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A DOUBLE INTEGRAL CHARACTERIZATION
OF A BERGMAN TYPE SPACE AND ITS MOBIUS
INVARIANT SUBSPACE

CHENG YUAN AND HONG-GANG ZENG

ABSTRACT. This paper shows that if 1 <p < oo, > —n—2,a>-1-5§
and f is holomorphic on the unit ball B,,, then

[ IRF@IP( = o dun z) < oo
if and only if
L e 0= (1 = e o) () < o

where s,t > —1 with min(s,t) > a.

1. Introduction

The purpose of this note is to give a double integral characterization of a
Bergman space, which extends some previous results in [2—4].

Let B,, be the unit ball of the n-dimensional complex Euclidean space C".
Let H(B,,) be the space of holomorphic functions on B,,. For f € H(B,,), the
radial derivative of f, denoted by Rf, is given by

Rf(z) = szagij), z=1(21,%22,...,2n) € By.

We employ the definition of Bergman spaces given in [9]. For 0 < p < oo and
a > —1 — p, the Bergman space A2 := AP (B,,) consists of those holomorphic
functions f in B,, with

(1) [fllaz, = 1O+ [ fllovp
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=[O+ (/Bn [Rf(2)[P(1 - |z|2)p+°“dv(2)>; < o0,

where dv is the normalized volume measure on B,, so that v(B,) = 1. When
a > —1, it is well known that f € A? if and only if

(2) 114z« = </B lf(2)P(1 - |2|2)“dva(z)>p < o0.
Here
_ @ _ F(n+a+l) «
dvg(z) = ca(l — |z\2) du(z) = m(l — \z|2) do(z).

When oo = —(ps + 1) (with s < 1), the spaces AP, are exactly the diagonal
Besov spaces Bj. Moreover, A% | = H?, the Hardy space on B,,. See [9] for
more details of AP.

It is proved in [3,4] that for « > —1 and f € H(B,,),

proved in [3 ]) if p>n+1+a, then f € AP if and only if

/ / \1 ) |pp (1= =)~ )5 du(2)dow) < oo

(2) (proved in [4]) if 0 < p <n+ 1+ «, then f € AP if and only if

/ / (z,w) |)p|” dva(2)dva (w) < oo,

The main result of this paper is the following:

Theorem 1.1. Let 1 < p < o0, @« > —n —2, a > —1 — & and let f be
holomorphic on B,,. Let s,t > —1 such that min(s,t) > «. Then fe Al if and

only if
T e (1~ )" (1 ~ |2 do(z) o) < oo
Z w |n+1+s+t o :
Remark 1.2. (1) It is proved in [2] that for o« > —2 and f € H(B,,),

/ RF(2)(1 — |22 du(2)

n

is comparable to

/ / 11 —‘fz w) |7l+(1+)s|+t a(l - |z‘2)5(1 - |w\2)tdv(z)dv(w),

where s,¢t > —1 with min{s,¢} > a. The proof in [2] relies on Hilbert space
techniques. It is worth to note that our result can not cover the result in [2]
when p = 2 and o = —2, which is contained in [2] but not contained in our
theorem.
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(2)Ifa=-n—1>—-1-1%, then p > 2n and A, is the Besov space B,. It
is shown in [10, Theorem 6.28] that if f is holomorphic in B,,, then f € B, if

and only if
(w)[Pdvy (z)dvy (w)
/ / \1— Lwypersn %

for t > —1. Thus Theorem 1.1 extends [10, Theorem 6.28].

(3) Let s = t = EX2-=1 in Theorem 1.1, we obtain the characterization
given in [3]. Thus our characterization can be viewed as a generalization of [3].
However, the strategy of the verification is quiet different from [3].

The main idea of the proof of Theorem 1.1 is inspired by [1]. Similar char-
acterization of the Dirichlet type space in the unit disk is given in [7].

Let X be a Banach space of holomorphic functions in B,. The Mobius
invariant subspace of X is defined as

Mx = {fGX: Sup HfOLPaH <OO}7
a€B,

where

(z,a)a 1_ ‘a|2(2 . (z,a)a)

a[? la]?
va(z) = 1—{(z,a) ’
-z, if a=0,

if a#0,

for z € B,,. For a € B,,, the transform ¢, is usually call the involution on B,,.
Let Aut(B,,) denote the set of all automorphisms on B,,. It is well known that
every automorphism ¢ of B,, is of the form

o =Upq =V,

where U and V are unitary transformations of C™, and ¢, and ¢} are involu-
tions.

