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A DOUBLE INTEGRAL CHARACTERIZATION

OF A BERGMAN TYPE SPACE AND ITS MÖBIUS

INVARIANT SUBSPACE

Cheng Yuan and Hong-Gang Zeng

Abstract. This paper shows that if 1 < p <∞, α ≥ −n−2, α > −1− p
2

and f is holomorphic on the unit ball Bn, then∫
Bn
|Rf(z)|p(1− |z|2)p+αdvα(z) <∞

if and only if∫
Bn

∫
Bn

|f(z)− f(w)|p

|1− 〈z, w〉|n+1+s+t−α (1− |w|2)s(1− |z|2)tdv(z)dv(w) <∞,

where s, t > −1 with min(s, t) > α.

1. Introduction

The purpose of this note is to give a double integral characterization of a
Bergman space, which extends some previous results in [2–4].

Let Bn be the unit ball of the n-dimensional complex Euclidean space Cn.
Let H(Bn) be the space of holomorphic functions on Bn. For f ∈ H(Bn), the
radial derivative of f , denoted by Rf , is given by

Rf(z) =

n∑
j=1

zj
∂f(z)

∂zj
, z = (z1, z2, . . . , zn) ∈ Bn.

We employ the definition of Bergman spaces given in [9]. For 0 < p <∞ and
α > −1 − p, the Bergman space Apα := Apα(Bn) consists of those holomorphic
functions f in Bn with

‖f‖Apα = |f(0)|+ ‖f‖α,p(1)
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= |f(0)|+
(∫

Bn
|Rf(z)|p(1− |z|2)p+αdv(z)

) 1
p

<∞,

where dv is the normalized volume measure on Bn so that v(Bn) = 1. When
α > −1, it is well known that f ∈ Apα if and only if

‖f‖Apα,∗ =

(∫
Bn
|f(z)|p(1− |z|2)αdvα(z)

) 1
p

<∞.(2)

Here

dvα(z) = cα(1− |z|2)αdv(z) =
Γ(n+ α+ 1)

n!Γ(α+ 1)
(1− |z|2)αdv(z).

When α = −(ps + 1) (with s < 1), the spaces Apα are exactly the diagonal
Besov spaces Bsp. Moreover, A2

−1 = H2, the Hardy space on Bn. See [9] for
more details of Apα.

It is proved in [3, 4] that for α > −1 and f ∈ H(Bn),

(1) (proved in [3]) if p > n+ 1 + α, then f ∈ Apα if and only if∫
Bn

∫
Bn

|f(w)− f(z)|p

|1− 〈z, w〉|p
(
(1− |z|2)(1− |w|2)

) p+α−n−1
2 dv(z)dv(w) <∞;

(2) (proved in [4]) if 0 < p < n+ 1 + α, then f ∈ Apα if and only if∫
Bn

∫
Bn

|f(w)− f(z)|p

|1− 〈z, w〉|p
dvα(z)dvα(w) <∞.

The main result of this paper is the following:

Theorem 1.1. Let 1 < p < ∞, α ≥ −n − 2, α > −1 − p
2 and let f be

holomorphic on Bn. Let s, t > −1 such that min(s, t) > α. Then f ∈ Apα if and
only if∫

Bn

∫
Bn

|f(z)− f(w)|p

|1− 〈z, w〉|n+1+s+t−α (1− |w|2)s(1− |z|2)tdv(z)dv(w) <∞.

