sum_{j=1}^{m}\left(e_{j}, x\right)^{2}\right\} . \tag{14}
\end{equation*}
$$

Theorem 4.1. Let $1 \leq p \leq \infty$ and F_{r} be given by (12). Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have

$$
E^{a n w_{\lambda}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})=\lambda^{\frac{r}{2}} \int_{C[0, t]} K_{r}(\lambda, x) F_{r}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right) d w_{\varphi}(x)
$$

where K_{r} is given by (14) replacing m by r. Moreover if $p=1$ and q is a nonzero real number, then

$$
\begin{aligned}
& E^{a n f_{q}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi}) \\
= & \lim _{m \rightarrow \infty} \lambda_{m}^{\frac{r}{2}} \int_{C[0, t]} K_{r}\left(\lambda_{m}, x\right) F_{r}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+\left[\vec{\xi}_{b}\right) d w_{\varphi}(x)\right.
\end{aligned}
$$

for any sequence $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ in \mathbb{C}_{+}converging to -iq as m approaches ∞.
Proof. For $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have by Lemma 2.1

$$
\begin{aligned}
\Gamma(\lambda, r, \vec{\xi}) & \equiv \lambda^{\frac{r}{2}} \int_{C[0, t]} K_{r}(\lambda, x) F_{r}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right) d w_{\varphi}(x) \\
& =\lambda^{\frac{r}{2}} \int_{C[0, t]} K_{r}(\lambda, x) f\left(\left(\mathcal{P}^{\perp}(h \vec{v}), x\right)+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x)
\end{aligned}
$$

$$
=\lambda^{\frac{r}{2}} \int_{C[0, t]} K_{r}(\lambda, x) f\left((\vec{e}, x) A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x)
$$

where $(\vec{e}, x)=\left(\left(e_{1}, x\right), \ldots,\left(e_{r}, x\right)\right)$ and A^{T} is the transpose of A given by (6). By the generalized Wiener integration theorem [9, Theorem 3.5] and Theorem 3.3

$$
\begin{aligned}
& \Gamma(\lambda, r, \vec{\xi}) \\
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{\mathbb{R}^{r}} \exp \left\{\frac{1-\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}\right\} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{1}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}\right\} d \vec{u} \\
= & E^{a n w_{\lambda}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi}),
\end{aligned}
$$

which completes the proof of the first part of the theorem. If $p=1$, then the final result follows from the dominated convergence theorem.

Theorem 4.2. Let Ψ be as given in Theorem 3.2. Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have

$$
\begin{align*}
& E^{a n w_{\lambda}}\left[\Psi_{Z} \mid Z_{n}\right](\vec{\xi}) \tag{15}\\
= & \lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \int_{C[0, t]} K_{m}(\lambda, x) \Psi\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right) d w_{\varphi}(x),
\end{align*}
$$

where K_{m} is given by (14). Moreover if q is a nonzero real number and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to $-i q$ as m approaches ∞, then $E^{a n f_{q}}\left[\Psi_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of (15) replacing λ by λ_{m}.

Proof. For $m>r, \lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have by Lemma 2.1

$$
\begin{aligned}
\Gamma(\lambda, m, \vec{\xi}) \equiv & \int_{C[0, t]} K_{m}(\lambda, x) \Psi\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right) d w_{\varphi}(x) \\
= & \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{C[0, t]} K_{m}(\lambda, x) \exp \{i[(v, Z(x, \cdot) \\
& \left.\left.\left.-[Z(x, \cdot)]_{b}\right)+\left\langle\left(\vec{v}, Z(x, \cdot)-[Z(x, \cdot)]_{b}\right), \vec{z}\right\rangle_{\mathbb{R}^{r}}\right]\right\} d w_{\varphi}(x) d \rho(\vec{z}) d \sigma(v) \\
= & \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{C[0, t]} K_{m}(\lambda, x) \exp \left\{i \left[\left(\mathcal{P}^{\perp}(v h), x\right)\right.\right. \\
& \left.\left.+\left\langle\left(\mathcal{P}^{\perp}(h \vec{v}), x\right), \vec{z}\right\rangle_{\left.\mathbb{R}^{r}\right]}\right]\right\} d w_{\varphi}(x) d \rho(\vec{z}) d \sigma(v),
\end{aligned}
$$

where A_{1} and K_{m} are given by (10) and (14), respectively. By the similar method as used in the proof of Lemma 8 in [11]