It is known that M 4» is the Bloch space when o > —1 and p > 1. MAil =
BMOA, the space of holomorphic functions of bounded mean oscillation.

We have the following theorem, which is motivated by [8, Theorem 2.5.2].
Theorem 1.3. Let 1 < p < o0, « > —n —2, a > —1 — L and let f be
holomorphic on By,. Let s,t > —1 such that min(s,t) > a. Then f € Myr if
and only if

// w)[P(L—la[*)" e (1—w[*)* (1 - |2[*)"dv(2)dv(w)
e

Z w ‘n+1+s+t a|1 <CL, w>|n+1+57t+a|17<a7Z>|n+1+t75+o¢

sup
aEIBn

Notation. Throughout this paper, we only write U SV (or V R U)forU <cV
for a positive constant ¢, and moreover U = V for both U SVandVSU. O
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2. Preliminaries

For f € H(B,) with the homogeneous expansion
f(z) = ka(z)v
k=0
it is easy to check that
Rf(z) =) kfu(z), Rf(0)=0
k=1

and
dt

) - 0y = [ FLE)

0
for all z € B,,. According to [10, page 51], for f € AP with o > —1, there exists
a sufficiently large 3 satisfying

Rf(w)dvg(w
R0 = [ G e #<Be
where
dug(z) = Wg — 12?)Pdu ).
Then

Ri(:) = [ B (s — 1) dost)

since Rf(0) = 0. We have

16~ 10 = [ Fai= [ rpwLe. )

0

where the kernel
1
1 dt¢
L = -1 —
(Z,w) /0 <(1 _t<z,w>)n+1+/3 ) t
satisfies

3) Lew)| & e

for all z and w in B,,. So

Rf(w)|

A S L A B,

Q) )~ 101 % [ s duw)
For a holomorphic function f in B,, we write

Vi = (g 5 o)

and call |V f(z)| the holomorphic gradient of f at z. We define
VF(z) = V(f 00:)(0),
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and call |§ f(2)] the invariant gradient of f at z. It is shown in [10, page 49]
that

IV(f o 9)(2)] = (V) o o(2)|
for all f and ¢ € Aut(B,,). Moreover,

(5) (1= zP)IRf() < A= 2PV (=) < IVF()]
for all z € B, and f € H(B,,).
Let
AA(z) = do(z)

(1= [z?)m+

be the Mé6bius invariant measure on B,,. It is easy to check that

©) | roseane = [ reme).
where ¢ € Aut(B,,).
The following lemma is quoted from [10, Exercise 2.4]
Lemma 2.1. Suppose 0 < p < 0o, a > =8 —1, and f is holomorphic in B,,.
Then f € AP if and only if

/ FFEPA - [2P)du(z) < oo.

Bn

The following lemma is quoted from [5], which is Lemma 2.5 there.
Lemma 2.2. Suppose s > —1 and r,t > 0. Ift <s+n-+1<r, then

/ (1 —|wP)*dv(w) < 1
Bn

~

1= (o)L= w1 —|z) 1= (g, 2)|"

3. The derivative-free characterization for AP
Inspired by Lemma 2.1 of [1], we have the following lemma.
Lemma 3.1. Let 1 < p < oo, and let « > —1 and 8 >0 with B <n+ 1+ «.
Let f be holomorphic on B,. Then

p A=l s [ Rpp Azl o
@) [ 156 0P S e S [ IR e )

n

Proof. The case = 0 is contained in [10, Theorem 2.16]. So we assume that

B8 >0.
If p > 1, choose £ > 0 with

a—emax(l,p—1)>—-1 and pS+elp—-1)<n+1l+ea.

Without loss of generality we may assume that the right-hand side of (7) is
finite. Then it follows from Hélder’s inequality that Rf € Al +a- Theorem
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2.16 in [10] implies that f € AL. Then it follows from (4) that there exists a
sufficiently large ¢ such that

1f(2) = FO)

< ( / n Rf(u)l% de))"
< </IB Rf(u)|P(1—||1u_2<):;;;|:r(t1+e) dv(u)> </IB % dv(u))p_l
< ( /IB n Ry ()P —|1|u2<>;+;|—:i<t1+5> dm)) o

Now the Fubini’s theorem and Lemma 2.2 imply that
(L[
1£(2) W =5 dv(2)
/]B}n 11— (z,w)|?
(1= )00+ N (L= )t
Rf(u)? d d
<[ (/ rip S v ) D e

DIP(1 — g2+ -1 (A+e) (1—[2*)—=P=DFedy(z) olu
., 1mstwr = P (L W= ape) eto

do(u)
(1 = Juf?)t=tmeter=D]1 — (u,w)|?

