Bull. Korean Math. Soc. 56 (2019), No. 6, pp. 1643-1653

https://doi.org/10.4134/BKMS.b190053 pISSN: 1015-8634 / eISSN: 2234-3016

A DOUBLE INTEGRAL CHARACTERIZATION OF A BERGMAN TYPE SPACE AND ITS MÖBIUS INVARIANT SUBSPACE

CHENG YUAN AND HONG-GANG ZENG

ABSTRACT. This paper shows that if $1 , <math>\alpha \ge -n-2$, $\alpha > -1-\frac{p}{2}$ and f is holomorphic on the unit ball \mathbb{B}_n , then

$$\int_{\mathbb{B}_n} |Rf(z)|^p (1-|z|^2)^{p+\alpha} dv_{\alpha}(z) < \infty$$

if and only if

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|1 - \langle z, w \rangle|^{n+1+s+t-\alpha}} (1 - |w|^2)^s (1 - |z|^2)^t dv(z) dv(w) < \infty,$$
where $s, t > -1$ with $\min(s, t) > \alpha$.

1. Introduction

The purpose of this note is to give a double integral characterization of a Bergman space, which extends some previous results in [2–4].

Let \mathbb{B}_n be the unit ball of the *n*-dimensional complex Euclidean space \mathbb{C}^n . Let $H(\mathbb{B}_n)$ be the space of holomorphic functions on \mathbb{B}_n . For $f \in H(\mathbb{B}_n)$, the radial derivative of f, denoted by Rf, is given by

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f(z)}{\partial z_j}, \quad z = (z_1, z_2, \dots, z_n) \in \mathbb{B}_n.$$

We employ the definition of Bergman spaces given in [9]. For $0 and <math>\alpha > -1 - p$, the Bergman space $A^p_{\alpha} := A^p_{\alpha}(\mathbb{B}_n)$ consists of those holomorphic functions f in \mathbb{B}_n with

(1)
$$||f||_{A^p_\alpha} = |f(0)| + ||f||_{\alpha,p}$$

Received January 14, 2019; Accepted April 25, 2019.

2010 Mathematics Subject Classification. Primary 30H25, 32A36.

Key words and phrases. Bergman space, Q_p spaces.

Cheng Yuan is supported by the National Natural Science Foundation of China (Grant Nos. 11501415).

Hong-Gang Zeng is supported by the National Natural Science Foundation of China (Grant Nos. 11301373).

©2019 Korean Mathematical Society

$$= |f(0)| + \left(\int_{\mathbb{B}_n} |Rf(z)|^p (1 - |z|^2)^{p+\alpha} dv(z) \right)^{\frac{1}{p}} < \infty,$$

where dv is the normalized volume measure on \mathbb{B}_n so that $v(\mathbb{B}_n) = 1$. When $\alpha > -1$, it is well known that $f \in A^p_\alpha$ if and only if

(2)
$$||f||_{A^p_{\alpha,*}} = \left(\int_{\mathbb{B}_n} |f(z)|^p (1 - |z|^2)^{\alpha} dv_{\alpha}(z) \right)^{\frac{1}{p}} < \infty.$$

Here

$$dv_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha}dv(z) = \frac{\Gamma(n + \alpha + 1)}{n!\Gamma(\alpha + 1)}(1 - |z|^2)^{\alpha}dv(z).$$

When $\alpha = -(ps+1)$ (with s < 1), the spaces A^p_{α} are exactly the diagonal Besov spaces B^s_p . Moreover, $A^2_{-1} = H^2$, the Hardy space on \mathbb{B}_n . See [9] for more details of A^p_{α} .

It is proved in [3,4] that for $\alpha > -1$ and $f \in H(\mathbb{B}_n)$,

(1) (proved in [3]) if $p > n + 1 + \alpha$, then $f \in A^p_\alpha$ if and only if

$$\int_{\mathbb{R}_n} \int_{\mathbb{R}_n} \frac{|f(w) - f(z)|^p}{|1 - \langle z, w \rangle|^p} \left((1 - |z|^2) (1 - |w|^2) \right)^{\frac{p + \alpha - n - 1}{2}} dv(z) dv(w) < \infty;$$

(2) (proved in [4]) if $0 , then <math>f \in A^p_\alpha$ if and only if

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(w) - f(z)|^p}{|1 - \langle z, w \rangle|^p} \, \mathrm{d}v_\alpha(z) \, \mathrm{d}v_\alpha(w) < \infty.$$

The main result of this paper is the following:

Theorem 1.1. Let $1 , <math>\alpha \ge -n-2$, $\alpha > -1 - \frac{p}{2}$ and let f be holomorphic on \mathbb{B}_n . Let s, t > -1 such that $\min(s, t) > \alpha$. Then $f \in A^p_\alpha$ if and only if

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|1 - \langle z, w \rangle|^{n+1+s+t-\alpha}} (1 - |w|^2)^s (1 - |z|^2)^t dv(z) dv(w) < \infty.$$