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
= & \lambda^{-\frac{m}{2}} \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \exp \left\{\frac { \lambda - 1 } { 2 \lambda } \sum _ { j = 1 } ^ { m } \left(c_{j}\left(\mathcal{P}^{\perp}(h v)\right)^{2}-\frac{1}{\lambda}\right.\right. \\
& \left.\times\left\langle\vec{c}\left(\mathcal{P}^{\perp}(h v)\right), T_{A} \vec{z}\right\rangle_{\mathbb{R}^{r}}-\frac{1}{2 \lambda}\left\|T_{A} \vec{z}\right\|_{\mathbb{R}^{r}}^{2}-\frac{1}{2}\left\|\mathcal{P}^{\perp}(h v)\right\|^{2}\right\} d \rho(\vec{z}) d \sigma(v),
\end{aligned}
$$

where $\vec{c}=\left(c_{1}, \ldots, c_{r}\right)$ and the c_{j} s are given by (9). Now we have by the dominated convergence theorem and the Parseval's identity

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \Gamma(\lambda, m, \vec{\xi}) \\
= & \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \exp \left\{-\frac{1}{2 \lambda}\left\|\mathcal{P}^{\perp}(h v)\right\|^{2}-\frac{1}{\lambda}\left\langle\vec{c}\left(\mathcal{P}^{\perp}(h v)\right), T_{A} \vec{z}\right\rangle_{\mathbb{R}^{r}}\right. \\
& \left.-\frac{1}{2 \lambda}\left\|T_{A} \vec{z}\right\|_{\mathbb{R}^{r}}^{2}\right\} d \rho(\vec{z}) d \sigma(v) \\
= & \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) A_{2}(\lambda, v, \vec{z}) d \rho(\vec{z}) d \sigma(v),
\end{aligned}
$$

where A_{2} is given by (11). Now the proof of the first part of the theorem is completed by Theorem 3.2. The remainder part of the theorem immediately follows from the dominated convergence theorem.

Theorem 4.3. Let G_{r} be as given in Theorem 3.4. Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n} E^{a n w_{\lambda}}\left[\left(G_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of (15) replacing Ψ by G_{r}. Moreover if $p=1, q$ is a nonzero real number and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to -iq as m approaches ∞, then $E^{\text {anf }_{q}}\left[\left(G_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of (15), where λ and Ψ are replaced by λ_{m} and G_{r}, respectively.

Proof. For $m>r, \lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have by Lemma 2.1

$$
\begin{aligned}
\Gamma(\lambda, m, \vec{\xi}) \equiv & \int_{C[0, t]} K_{m}(\lambda, x) G_{r}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right) d w_{\varphi}(x) \\
= & \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{C[0, t]} K_{m}(\lambda, x) \exp \left\{i\left(\mathcal{P}^{\perp}(v h), x\right)\right\} \\
& \times f\left(\left(\mathcal{P}^{\perp}(h \vec{v}), x\right)+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x) d \sigma(v)
\end{aligned}
$$

By the similar method as used in the proof of Lemma 7 in [11]

$$
\begin{aligned}
\Gamma(\lambda, m, \vec{\xi})= & \lambda^{-\frac{m}{2}}\left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)+\frac{\lambda-1}{2 \lambda} \sum_{j=1}^{m}\left(c_{j}\left(\mathcal{P}^{\perp}(h v)\right)\right)^{2}\right. \\
& \left.-\frac{1}{2}\left\|\mathcal{P}^{\perp}(h v)\right\|^{2}+\frac{1}{2 \lambda}\left\|\vec{c}\left(\mathcal{P}^{\perp}(h v)\right)\right\|_{\mathbb{R}^{r}}^{2}\right\} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \\
& \times \exp \left\{-\frac{\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}+i\left\langle\vec{c}\left(\mathcal{P}^{\perp}(h v)\right), \vec{u}\right\rangle_{\mathbb{R}^{r}}\right\} d \vec{u} d \sigma(v),
\end{aligned}
$$