Remark 1.2. (1) It is proved in [2] that for α ≥ −2 and f ∈ H(Bn),∫
Bn
|Rf(z)|2(1− |z|2)2+αdv(z)

is comparable to∫
Bn

∫
Bn

|f(z)− f(w)|2

|1− 〈z, w〉|n+1+s+t−α (1− |z|2)s(1− |w|2)tdv(z)dv(w),

where s, t > −1 with min{s, t} > α. The proof in [2] relies on Hilbert space
techniques. It is worth to note that our result can not cover the result in [2]
when p = 2 and α = −2, which is contained in [2] but not contained in our
theorem.
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(2) If α = −n− 1 > −1− p
2 , then p > 2n and Apα is the Besov space Bp. It

is shown in [10, Theorem 6.28] that if f is holomorphic in Bn, then f ∈ Bp if
and only if ∫

Bn

∫
Bn

|f(z)− f(w)|pdvt(z)dvt(w)

|1− 〈z, w〉|2(n+1+t)
<∞

for t > −1. Thus Theorem 1.1 extends [10, Theorem 6.28].
(3) Let s = t = p+α−n−1

2 in Theorem 1.1, we obtain the characterization
given in [3]. Thus our characterization can be viewed as a generalization of [3].
However, the strategy of the verification is quiet different from [3].

The main idea of the proof of Theorem 1.1 is inspired by [1]. Similar char-
acterization of the Dirichlet type space in the unit disk is given in [7].

Let X be a Banach space of holomorphic functions in Bn. The Möbius
invariant subspace of X is defined as

MX = {f ∈ X : sup
a∈Bn

‖f ◦ ϕa‖ <∞},

where

ϕa(z) =


a− 〈z,a〉a|a|2 −

√
1− |a|2(z − 〈z,a〉a|a|2 )

1− 〈z, a〉
, if a 6= 0,

− z, if a = 0,

for z ∈ Bn. For a ∈ Bn, the transform ϕa is usually call the involution on Bn.
Let Aut(Bn) denote the set of all automorphisms on Bn. It is well known that
every automorphism ϕ of Bn is of the form

ϕ = Uϕa = ϕbV,

where U and V are unitary transformations of Cn, and ϕa and ϕb are involu-
tions.

It is known that MApα is the Bloch space when α > −1 and p ≥ 1. MA2
−1

=

BMOA, the space of holomorphic functions of bounded mean oscillation.
We have the following theorem, which is motivated by [8, Theorem 2.5.2].

Theorem 1.3. Let 1 < p < ∞, α ≥ −n − 2, α > −1 − p
2 and let f be

holomorphic on Bn. Let s, t > −1 such that min(s, t) > α. Then f ∈ MApα if
and only if

sup
a∈Bn

∫
Bn

∫
Bn

|f(z)−f(w)|p(1−|a|2)n+1+α(1−|w|2)s(1−|z|2)tdv(z)dv(w)

|1−〈z, w〉|n+1+s+t−α|1−〈a,w〉|n+1+s−t+α|1−〈a, z〉|n+1+t−s+α <∞.

Notation. Throughout this paper, we only write U
<∼ V (or V

>∼ U) for U ≤ cV
for a positive constant c, and moreover U ≈ V for both U

<∼ V and V
<∼ U . �
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2. Preliminaries

For f ∈ H(Bn) with the homogeneous expansion

f(z) =

∞∑
k=0

fk(z),

it is easy to check that

Rf(z) =

∞∑
k=1

kfk(z), Rf(0) = 0

and

f(z)− f(0) =

∫ 1

0

Rf(tz)

t
dt

for all z ∈ Bn. According to [10, page 51], for f ∈ Apα with α > −1, there exists
a sufficiently large β satisfying

Rf(z) =

∫
Bn

Rf(w)dvβ(w)

(1− 〈z, w〉)n+1+β
, z ∈ Bn,

where

dvβ(z) =
Γ(n+ 1 + β)

n!Γ(β + 1)
(1− |z|2)βdv(z).