Remark 1.2. (1) It is proved in [2] that for $\alpha \geq -2$ and $f \in H(\mathbb{B}_n)$,

$$\int_{\mathbb{B}_n} |Rf(z)|^2 (1 - |z|^2)^{2+\alpha} dv(z)$$

is comparable to

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^2}{|1 - \langle z, w \rangle|^{n+1+s+t-\alpha}} (1 - |z|^2)^s (1 - |w|^2)^t dv(z) dv(w),$$

where s,t>-1 with $\min\{s,t\}>\alpha$. The proof in [2] relies on Hilbert space techniques. It is worth to note that our result can not cover the result in [2] when p=2 and $\alpha=-2$, which is contained in [2] but not contained in our theorem.

(2) If $\alpha = -n - 1 > -1 - \frac{p}{2}$, then p > 2n and A_{α}^{p} is the Besov space B_{p} . It is shown in [10, Theorem 6.28] that if f is holomorphic in \mathbb{B}_{n} , then $f \in B_{p}$ if and only if

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p dv_t(z) dv_t(w)}{|1 - \langle z, w \rangle|^{2(n+1+t)}} < \infty$$

for t > -1. Thus Theorem 1.1 extends [10, Theorem 6.28].

(3) Let $s = t = \frac{p+\alpha-n-1}{2}$ in Theorem 1.1, we obtain the characterization given in [3]. Thus our characterization can be viewed as a generalization of [3]. However, the strategy of the verification is quiet different from [3].

The main idea of the proof of Theorem 1.1 is inspired by [1]. Similar characterization of the Dirichlet type space in the unit disk is given in [7].

Let X be a Banach space of holomorphic functions in \mathbb{B}_n . The Möbius invariant subspace of X is defined as

$$M_X = \{ f \in X : \sup_{a \in \mathbb{B}_n} \| f \circ \varphi_a \| < \infty \},$$

where

$$\varphi_a(z) = \begin{cases} \frac{a - \frac{\langle z, a \rangle a}{|a|^2} - \sqrt{1 - |a|^2} (z - \frac{\langle z, a \rangle a}{|a|^2})}{1 - \langle z, a \rangle}, & \text{if } a \neq 0, \\ -z, & \text{if } a = 0, \end{cases}$$

for $z \in \mathbb{B}_n$. For $a \in \mathbb{B}_n$, the transform φ_a is usually call the involution on \mathbb{B}_n . Let $\operatorname{Aut}(\mathbb{B}_n)$ denote the set of all automorphisms on \mathbb{B}_n . It is well known that every automorphism φ of \mathbb{B}_n is of the form

$$\varphi = U\varphi_a = \varphi_b V,$$

where U and V are unitary transformations of \mathbb{C}^n , and φ_a and φ_b are involutions.

It is known that $M_{A^p_{\alpha}}$ is the Bloch space when $\alpha > -1$ and $p \ge 1$. $M_{A^2_{-1}} = BMOA$, the space of holomorphic functions of bounded mean oscillation.

We have the following theorem, which is motivated by [8, Theorem 2.5.2].

Theorem 1.3. Let $1 , <math>\alpha \ge -n-2$, $\alpha > -1 - \frac{p}{2}$ and let f be holomorphic on \mathbb{B}_n . Let s,t > -1 such that $\min(s,t) > \alpha$. Then $f \in M_{A^p_\alpha}$ if and only if

$$\sup_{a\in\mathbb{B}_n}\int\limits_{\mathbb{B}_n}\int\limits_{\mathbb{B}_n}\frac{|f(z)-f(w)|^p(1-|a|^2)^{n+1+\alpha}(1-|w|^2)^s(1-|z|^2)^t\mathrm{d}v(z)\mathrm{d}v(w)}{|1-\langle z,w\rangle|^{n+1+s+t-\alpha}|1-\langle a,w\rangle|^{n+1+s-t+\alpha}|1-\langle a,z\rangle|^{n+1+t-s+\alpha}}<\infty.$$

Notation. Throughout this paper, we only write $U \stackrel{<}{\sim} V$ (or $V \stackrel{>}{\sim} U$) for $U \leq cV$ for a positive constant c, and moreover $U \approx V$ for both $U \stackrel{<}{\sim} V$ and $V \stackrel{<}{\sim} U$. \square

2. Preliminaries

For $f \in H(\mathbb{B}_n)$ with the homogeneous expansion

$$f(z) = \sum_{k=0}^{\infty} f_k(z),$$

it is easy to check that

$$Rf(z) = \sum_{k=1}^{\infty} k f_k(z), \quad Rf(0) = 0$$

and

$$f(z) - f(0) = \int_0^1 \frac{Rf(tz)}{t} dt$$

for all $z \in \mathbb{B}_n$. According to [10, page 51], for $f \in A^p_\alpha$ with $\alpha > -1$, there exists a sufficiently large β satisfying

$$Rf(z) = \int_{\mathbb{B}_n} \frac{Rf(w) dv_{\beta}(w)}{(1 - \langle z, w \rangle)^{n+1+\beta}}, \quad z \in \mathbb{B}_n,$$

where

$$dv_{\beta}(z) = \frac{\Gamma(n+1+\beta)}{n!\Gamma(\beta+1)} (1-|z|^2)^{\beta} dv(z).$$