where $\vec{c}=\left(c_{1}, \ldots, c_{r}\right)$, the c_{j} s are given by (9) and A^{T} is the transpose of A given by (6). Now we have by the dominated convergence theorem and the Parseval's identity

$$
\lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \Gamma(\lambda, m, \vec{\xi})
$$

$$
\begin{aligned}
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{1}{2 \lambda}\right. \\
& \left.\times\left[\left\|\mathcal{P}^{\perp}(h v)\right\|^{2}-\vec{c}\left(\mathcal{P}^{\perp}(h v)\right)\right]-\frac{\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}+i\left\langle\vec{c}\left(\mathcal{P}^{\perp}(h v)\right), \vec{u}\right\rangle_{\mathbb{R}^{r}}\right\} d \vec{u} d \sigma(v) \\
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) A_{3}(\lambda, v, \vec{u}) d \vec{u} d \sigma(v),
\end{aligned}
$$

where A_{3} is given by (13). Now the proof of the first part of the theorem is completed by Theorem 3.4. If $p=1$, then the final result immediately follows from the dominated convergence theorem.

Combining Theorems 4.2 and 4.3 we have the following corollary by the linearities of the generalized conditional Wiener and Feynman integrals on the analogue of Wiener space.
Corollary 4.4. Let $\left(\phi(\vec{v}, \cdot)+F_{r}\right) F$ be as given in Corollary 3.5. Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n} E^{a n w_{\lambda}}\left[\left(\left(\phi(\vec{v}, \cdot)+F_{r}\right) F\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of (15) replacing Ψ by $\left(\phi(\vec{v}, \cdot)+F_{r}\right) F$. Moreover if $p=1, q$ is a nonzero real number and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to $-i q$ as m approaches ∞, then $E^{a n f_{q}}\left[\left(\left(\phi(\vec{v}, \cdot)+F_{r}\right) F\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of (15), where λ and Ψ are replaced by λ_{m} and $\left(\phi(\vec{v}, \cdot)+F_{r}\right) F$, respectively.

Letting $\lambda=\gamma^{-2}$ in Corollary 4.4 we have the following change of scale formula for the generalized conditional Wiener integrals on the analogue of Wiener space using the polygonal function.
Corollary 4.5. Let F, F_{r} and ϕ be as given in Corollary 4.4. Then for $\gamma>0$ and a.e. $\vec{\xi} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& E\left[F(\gamma Z(x, \cdot))\left(\phi(\vec{v}, \gamma Z(x, \cdot))+F_{r}(\gamma Z(x, \cdot))\right) \mid \gamma Z_{n}(x)\right](\vec{\xi}) \\
= & \lim _{m \rightarrow \infty} \gamma^{-m} \int_{C[0, t]} \exp \left\{\frac{2 \gamma^{2}-1}{2 \gamma^{2}} \sum_{j=1}^{m}\left(e_{j}, x\right)^{2}\right\} F\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}\right. \\
& \left.+[\vec{\xi}]_{b}\right)\left(\phi\left(\vec{v}, Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)+F_{r}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x)
\end{aligned}
$$