WP (L= fuf D0

A
\
El
=

/ e ey
= (u, w)|?
If p=1, by choosmg ~ big enough and applying (4), we have
U
. 1= o= ke
e (Lo Ny
/Bn'Rf(“)'“ o7 ([, i )
_ U2 ¥ dv(u)
. VRS 010 =Y S
) e

The proof is completed. O

A

A

We can get the following corollary from Lemma 3.1 and (5).

Corollary 3.2. Let1 <p < oo, and let a > —1 and > 0 with f <n+1+a.
Let f be holomorphic on B,. Then we have

_ pw u(z) S Y f(z pw u(z
® [ e 0P e & [ e b

n
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It is also shown in [10, page 50] that if f € A2 for a > —1, then

for 5 > a. We have the following corollary.

Corollary 3.3. Ifp >0, a > —1 and f € AP, then for 8 > a, we have

\Z| / p (L= [2[)"
(10) / Vf )|P f(z dv(z).
IO o | =
In particular,
e G5 [ L (= ]2P)
(11) p .
RO 1) = SO 75 ()
Proof. We only need to verify (10), since (11) can be easily obtained from (5)
and (10).

Replacing f by f — f(0) in (9), we have
IVfz)P < (1- |z\2)"+1+5/ |/ (w) = f(O)[Pdug(w)
B,

1= (2, w2 147)

This implies that

b Ol

L, e = o
< [ QR ) fO)Pdus)
| A du(2)

T w)lP o, |1 (o a)20ie
(1= o)™+ 148+ du ()
/B LCRNOT / T T e )

< p L vg(u
~ / |f(u)_f(0)| |17<u w>|5(17‘u|2)5,ad B( )
p (1—Juf)"
= [, 10— FOP T e o)
The proof is completed. (I

Theorem 3.4. Let 1 < p < oo, a > —1—p, a« > —n — 2, and let | be
holomorphic on B,,. Let s,t > —1 such that min(s,t) > «. Then

[ e =

is comparable to

[ RrePa - Py o).
By
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Proof. 1t suffices to consider the case s =t since s < ¢ implies

22 (A A—w)’ _ A= [zP) (0w’ (A= [2) (1 — [w])?

1= (z,w)|PH1H2t—a = |1 = (g, w)[ntltstiza = 2s—t[] — (5 w)|nt1+2s—a’

Let ¢ = ¢, (z) and recall that

(12) 1= {(puw(Q); pula)) = (1(1__<|th|u>))((11_—<<i;/af>l)>)7

It follows from Corollary 3.2 that

/ / |1 — <z w |n+1+2a 5 (1= [wl?)*(1 = [2]*) " dv(2)dv(w)
() — Heu O = [pulQP)?
/ / |1f< w(0), sﬁw >‘n+1+25 o(1— |w|2)—* 5 du(pw(€))dv(w)
eye [ Q) ~ Flew@Pa IR
| =) / T e do(¢)do(w)

(1 -1

w,a,( €B,.

<[ amee [ ﬁ(fosow)(cnpu e 0w
:/B (1= |wf*) /|v )P 1_<C|<w§:::ad)\(g)dv(w)
= [a-wpr [ B @fu@z()) e DG w)
= J, a-t? / Vi |1_(Z1 v

= [ Foera-ipr [ it woa)
= [ FOEPQ - ERa)
For the converse direction, recall that if f € H(B,,), then (see [10, page 87])
(13) AP S [ 1 oa(w) = FPdny(w)

for all z € B,, and § > —1. Choose =1+ s and let w = ¢,(n) in (13) we get

/ V() ()P dva (= / / [0 p(w) — () Pdus(w)dua(2)

/ / F@) = FEPA — L2 () 2P A (- () v (2)

1_ B+n+l(1 _ |p|2)B+n+1
/ / e |z|1)_<z n>(2(ﬁ+'ﬂ1)) aA7)dua(2)
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Zp ZQS 2sl_z2a+n+21_ 2
- [ [ M 2| S, O aac (E LU PRIE
< )P(L— |z 1—
- / / |]. - <|Z(77>|n|+1|+)2s( a |T]| ) dv(n)dv(2),

where the last inequality follows from the assumption @ > —n—2, which implies
that
(1= )20 - ) <
1= (z,m)[rH3te '
This gives the desired result. O

Proof of Theorem 1.1. Put Theorem 3.4 and Lemma 2.1 together, we get The-
orem 1.1. ([

A slight modification of the proof of Theorem 3.4 can give the following
corollary.