Then

$$Rf(z) = \int_{\mathbb{B}_n} Rf(w) \left(\frac{1}{(1 - \langle z, w \rangle)^{n+1+\beta}} - 1 \right) dv_{\beta}(w)$$

since Rf(0) = 0. We have

$$f(z) - f(0) = \int_0^1 \frac{Rf(tz)}{t} dt = \int_{\mathbb{B}_n} Rf(w)L(w, z) dv_{\beta}(w),$$

where the kernel

$$L(z,w) = \int_0^1 \left(\frac{1}{(1 - t\langle z, w \rangle)^{n+1+\beta}} - 1 \right) \frac{\mathrm{d}t}{t}$$

satisfies

(3)
$$|L(z,w)| \lesssim \frac{1}{|1 - \langle z, w \rangle|^{n+\beta}}$$

for all z and w in \mathbb{B}_n . So

(4)
$$|f(z) - f(0)| \lesssim \int_{\mathbb{B}_n} \frac{|Rf(w)|}{|1 - \langle z, w \rangle|^{n+\beta}} \, \mathrm{d}v_{\beta}(w).$$

For a holomorphic function f in \mathbb{B}_n we write

$$\nabla f(z) = \left(\frac{\partial f}{\partial z_1}(z), \dots, \frac{\partial f}{\partial z_n}(z)\right)$$

and call $|\nabla f(z)|$ the holomorphic gradient of f at z. We define

$$\widetilde{\nabla}f(z) = \nabla(f \circ \varphi_z)(0),$$

and call $|\widetilde{\nabla} f(z)|$ the invariant gradient of f at z. It is shown in [10, page 49] that

$$|\widetilde{\nabla}(f \circ \varphi)(z)| = |(\widetilde{\nabla}f) \circ \varphi(z)|$$

for all f and $\varphi \in Aut(\mathbb{B}_n)$. Moreover,

(5)
$$(1 - |z|^2)|Rf(z)| \le (1 - |z|^2)|\nabla f(z)| \le |\widetilde{\nabla} f(z)|$$

for all $z \in \mathbb{B}_n$ and $f \in H(\mathbb{B}_n)$.

Let

$$d\lambda(z) = \frac{dv(z)}{(1-|z|^2)^{n+1}}$$

be the Möbius invariant measure on \mathbb{B}_n . It is easy to check that

(6)
$$\int_{\mathbb{B}_n} f \circ \varphi(z) d\lambda(z) = \int_{\mathbb{B}_n} f(z) d\lambda(z),$$

where $\varphi \in \operatorname{Aut}(\mathbb{B}_n)$.

The following lemma is quoted from [10, Exercise 2.4]

Lemma 2.1. Suppose $0 , <math>\alpha > -\frac{p}{2} - 1$, and f is holomorphic in \mathbb{B}_n . Then $f \in A^p_{\alpha}$ if and only if

$$\int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^p (1 - |z|^2)^{\alpha} dv(z) < \infty.$$

The following lemma is quoted from [5], which is Lemma 2.5 there.

Lemma 2.2. Suppose s > -1 and r, t > 0. If t < s + n + 1 < r, then

$$\int_{\mathbb{B}_n} \frac{(1-|w|^2)^s \mathrm{d}v(w)}{|1-\langle z,w\rangle|^r |1-\langle \eta,w\rangle|^t} \, \stackrel{<}{\sim} \, \frac{1}{(1-|z|^2)^{r-s-n-1} |1-\langle \eta,z\rangle|^t}.$$

3. The derivative-free characterization for A_{α}^{p}

Inspired by Lemma 2.1 of [1], we have the following lemma.

Lemma 3.1. Let $1 \le p < \infty$, and let $\alpha > -1$ and $\beta \ge 0$ with $\beta < n+1+\alpha$. Let f be holomorphic on \mathbb{B}_n . Then

(7)
$$\int_{\mathbb{B}_n} |f(z) - f(0)|^p \frac{(1 - |z|^2)^{\alpha}}{|1 - \langle z, w \rangle|^{\beta}} \, \mathrm{d}v(z) \lesssim \int_{\mathbb{B}_n} |Rf(z)|^p \frac{(1 - |z|^2)^{\alpha + p}}{|1 - \langle z, w \rangle|^{\beta}} \, \mathrm{d}v(z).$$

Proof. The case $\beta=0$ is contained in [10, Theorem 2.16]. So we assume that $\beta>0$.

If p > 1, choose $\varepsilon > 0$ with

$$\alpha - \varepsilon \max(1, p - 1) > -1$$
 and $\beta + \varepsilon(p - 1) < n + 1 + \alpha$.