5. A change of scale formula using the cylinder functions

In this section we derive a change of scale formula for the generalized conditional Wiener integrals of unbounded functions on the analogue of Wiener space using the cylinder functions.
Theorem 5.1. Let $1 \leq p \leq \infty$ and A^{T} be the transpose of A given by (6). For an orthonormal set $\left\{h_{1}, \ldots, h_{r}\right\}$ in $L_{2}[0, t]$ let $H_{r}(\lambda, x)=\exp \left\{\frac{1-\lambda}{2} \sum_{j=1}^{r}\right.$ $\left.\left(h_{j}, x\right)^{2}\right\}$. Let F_{r} and f be related by (12). Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have

$$
E^{a n w_{\lambda}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})=\lambda^{\frac{r}{2}} \int_{C[0, t]} H_{r}(\lambda, x) f\left((\vec{h}, x) A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x)
$$

where $(\vec{h}, x)=\left(\left(h_{1}, x\right), \ldots,\left(h_{r}, x\right)\right)$. Moreover if $p=1$ and q is a nonzero real number, then

$$
E^{a n f_{q}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})=\lim _{m \rightarrow \infty} \lambda_{m}^{\frac{r}{2}} \int_{C[0, t]} H_{r}\left(\lambda_{m}, x\right) f\left((\vec{h}, x) A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x)
$$

for any sequence $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ in \mathbb{C}_{+}converging to -iq as m approaches ∞.
Proof. For $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have by Theorem 3.3

$$
\begin{aligned}
& \lambda^{\frac{r}{2}} \int_{C[0, t]} H_{r}(\lambda, x) f\left((\vec{h}, x) A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x) \\
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{\mathbb{R}^{r}} \exp \left\{\frac{1-\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}\right\} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{1}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}\right\} d \vec{u} \\
= & E^{a n w_{\lambda}}\left[\left(F_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi}),
\end{aligned}
$$

which completes the proof of the first part of the theorem. If $p=1$, then the final result follows from the dominated convergence theorem.

Theorem 5.2. Let A be given by (6) and Ψ be as given in Theorem 3.2. Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
E^{a n w_{\lambda}}\left[\Psi_{Z} \mid Z_{n}\right](\vec{\xi})= & \lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \int_{C[0, t]} K_{m}(\lambda, x) \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \exp \\
& \left\{i\left[\left(\mathcal{P}^{\perp}(v h), x\right)+\langle(\vec{e}, x), \vec{z} A\rangle_{\mathbb{R}^{r}}\right]\right\} d \rho(\vec{z}) d \sigma(v) d w_{\varphi}(x)
\end{aligned}
$$

where $(\vec{e}, x)=\left(\left(e_{1}, x\right), \ldots,\left(e_{r}, x\right)\right), A_{1}$ and K_{m} are given by (10) and (14), respectively. Moreover if q is a nonzero real number and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to $-i q$ as m approaches ∞, then $E^{a n f_{q}}\left[\Psi_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of the above equality, where λ is replaced by λ_{m}.
Proof. Let $m>r$. For $v \in L_{2}[0, t]$ let $f_{m+1}=\mathcal{P}^{\perp}(v h)-\sum_{j=1}^{m} c_{j}\left(\mathcal{P}^{\perp}(v h)\right) e_{j}$ and let $g_{m+1}=\frac{1}{\left\|f_{m+1}\right\|} f_{m+1}$ if $f_{m+1} \neq 0$, where c_{j} is given by (9). Let $g_{m+1}=0$ if $f_{m+1}=0$. For $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have by the generalized Wiener integration theorem [9, Theorem 3.5]

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
\equiv & \int_{C[0, t]} K_{m}(\lambda, x) \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \exp \left\{i \left[\left(\mathcal{P}^{\perp}(v h), x\right)\right.\right. \\
& \left.\left.+\langle(\vec{e}, x), \vec{z} A\rangle_{\mathbb{R}^{r}}\right]\right\} d \rho(\vec{z}) d \sigma(v) d w_{\varphi}(x) \\
= & \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{C[0, t]} K_{m}(\lambda, x) \exp \left\{i \left[\sum_{j=1}^{m} c_{j}\left(\mathcal{P}^{\perp}(v h)\right)\left(e_{j}, x\right)\right.\right. \\
& \left.\left.+\left\|f_{m+1}\right\|\left(g_{m+1}, x\right)+\langle(\vec{e}, x), \vec{z} A\rangle_{\mathbb{R}^{r}}\right]\right\} d w_{\varphi}(x) d \rho(\vec{z}) d \sigma(v)
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\frac{1}{2 \pi}\right)^{\frac{m+1}{2}} \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{\mathbb{R}^{m+1}} \exp \left\{\frac{1-\lambda}{2} \sum_{j=1}^{m} u_{j}^{2}+i\left[\sum_{j=1}^{m}\right.\right. \\
& \left.\left.c_{j}\left(\mathcal{P}^{\perp}(v h)\right) u_{j}+\left\|f_{m+1}\right\| u_{m+1}+\langle\vec{u}, \vec{z} A\rangle_{\mathbb{R}^{r}}\right]-\frac{1}{2} \sum_{j=1}^{m+1} u_{j}^{2}\right\} d\left(u_{1}, \ldots,\right. \\
& \left.u_{m}, u_{m+1}\right) d \rho(\vec{z}) d \sigma(v)
\end{aligned}
$$