Corollary 3.5. (1) Let 1 < p < oo and f be holomorphic onB,,. Let s,t > —1,
and y>t+n+1. Then

wl — Jw|?)*(1 = |2*) dv(z)dv(w
// \Hz, e agp (U e P ) w)

Jo, IVF(= |P<1—|z|2>t+s+”+l—”dv(z>, ify>n+1+s;
SR IVf JIP(1— |2} log = dv(2),  ify=n+1+s;
)P(L = |2[?)" dv(z), ify<n+1l+s.

(2) Let 0 < p < 0o and f be holomorphic on B,,. Let 8 > —1 and « is real.
Then

JAZCICRIERRTE
— |z[2)a Bt _ |p]2)B8
/ / |f(2) |p( |1|—)<z w)|2(/3(+"+1|) ) do(z)dv(w)

/ / |1 —(z,w) |)A,| (1= [2*)"(1 = [w]*)*do(z)dv(w)

foralls<p,t<a+B+n+landy>n+1+t+s—a.

A

A

4. The Mobius invariant subspace of AP

Proof of Theorem 1.3. For a € B,,, an easily application of (12) and (6) gives
that

/ / |J|clo:paz w) ,;fﬁii(t )a‘p(l —w[*)*(1 = [2*)'dv(z)dv(w)

flu NP1 = |a(€)[2)5H (1 = |ipq (u)[2)tHnH1
/ / | 1 ge <J<D >( ;|a<)5>>|n+§+s+t¢a( I axwang
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/ |f (u)— E P(1—af?) e (1 —€2) " (1 —uf?)" T dA(u)dAE)

| |n+1+9+t o¢|1 <a7£>|n+1+a+s—t|1_<a7u>‘n+1+o¢+t—s

B, Bn

// f(w) = FOPA —Ja*) e — €)1 — [u*)* do(u)dv(E)
1=

<U,£ |n+1+s+t a|1 _ <a £>|n+1+a+s t‘l _ <(L u>|n+1+a+t 5"

The proof is completed by taking supremum over a € B,,. O

The holomorphic function spaces @s on the unit ball is introduced in [6].
For s > 0, Qs is defined by

Q.= {f € H(B,) : sup / ‘%f(z)f Gz, a) dA(z) < oo} ,

a€By, JB

where G(z, a) is invariant Green’s function of B,, defined by G(z,a) = g(va.(2)),
and

n+l ! 2\n—1,—2
= 1 — )2y,
o) = "5 [La=

It is shown in [6, Proposition 3.4] that when 0 < s < 1, a holomorphic
function f on B, is belonging to Qs if and only if

a€B,

sup / ¥ £(2)2(1 = [ga(2)2)"*dA(2) < ox.

Moreover, when 1 < s < 25, f € Q if and only if f is in the Bloch space, or
equivalently,

sup / ¥ £~ lpa(2)2)"dA(z) < oo
a€B, JB,,

for all ¢ > 1. Therefore, when 0 < s < 1, ()5 can be viewed as the Mobius
invariant subspace of a holomorphic function space on B,, satisfying

/B IVF(2)2(1 = [2]2)"dA(2) < oc.

On the other hand, it is well known that @ is nontrivial (i.e., contains all
polynomials) if and only if "7—:1 < s < ;%5. Thus, we have the following
characterization of Qs on B,,.

Corollary 4.1. Let ”T_l < s < -5 and let f be holomorphic on B,,. Let
B,y > —1 such that min(3,v) >ns —n —1. Then f € Q; if and only if

//| w)[* (A — Ja?)"* (1 — [w|*)? (1 — [[*)7dv(2)dv(w)

1—(z,w) |2(n+1 Thty=ns|1 — (a, w)|rs+B=7|1 — (a, 2)|ms— B+ <o

sup
a€B,
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