Without loss of generality we may assume that the right-hand side of (7) is finite. Then it follows from Hölder's inequality that $Rf \in A^1_{1+\alpha}$. Theorem

2.16 in [10] implies that $f \in A^1_{\alpha}$. Then it follows from (4) that there exists a sufficiently large t such that

$$\begin{split} &|f(z) - f(0)|^{p} \\ & \lesssim \left(\int_{\mathbb{B}_{n}} |Rf(u)| \frac{(1 - |u|^{2})^{t}}{|1 - \langle z, u \rangle|^{n+t}} \, \mathrm{d}v(u) \right)^{p} \\ & \leq \left(\int_{\mathbb{B}_{n}} |Rf(u)|^{p} \frac{(1 - |u|^{2})^{t + (p-1)(1+\varepsilon)}}{|1 - \langle z, u \rangle|^{n+t}} \, \mathrm{d}v(u) \right) \left(\int_{\mathbb{B}_{n}} \frac{(1 - |u|^{2})^{t - 1 - \varepsilon}}{|1 - \langle z, u \rangle|^{n+t}} \, \mathrm{d}v(u) \right)^{p-1} \\ & \lesssim \left(\int_{\mathbb{B}_{n}} |Rf(u)|^{p} \frac{(1 - |u|^{2})^{t + (p-1)(1+\varepsilon)}}{|1 - \langle z, u \rangle|^{n+t}} \, \mathrm{d}v(u) \right) (1 - |z|^{2})^{-\varepsilon(p-1)}. \end{split}$$

Now the Fubini's theorem and Lemma 2.2 imply that

$$\int_{\mathbb{B}_{n}} |f(z) - f(0)|^{p} \frac{(1 - |z|^{2})^{\alpha}}{|1 - \langle z, w \rangle|^{\beta}} \, dv(z)$$

$$\lesssim \int_{\mathbb{B}_{n}} \left(\int_{\mathbb{B}_{n}} |Rf(u)|^{p} \frac{(1 - |u|^{2})^{t + (p-1)(1+\varepsilon)}}{|1 - \langle z, u \rangle|^{n+t}} \, dv(u) \right) \frac{(1 - |z|^{2})^{-\varepsilon(p-1) + \alpha}}{|1 - \langle z, w \rangle|^{\beta}} \, dv(z)$$

$$= \int_{\mathbb{B}_{n}} |Rf(u)|^{p} (1 - |u|^{2})^{t + (p-1)(1+\varepsilon)} \left(\int_{\mathbb{B}_{n}} \frac{(1 - |z|^{2})^{-\varepsilon(p-1) + \alpha} \, dv(z)}{|1 - \langle z, w \rangle|^{\beta} |1 - \langle z, u \rangle|^{n+t}} \right) dv(u)$$

$$\lesssim \int_{\mathbb{B}_{n}} |Rf(u)|^{p} (1 - |u|^{2})^{t + (p-1)(1+\varepsilon)} \frac{dv(u)}{(1 - |u|^{2})^{t-1 - \alpha + \varepsilon(p-1)} |1 - \langle u, w \rangle|^{\beta}}$$

$$= \int_{\mathbb{B}_{n}} |Rf(u)|^{p} \frac{(1 - |u|^{2})^{p + \alpha}}{|1 - \langle u, w \rangle|^{\beta}} \, dv(u).$$

If p = 1, by choosing γ big enough and applying (4), we have

$$\int_{\mathbb{B}_{n}} |f(z) - f(0)| \frac{(1 - |z|^{2})^{\alpha}}{|1 - \langle z, w \rangle|^{\beta}} \, dv(z)$$

$$\lesssim \int_{\mathbb{B}_{n}} |Rf(u)| (1 - |u|^{2})^{\gamma} \left(\int_{\mathbb{B}_{n}} \frac{(1 - |z|^{2})^{\alpha} \, dv(z)}{|1 - \langle z, w \rangle|^{\beta} |1 - \langle z, u \rangle|^{n+\gamma}} \right) dv(u)$$

$$\lesssim \int_{\mathbb{B}_{n}} |Rf(u)| (1 - |u|^{2})^{\gamma} \frac{dv(u)}{(1 - |u|^{2})^{\gamma - 1 - \alpha} |1 - \langle u, w \rangle|^{\beta}}$$

$$= \int_{\mathbb{B}_{n}} |Rf(u)|^{p} \frac{(1 - |u|^{2})^{1 + \alpha}}{|1 - \langle u, w \rangle|^{\beta}} \, dv(u).$$

The proof is completed.

We can get the following corollary from Lemma 3.1 and (5).