where $\vec{u}=\left(u_{1}, \ldots, u_{r}\right)$. Using the following well-known integration formula

$$
\begin{equation*}
\int_{\mathbb{R}} \exp \left\{-a u^{2}+i b u\right\} d u=\left(\frac{\pi}{a}\right)^{\frac{1}{2}} \exp \left\{-\frac{b^{2}}{4 a}\right\} \tag{16}
\end{equation*}
$$

for $a \in \mathbb{C}_{+}$and any real b

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
= & \left(\frac{1}{2 \pi}\right)^{\frac{m}{2}} \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{\mathbb{R}^{m}} \exp \left\{-\frac{\lambda}{2} \sum_{j=1}^{m} u_{j}^{2}+i\left[\sum_{j=1}^{m} c_{j}\left(\mathcal{P}^{\perp}(v h)\right)\right.\right. \\
& \left.\left.\times u_{j}+\langle\vec{u}, \vec{z} A\rangle_{\mathbb{R}^{r}}\right]-\frac{1}{2}\left\|f_{m+1}\right\|^{2}\right\} d\left(u_{1}, \ldots, u_{m}\right) d \rho(\vec{z}) d \sigma(v) \\
= & \left(\frac{1}{2 \pi}\right)^{\frac{m}{2}} \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \int_{\mathbb{R}^{m}} \exp \left\{-\frac{\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}+i\left[\left\langle\vec{c}\left(\mathcal{P}^{\perp}(v h)\right), \vec{u}\right\rangle_{\mathbb{R}^{r}}\right.\right. \\
& \left.+\langle\vec{z} A, \vec{u}\rangle_{\left.\mathbb{R}^{r}\right]}\right]-\frac{\lambda}{2} \sum_{j=r+1}^{m} u_{j}^{2}+i \sum_{j=r+1}^{m} c_{j}\left(\mathcal{P}^{\perp}(v h)\right) u_{j}-\frac{1}{2}\left[\left\|\mathcal{P}^{\perp}(v h)\right\|^{2}\right. \\
& \left.\left.-\sum_{j=1}^{m}\left(c_{j}\left(\mathcal{P}^{\perp}(v h)\right)\right)^{2}\right]\right\} d\left(u_{1}, \ldots, u_{m}\right) d \rho(\vec{z}) d \sigma(v),
\end{aligned}
$$

where $\vec{c}\left(\mathcal{P}^{\perp}(v h)\right)=\left(c_{1}\left(\mathcal{P}^{\perp}(v h)\right), \ldots, c_{r}\left(\mathcal{P}^{\perp}(v h)\right)\right)$. By (16)

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
= & \lambda^{-\frac{m}{2}} \int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \exp \left\{-\frac{1}{2 \lambda}\left[\left\|\vec{c}\left(\mathcal{P}^{\perp}(v h)\right)+\vec{z} A\right\|_{\mathbb{R}^{r}}^{2}+\sum_{j=r+1}^{m}\right.\right. \\
& \left.\left.\left(c_{j}\left(\mathcal{P}^{\perp}(v h)\right)\right)^{2}\right]-\frac{1}{2}\left[\left\|\mathcal{P}^{\perp}(v h)\right\|^{2}-\sum_{j=1}^{m}\left(c_{j}\left(\mathcal{P}^{\perp}(v h)\right)\right)^{2}\right]\right\} d \rho(\vec{z}) d \sigma(v)
\end{aligned}
$$

By the dominated convergence theorem and the Parseval's identity

$$
\lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \Gamma(\lambda, m, \vec{\xi})=\int_{L_{2}[0, t]} \int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) A_{2}(\lambda, v, \vec{z}) d \rho(\vec{z}) d \sigma(v)
$$

where A_{2} is given by (11). Now the proof of the first part of the theorem is completed by Theorem 3.2. The second part of the theorem immediately follows from the dominated convergence theorem.

Theorem 5.3. Let A^{T} be the transpose of A given by (6). Let G_{r} be as given in Theorem 3.4. Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
E^{a n w_{\lambda}}\left[\left(G_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})= & \lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \int_{C[0, t]} K_{m}(\lambda, x) \int_{L_{2}[0, t]} \exp \left\{i \left[\left(v,[\vec{\xi}]_{b}\right)\right.\right. \\
& \left.\left.+\left(\mathcal{P}^{\perp}(v h), x\right)\right]\right\} f\left((\vec{e}, x) A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d \sigma(v) d w_{\varphi}(x)
\end{aligned}
$$

where $(\vec{e}, x)=\left(\left(e_{1}, x\right), \ldots,\left(e_{r}, x\right)\right)$ and K_{m} is given by (14). Moreover if $p=1$, q is a nonzero real number and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to -iq as m approaches ∞, then $E^{a n f_{q}}\left[\left(G_{r}\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of the above equality, where λ is replaced by λ_{m}.

Proof. For $m>r, \lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
\equiv & \int_{C[0, t]} K_{m}(\lambda, x) \int_{L_{2}[0, t]} \exp \left\{i\left[\left(v,[\vec{\xi}]_{b}\right)+\left(\mathcal{P}^{\perp}(v h), x\right)\right]\right\} f\left((\vec{e}, x) A^{T}\right. \\
& \left.+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) d \sigma(v) d w_{\varphi}(x) \\
= & \left(\frac{1}{2 \pi}\right)^{\frac{m+1}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{m+1}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{\frac{1-\lambda}{2}\right. \\
& \left.\times \sum_{j=1}^{m} u_{j}^{2}+i\left[\sum_{j=1}^{m} c_{j}\left(\mathcal{P}^{\perp}(v h)\right) u_{j}+\left\|f_{m+1}\right\| u_{m+1}\right]-\frac{1}{2} \sum_{j=1}^{m+1} u_{j}^{2}\right\} d\left(u_{1}, \ldots,\right. \\
& \left.u_{m}, u_{m+1}\right) d \sigma(v) \\
= & \left(\frac{1}{2 \pi}\right)^{\frac{m}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{m}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{\lambda}{2} \sum_{j=1}^{m} u_{j}^{2}\right. \\
& \left.+i \sum_{j=1}^{m} c_{j}\left(\mathcal{P}^{\perp}(v h)\right) u_{j}-\frac{1}{2}\left\|f_{m+1}\right\|^{2}\right\} d\left(u_{1}, \ldots, u_{m}\right) d \sigma(v)
\end{aligned}
$$

by the generalized Wiener integration theorem [9, Theorem 3.5] and (16), where $\vec{u}=\left(u_{1}, \ldots, u_{r}\right)$ and f_{m+1} is as given in the proof of Theorem 5.2. By (16)