Corollary 3.2. Let $1 \le p < \infty$, and let $\alpha > -1$ and $\beta \ge 0$ with $\beta < n+1+\alpha$. Let f be holomorphic on \mathbb{B}_n . Then we have

(8)
$$\int_{\mathbb{B}_n} |f(z) - f(0)|^p \frac{(1 - |z|^2)^{\alpha}}{|1 - \langle z, w \rangle|^{\beta}} \, \mathrm{d}v(z) \lesssim \int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^p \frac{(1 - |z|^2)^{\alpha}}{|1 - \langle z, w \rangle|^{\beta}} \, \mathrm{d}v(z).$$

It is also shown in [10, page 50] that if $f \in A^p_\alpha$ for $\alpha > -1$, then

(9)
$$|\widetilde{\nabla} f(z)|^p \stackrel{\leq}{\sim} (1 - |z|^2)^{n+1+\beta} \int_{\mathbb{B}_n} \frac{|f(w)|^p dv_{\beta}(w)}{|1 - \langle z, w \rangle|^{2(n+1+\beta)}}$$

for $\beta > \alpha$. We have the following corollary.

Corollary 3.3. If p > 0, $\alpha > -1$ and $f \in A^p_{\alpha}$, then for $\beta > \alpha$, we have

$$(10) \int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^p \frac{(1-|z|^2)^{\alpha}}{|1-\langle z,w\rangle|^{\beta}} \, \mathrm{d}v(z) \lesssim \int_{\mathbb{B}_n} |f(z)-f(0)|^p \frac{(1-|z|^2)^{\alpha}}{|1-\langle z,w\rangle|^{\beta}} \, \mathrm{d}v(z).$$

In particular,

$$(11) \int_{\mathbb{B}_n} |Rf(z)|^p \frac{(1-|z|^2)^{p+\alpha}}{|1-\langle z,w\rangle|^{\beta}} \, \mathrm{d}v(z) \lesssim \int_{\mathbb{B}_n} |f(z)-f(0)|^p \frac{(1-|z|^2)^{\alpha}}{|1-\langle z,w\rangle|^{\beta}} \, \mathrm{d}v(z).$$

Proof. We only need to verify (10), since (11) can be easily obtained from (5) and (10).

Replacing f by f - f(0) in (9), we have

$$|\widetilde{\nabla} f(z)|^p \lesssim (1 - |z|^2)^{n+1+\beta} \int_{\mathbb{B}_n} \frac{|f(w) - f(0)|^p dv_{\beta}(w)}{|1 - \langle z, w \rangle|^{2(n+1+\beta)}}.$$

This implies that

$$\int_{\mathbb{B}_{n}} |\widetilde{\nabla}f(z)|^{p} \frac{(1-|z|^{2})^{\alpha}}{|1-\langle z,w\rangle|^{\beta}} \, dv(z)$$

$$\lesssim \int_{\mathbb{B}_{n}} \frac{(1-|z|^{2})^{n+1+\beta+\alpha}}{|1-\langle z,w\rangle|^{\beta}} \int_{\mathbb{B}_{n}} \frac{|f(u)-f(0)|^{p} dv_{\beta}(u)}{|1-\langle z,u\rangle|^{2(n+1+\beta)}} \, dv(z)$$

$$= \int_{\mathbb{B}_{n}} |f(u)-f(0)|^{p} \int_{\mathbb{B}_{n}} \frac{(1-|z|^{2})^{n+1+\beta+\alpha} \, dv(z)}{|1-\langle z,w\rangle|^{\beta}|1-\langle z,u\rangle|^{2(n+1+\beta)}} \, dv_{\beta}(u)$$

$$\lesssim \int_{\mathbb{B}_{n}} |f(u)-f(0)|^{p} \frac{1}{|1-\langle u,w\rangle|^{\beta}} \frac{1}{(1-|u|^{2})^{\beta-\alpha}} \, dv_{\beta}(u)$$

$$= \int_{\mathbb{B}_{n}} |f(u)-f(0)|^{p} \frac{(1-|u|^{2})^{\alpha}}{|1-\langle u,w\rangle|^{\beta}} \, dv(u).$$

The proof is completed.

Theorem 3.4. Let $1 \le p < \infty$, $\alpha > -1 - p$, $\alpha \ge -n - 2$, and let f be holomorphic on \mathbb{B}_n . Let s, t > -1 such that $\min(s, t) > \alpha$. Then

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|1 - \langle z, w \rangle|^{n+1+s+t-\alpha}} (1 - |w|^2)^s (1 - |z|^2)^t dv(z) dv(w)$$

is comparable to

$$\int_{\mathbb{R}} |\widetilde{\nabla} f(z)|^p (1 - |z|^2)^{\alpha} dv(z).$$

Proof. It suffices to consider the case s = t since $s \le t$ implies

$$\frac{2^{s-t}(1-|z|^2)^t(1-|w|^2)^t}{|1-\langle z,w\rangle|^{n+1+2t-\alpha}} \leq \frac{(1-|z|^2)^s(1-|w|^2)^t}{|1-\langle z,w\rangle|^{n+1+s+t-\alpha}} \leq \frac{(1-|z|^2)^s(1-|w|^2)^s}{2^{s-t}|1-\langle z,w\rangle|^{n+1+2s-\alpha}}.$$