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
= & \lambda^{-\frac{m}{2}}\left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{\lambda}{2}\|\vec{u}\|_{\mathbb{R}^{r}}^{2}\right. \\
& +i\left\langle\vec{c}\left(\mathcal{P}^{\perp}(v h)\right), \vec{u}\right\rangle_{\mathbb{R}^{r}}-\frac{1}{2 \lambda} \sum_{j=r+1}^{m}\left(c_{j}\left(\mathcal{P}^{\perp}(v h)\right)\right)^{2}-\frac{1}{2}\left[\left\|\mathcal{P}^{\perp}(v h)\right\|^{2}-\sum_{j=1}^{m}\right. \\
& \left.\left.\left(c_{j}\left(\mathcal{P}^{\perp}(v h)\right)\right)^{2}\right]\right\} d \vec{u} d \sigma(v),
\end{aligned}
$$

where $\vec{c}\left(\mathcal{P}^{\perp}(v h)\right)=\left(c_{1}\left(\mathcal{P}^{\perp}(v h)\right), \ldots, c_{r}\left(\mathcal{P}^{\perp}(v h)\right)\right)$. Now we have by the dominated convergence theorem and the Parseval's identity

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \Gamma(\lambda, m, \vec{\xi}) \\
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{L_{2}[0, t]} \exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} \int_{\mathbb{R}^{r}} f\left(\vec{u} A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right) A_{3}(\lambda, v, \vec{u}) d \vec{u} d \sigma(v)
\end{aligned}
$$

where A_{3} is given by (13). Now the proof of the first part of the theorem is completed by Theorem 3.4. The second part of the theorem immediately follows from the dominated convergence theorem.

Combining Theorems 5.2 and 5.3 we have the following corollary by the linearities of the generalized conditional Wiener and Feynman integrals on the analogue of Wiener space.

Corollary 5.4. Let $\left(\phi(\vec{v}, \cdot)+F_{r}\right) F$ be as given in Corollary 3.5. Then for $\lambda \in \mathbb{C}_{+}$and a.e. $\vec{\xi} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& E^{a n w_{\lambda}}\left[\left(\left(\phi(\vec{v}, \cdot)+F_{r}\right) F\right)_{Z} \mid Z_{n}\right](\vec{\xi}) \\
= & \lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} \int_{C[0, t]} K_{m}(\lambda, x) \int_{L_{2}[0, t]} \exp \left\{i\left(\mathcal{P}^{\perp}(v h), x\right)\right\}\left[\int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z})\right. \\
& \left.\times \exp \left\{i\langle(\vec{e}, x), \vec{z} A\rangle_{\mathbb{R}^{r}}\right\} d \rho(\vec{z})+\exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} f\left((\vec{e}, x) A^{T}+\left(\vec{v},[\vec{\xi}]_{b}\right)\right)\right] \\
& d \sigma(v) d w_{\varphi}(x),
\end{aligned}
$$

where $(\vec{e}, x)=\left(\left(e_{1}, x\right), \ldots,\left(e_{r}, x\right)\right), A, A_{1}$ and K_{m} are given by (6), (10) and (14), respectively. Moreover if $p=1, q$ is a nonzero real number and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to $-i q$ as m approaches ∞, then $E^{\operatorname{anf}_{q}}\left[\left(\left(\phi(\vec{v}, \cdot)+F_{r}\right) F\right)_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right hand side of the above equality, where λ is replaced by λ_{m}.

Letting $\lambda=\gamma^{-2}$ in Corollary 5.4 we have the following change of scale formula for the generalized conditional Wiener integrals on the analogue of Wiener space using the cylinder functions.
Corollary 5.5. Let F, F_{r} and ϕ be as given in Corollary 4.4. Then for $\rho>0$ and a.e. $\vec{\xi} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& E\left[F(\gamma Z(x, \cdot))\left(\phi(\vec{v}, \gamma Z(x, \cdot))+F_{r}(\gamma Z(x, \cdot))\right) \mid \gamma Z_{n}(x)\right](\vec{\xi}) \\
= & \lim _{m \rightarrow \infty} \gamma^{-m} \int_{C[0, t]} \exp \left\{\frac{2 \gamma^{2}-1}{2 \gamma^{2}} \sum_{j=1}^{m}\left(e_{j}, x\right)^{2}\right\} \int_{L_{2}[0, t]} \exp \left\{i\left(\mathcal{P}^{\perp}(v h), x\right)\right\} \\
\times & {\left[\int_{\mathbb{R}^{r}} A_{1}(\vec{\xi}, v, \vec{z}) \exp \left\{i\langle(\vec{e}, x), \vec{z} A\rangle_{\mathbb{R}^{r}}\right\} d \rho(\vec{z})+\exp \left\{i\left(v,[\vec{\xi}]_{b}\right)\right\} f\left((\vec{e}, x) A^{T}\right.\right.} \\
& \left.\left.\quad+\left(\vec{v},[\vec{\xi}]_{b}\right)\right)\right] d \sigma(v) d w_{\varphi}(x) .
\end{aligned}
$$

Remark 5.6. (1) The choice of the orthonormal set $\left\{h_{1}, \ldots, h_{r}\right\}$ in Theorem 5.1 is independent of $\left\{e_{1}, \ldots, e_{r}\right\}$.
(2) The results of this paper are different from those in [6, 8,11$]$. If $h=1$ a.e. on $[0, t]$, then $F(Z(x, \cdot))=F(x-x(0))$ and $Z_{n}(x)=\left(x\left(t_{1}\right)-\right.$ $\left.x(0), \ldots, x\left(t_{n}\right)-x(0)\right)$. In this case we can take an orthonormal subset $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ of $L_{2}[0, t]$ such that $\mathcal{P}^{\perp} v_{1}, \ldots, \mathcal{P}^{\perp} v_{r}$ are independent [11, Remark 1]. Furthermore if $\varphi=\delta_{0}$, the Dirac measure concentrated at 0 , then Theorems 4.2 and 4.3 generalize the equations (28) and (29) in [11].
(3) The results of this paper are independent of a particular choice of the probability measure φ.

References

[1] R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), 623-627.
[2] R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137.
[3] R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 105-115.
[4] _ Some Banach algebras of analytic Feynman integrable functionals, Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), pp. 18-67, Lecture Notes in Math., 798, Springer, Berlin-New York, 1980.
[5] K. S. Chang, G. W. Johnson, and D. L. Skoug, Functions in the Fresnel class, Proc. Amer. Math. Soc. 100 (1987), no. 2, 309-318.
[6] D. H. Cho, Change of scale formulas for conditional Wiener integrals as integral transforms over Wiener paths in abstract Wiener space, Commun. Korean Math. Soc. 22 (2007), no. 1, 91-109.
[7] _, A simple formula for a generalized conditional Wiener integral and its applications, Int. J. Math. Anal. (Ruse) 7 (2013), no. 29-32, 1419-1431.
[8] D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438.
[9] M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819.
[10] G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic analysis and applications, 217-267, Adv. Probab. Related Topics 7, Dekker, New York, 1984.
[11] I. Yoo, K. S. Chang, D. H. Cho, B. S. Kim, and T. S. Song, A change of scale formula for conditional Wiener integrals on classical Wiener space, J. Korean Math. Soc. 44 (2007), no. 4, 1025-1050.
[12] I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), no. 2, 239-247.
[13] _ A change of scale formula for Wiener integrals on abstract Wiener spaces II, J. Korean Math. Soc. 31 (1994), no. 1, 115-129.
[14] I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), no. 1, 371-389.
[15] I. Yoo and G. J. Yoon, Change of scale formulas for Yeh-Wiener integrals, Commun. Korean Math. Soc. 6 (1991), no. 1, 19-26.

Dong Hyun Cho
Department of Mathematics
Kyonggi University
Suwon 16227, Korea
E-mail address: j94385@kyonggi.ac.kr
IL Yoo
Department of Mathematics
Yonsei University
Wonju 26493, Korea
E-mail address: iyoo@yonsei.ac.kr

[^0]: Received September 30, 2015.
 2010 Mathematics Subject Classification. Primary 28C20, 60G05, 60G15, 60H05.
 Key words and phrases. analogue of Wiener space, change of scale formula, conditional Wiener integral, simple formula for conditional Wiener integral, Wiener measure.

 The second author was supported by Basic Science Research Program through the National Research Foundation(NRF) of Korea funded by the Ministry of Education (2013R1A1A2058991).