Let $\zeta = \varphi_w(z)$ and recall that

(12)
$$1 - \langle \varphi_w(\zeta), \varphi_w(a) \rangle = \frac{(1 - |w|^2)(1 - \langle \zeta, a \rangle)}{(1 - \langle \zeta, w \rangle)(1 - \langle w, a \rangle)}, \quad w, a, \zeta \in \mathbb{B}_n.$$

It follows from Corollary 3.2 that

$$\int_{\mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|f(z) - f(w)|^{p}}{|1 - \langle z, w \rangle|^{n+1+2s-\alpha}} (1 - |w|^{2})^{s} (1 - |z|^{2})^{s} dv(z) dv(w)$$

$$= \int_{\mathbb{B}_{n}} \int_{\mathbb{B}_{n}} \frac{|f(\varphi_{w}(\zeta)) - f(\varphi_{w}(0))|^{p} (1 - |\varphi_{w}(\zeta)|^{2})^{s}}{|1 - \langle \varphi_{w}(\zeta), \varphi_{w}(0) \rangle|^{n+1+2s-\alpha} (1 - |w|^{2})^{-s}} dv(\varphi_{w}(\zeta)) dv(w)$$

$$= \int_{\mathbb{B}_{n}} (1 - |w|^{2})^{\alpha} \int_{\mathbb{B}_{n}} \frac{|f(\varphi_{w}(\zeta)) - f(\varphi_{w}(0))|^{p} (1 - |\zeta|^{2})^{s}}{|1 - \langle \zeta, w \rangle|^{n+1+\alpha}} dv(\zeta) dv(w)$$

$$\stackrel{<}{\sim} \int_{\mathbb{B}_{n}} (1 - |w|^{2})^{\alpha} \int_{\mathbb{B}_{n}} |\widetilde{\nabla}(f \circ \varphi_{w})(\zeta)|^{p} \frac{(1 - |\zeta|^{2})^{s} + n+1}{|1 - \langle \zeta, w \rangle|^{n+1+\alpha}} dv(\zeta) dv(w)$$

$$= \int_{\mathbb{B}_{n}} (1 - |w|^{2})^{\alpha} \int_{\mathbb{B}_{n}} |\widetilde{\nabla}(f)(z)|^{p} \frac{(1 - |\varphi_{w}(z)|^{2})^{s+n+1}}{|1 - \langle \varphi_{w}(z), w \rangle|^{n+1+\alpha}} d\lambda(\zeta) dv(w)$$

$$= \int_{\mathbb{B}_{n}} (1 - |w|^{2})^{s} \int_{\mathbb{B}_{n}} |\widetilde{\nabla}(f)(z)|^{p} \frac{(1 - |z|^{2})^{s}}{|1 - \langle z, w \rangle|^{n+1+2s-\alpha}} dv(z) dv(w)$$

$$= \int_{\mathbb{B}_{n}} |\widetilde{\nabla}(f)(z)|^{p} (1 - |z|^{2})^{s} \int_{\mathbb{B}_{n}} \frac{(1 - |w|^{2})^{s}}{|1 - \langle z, w \rangle|^{n+1+2s-\alpha}} dv(w) dv(z)$$

$$= \int_{\mathbb{B}_{n}} |\widetilde{\nabla}(f)(z)|^{p} (1 - |z|^{2})^{s} dv(z).$$

For the converse direction, recall that if $f \in H(\mathbb{B}_n)$, then (see [10, page 87])

(13)
$$|\widetilde{\nabla}(f)(z)|^p \lesssim \int_{\mathbb{B}_n} |f \circ \varphi_z(w) - f(z)|^p dv_\beta(w)$$

for all $z \in \mathbb{B}_n$ and $\beta > -1$. Choose $\beta = 1 + s$ and let $w = \varphi_z(\eta)$ in (13) we get

$$\int_{\mathbb{B}_n} |\widetilde{\nabla}(f)(z)|^p dv_{\alpha}(z) \lesssim \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |f \circ \varphi_z(w) - f(z)|^p dv_{\beta}(w) dv_{\alpha}(z)$$

$$= \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |f(\eta) - f(z)|^p (1 - |\varphi_z(\eta)|^2)^{\beta + n + 1} d\lambda(\varphi_z(\eta)) dv_{\alpha}(z)$$

$$= \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |f(\eta) - f(z)|^p \frac{(1 - |z|^2)^{\beta + n + 1} (1 - |\eta|^2)^{\beta + n + 1}}{|1 - \langle z, \eta \rangle|^{2(\beta + n + 1)}} d\lambda(\eta) dv_{\alpha}(z)$$

$$= \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(\eta) - f(z)|^p (1 - |z|^2)^s (1 - |\eta|^2)^s}{|1 - \langle z, \eta \rangle|^{n+1+2s-\alpha}} \frac{(1 - |z|^2)^{\alpha+n+2} (1 - |\eta|^2)}{|1 - \langle z, \eta \rangle|^{n+3+\alpha}} \, \mathrm{d}v(\eta) \mathrm{d}v(z)$$

$$\lesssim \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(\eta) - f(z)|^p (1 - |z|^2)^s (1 - |\eta|^2)^s}{|1 - \langle z, \eta \rangle|^{n+1+2s-\alpha}} \, \mathrm{d}v(\eta) \mathrm{d}v(z),$$

where the last inequality follows from the assumption $\alpha \geq -n-2$, which implies that

$$\frac{(1-|z|^2)^{\alpha+n+2}(1-|\eta|^2)}{|1-\langle z,\eta\rangle|^{n+3+\alpha}} \lesssim 1.$$

This gives the desired result.

Proof of Theorem 1.1. Put Theorem 3.4 and Lemma 2.1 together, we get Theorem 1.1. \Box

A slight modification of the proof of Theorem 3.4 can give the following corollary.

Corollary 3.5. (1) Let $1 \le p < \infty$ and f be holomorphic on \mathbb{B}_n . Let s, t > -1, and $\gamma > t + n + 1$. Then

$$\begin{split} &\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|1 - \langle z, w \rangle|^{\gamma}} (1 - |w|^2)^s (1 - |z|^2)^t \mathrm{d}v(z) \mathrm{d}v(w) \\ &\stackrel{<}{\sim} \begin{cases} &\int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^p (1 - |z|^2)^{t+s+n+1-\gamma} \mathrm{d}v(z), & \text{if } \gamma > n+1+s; \\ &\int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^p (1 - |z|^2)^t \log \frac{1}{1-|z|^2} \, \mathrm{d}v(z), & \text{if } \gamma = n+1+s; \\ &\int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^p (1 - |z|^2)^t \, \mathrm{d}v(z), & \text{if } \gamma < n+1+s. \end{cases} \end{split}$$

(2) Let 0 and <math>f be holomorphic on \mathbb{B}_n . Let $\beta > -1$ and α is real. Then

$$\int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^p (1-|z|^2)^{\alpha} \mathrm{d}v(z)$$

$$\lesssim \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |f(z) - f(w)|^p \frac{(1-|z|^2)^{\alpha+\beta+n+1} (1-|w|^2)^{\beta}}{|1-\langle z,w\rangle|^{2(\beta+n+1)}} \, \mathrm{d}v(z) \mathrm{d}v(w)$$

$$\lesssim \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f(z) - f(w)|^p}{|1-\langle z,w\rangle|^{\gamma}} (1-|z|^2)^t (1-|w|^2)^s \mathrm{d}v(z) \mathrm{d}v(w)$$

for all $s \leq \beta$, $t \leq \alpha + \beta + n + 1$ and $\gamma \geq n + 1 + t + s - \alpha$.

4. The Möbius invariant subspace of A_{α}^{p}

Proof of Theorem 1.3. For $a \in \mathbb{B}_n$, an easily application of (12) and (6) gives that

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f \circ \varphi_a(z) - f \circ \varphi_a(w)|^p}{|1 - \langle z, w \rangle|^{n+1+s+t-\alpha}} (1 - |w|^2)^s (1 - |z|^2)^t \mathrm{d}v(z) \mathrm{d}v(w)$$

$$= \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(u) - f(\xi)|^p (1 - |\varphi_a(\xi)|^2)^{s+n+1} (1 - |\varphi_a(u)|^2)^{t+n+1}}{|1 - \langle \varphi_a(u), \varphi_a(\xi) \rangle|^{n+1+s+t-\alpha}} \, \mathrm{d}\lambda(u) \mathrm{d}\lambda(\xi)$$

$$\begin{split} &= \int\limits_{\mathbb{B}_n} \int\limits_{\mathbb{B}_n} \frac{|f(u) - f(\xi)|^p (1 - |a|^2)^{n+1+\alpha} (1 - |\xi|^2)^{n+1+s} (1 - |u|^2)^{n+1+t} \, \mathrm{d}\lambda(u) \mathrm{d}\lambda(\xi)}{|1 - \langle u, \xi \rangle|^{n+1+s+t-\alpha} |1 - \langle a, \xi \rangle|^{n+1+\alpha+s-t} |1 - \langle a, u \rangle|^{n+1+\alpha+t-s}} \\ &= \int\limits_{\mathbb{B}_n} \int\limits_{\mathbb{B}_n} \frac{|f(u) - f(\xi)|^p (1 - |a|^2)^{n+1+\alpha} (1 - |\xi|^2)^s (1 - |u|^2)^t \, \mathrm{d}v(u) \mathrm{d}v(\xi)}{|1 - \langle u, \xi \rangle|^{n+1+s+t-\alpha} |1 - \langle a, \xi \rangle|^{n+1+\alpha+s-t} |1 - \langle a, u \rangle|^{n+1+\alpha+t-s}}. \end{split}$$

The proof is completed by taking supremum over $a \in \mathbb{B}_n$.

The holomorphic function spaces Q_s on the unit ball is introduced in [6]. For s > 0, Q_s is defined by

$$Q_s = \left\{ f \in H(\mathbb{B}_n) : \sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} \left| \widetilde{\nabla} f(z) \right|^2 G(z, a)^s d\lambda(z) < \infty \right\},\,$$

where G(z,a) is invariant Green's function of \mathbb{B}_n defined by $G(z,a)=g(\varphi_a(z))$, and

$$g(z) = \frac{n+1}{2n} \int_{|z|}^{1} (1-t^2)^{n-1} t^{-2n+1} dt.$$

It is shown in [6, Proposition 3.4] that when $0 < s \le 1$, a holomorphic function f on \mathbb{B}_n is belonging to Q_s if and only if

$$\sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^2 (1 - |\varphi_a(z)|^2)^{ns} d\lambda(z) < \infty.$$

Moreover, when $1 < s < \frac{n}{n-1}$, $f \in Q_s$ if and only if f is in the Bloch space, or equivalently,

$$\sup_{a \in \mathbb{B}_n} \int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^2 (1 - |\varphi_a(z)|^2)^{nq} d\lambda(z) < \infty$$

for all q > 1. Therefore, when $0 < s \le 1$, Q_s can be viewed as the Möbius invariant subspace of a holomorphic function space on \mathbb{B}_n satisfying

$$\int_{\mathbb{B}_n} |\widetilde{\nabla} f(z)|^2 (1 - |z|^2)^{ns} d\lambda(z) < \infty.$$

On the other hand, it is well known that Q_s is nontrivial (i.e., contains all polynomials) if and only if $\frac{n-1}{n} < s < \frac{n}{n-1}$. Thus, we have the following characterization of Q_s on \mathbb{B}_n .

Corollary 4.1. Let $\frac{n-1}{n} < s < \frac{n}{n-1}$ and let f be holomorphic on \mathbb{B}_n . Let $\beta, \gamma > -1$ such that $\min(\beta, \gamma) > ns - n - 1$. Then $f \in Q_s$ if and only if

$$\sup_{a\in\mathbb{B}_n}\int\limits_{\mathbb{B}_n}\int\limits_{\mathbb{B}_n}\frac{|f(z)-f(w)|^2(1-|a|^2)^{ns}(1-|w|^2)^{\beta}(1-|z|^2)^{\gamma}\mathrm{d}v(z)\mathrm{d}v(w)}{|1-\langle z,w\rangle|^{2(n+1)+\beta+\gamma-ns}|1-\langle a,w\rangle|^{ns+\beta-\gamma}|1-\langle a,z\rangle|^{ns-\beta+\gamma}}<\infty.$$

References

- [1] D. Blasi and J. Pau, A characterization of Besov-type spaces and applications to Hankeltype operators, Michigan Math. J. 56 (2008), no. 2, 401-417. https://doi.org/10.1307/ mmj/1224783520
- [2] P. Hu and W. Zhang, A new characterization of Dirichlet type spaces on the unit ball of \mathbb{C}^n , J. Math. Anal. Appl. **259** (2001), no. 2, 453–461. https://doi.org/10.1006/jmaa. 2000.7414
- [3] S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterisation of Bergman spaces on the unit ball of Cⁿ, Glasg. Math. J. 51 (2009), no. 2, 315–330. https://doi.org/10.1017/ S0017089509004996
- [4] S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of Cⁿ. II, Canad. Math. Bull. 55 (2012), no. 1, 146–152. https://doi.org/10.4153/CMB-2011-047-6
- [5] J. M. Ortega and J. Fàbrega, *Pointwise multipliers and corona type decomposition in BMOA*, Ann. Inst. Fourier (Grenoble) **46** (1996), no. 1, 111–137.
- [6] C. Ouyang, W. Yang, and R. Zhao, Möbius invariant Q_p spaces associated with the Green's function on the unit ball of \mathbb{C}^n , Pacific J. Math. **182** (1998), no. 1, 69–99.
- [7] R. Rochberg and Z. J. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math. 37 (1993), no. 1, 101-122. http://projecteuclid.org/euclid. ijm/1255987252
- [8] J. Xiao, Geometric Q_p Functions, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
- [9] R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of \mathbb{C}^n , Mém. Soc. Math. Fr. (N.S.) No. **115** (2008), vi+103 pp. (2009).
- [10] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.

CHENG YUAN
SCHOOL OF APPLIED MATHEMATICS
GUANGDONG UNIVERSITY OF TECHNOLOGY
GUANGZHOU, GUANGDONG 510520, P. R. CHINA
Email address: yuancheng1984@163.com

HONG-GANG ZENG SCHOOL OF MATHEMATICS TIANJIN UNIVERSITY TIANJIN 300354, P. R. CHINA Email address: zhgng@tju.edu.cn