Then

Rf(z) =

∫
Bn
Rf(w)

(
1

(1− 〈z, w〉)n+1+β
− 1

)
dvβ(w)

since Rf(0) = 0. We have

f(z)− f(0) =

∫ 1

0

Rf(tz)

t
dt =

∫
Bn
Rf(w)L(w, z)dvβ(w),

where the kernel

L(z, w) =

∫ 1

0

(
1

(1− t〈z, w〉)n+1+β
− 1

)
dt

t

satisfies

|L(z, w)| <∼ 1

|1− 〈z, w〉|n+β
(3)

for all z and w in Bn. So

|f(z)− f(0)| <∼
∫
Bn

|Rf(w)|
|1− 〈z, w〉|n+β

dvβ(w).(4)

For a holomorphic function f in Bn we write

∇f(z) =

(
∂f

∂z1
(z), . . . ,

∂f

∂zn
(z)

)
and call |∇f(z)| the holomorphic gradient of f at z. We define

∇̃f(z) = ∇(f ◦ ϕz)(0),
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and call |∇̃f(z)| the invariant gradient of f at z. It is shown in [10, page 49]
that

|∇̃(f ◦ ϕ)(z)| = |(∇̃f) ◦ ϕ(z)|
for all f and ϕ ∈ Aut(Bn). Moreover,

(1− |z|2)|Rf(z)| ≤ (1− |z|2)|∇f(z)| ≤ |∇̃f(z)|(5)

for all z ∈ Bn and f ∈ H(Bn).
Let

dλ(z) =
dv(z)

(1− |z|2)n+1

be the Möbius invariant measure on Bn. It is easy to check that∫
Bn
f ◦ ϕ(z)dλ(z) =

∫
Bn
f(z)dλ(z),(6)

where ϕ ∈ Aut(Bn).
The following lemma is quoted from [10, Exercise 2.4]

Lemma 2.1. Suppose 0 < p < ∞, α > −p2 − 1, and f is holomorphic in Bn.
Then f ∈ Apα if and only if∫

Bn
|∇̃f(z)|p(1− |z|2)αdv(z) <∞.

The following lemma is quoted from [5], which is Lemma 2.5 there.

Lemma 2.2. Suppose s > −1 and r, t > 0. If t < s+ n+ 1 < r, then∫
Bn

(1− |w|2)sdv(w)

|1− 〈z, w〉|r|1− 〈η, w〉|t
<∼ 1

(1− |z|2)r−s−n−1|1− 〈η, z〉|t
.

3. The derivative-free characterization for Apα

Inspired by Lemma 2.1 of [1], we have the following lemma.

Lemma 3.1. Let 1 ≤ p < ∞, and let α > −1 and β ≥ 0 with β < n+ 1 + α.
Let f be holomorphic on Bn. Then∫

Bn
|f(z)− f(0)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z)

<∼
∫
Bn
|Rf(z)|p (1− |z|2)α+p

|1− 〈z, w〉|β
dv(z).(7)

Proof. The case β = 0 is contained in [10, Theorem 2.16]. So we assume that
β > 0.

If p > 1, choose ε > 0 with

α− εmax(1, p− 1) > −1 and β + ε(p− 1) < n+ 1 + α.

Without loss of generality we may assume that the right-hand side of (7) is
finite. Then it follows from Hölder’s inequality that Rf ∈ A1

1+α. Theorem
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2.16 in [10] implies that f ∈ A1
α. Then it follows from (4) that there exists a

sufficiently large t such that

|f(z)− f(0)|p

<∼
(∫

Bn
|Rf(u)| (1− |u|2)t

|1− 〈z, u〉|n+t
dv(u)

)p
≤
(∫

Bn
|Rf(u)|p (1−|u|2)t+(p−1)(1+ε)

|1−〈z, u〉|n+t
dv(u)

)(∫
Bn

(1−|u|2)t−1−ε

|1−〈z, u〉|n+t
dv(u)

)p−1
<∼
(∫

Bn
|Rf(u)|p (1− |u|2)t+(p−1)(1+ε)

|1− 〈z, u〉|n+t
dv(u)

)
(1− |z|2)−ε(p−1).

Now the Fubini’s theorem and Lemma 2.2 imply that∫
Bn
|f(z)− f(0)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z)

<∼
∫
Bn

(∫
Bn
|Rf(u)|p (1− |u|2)t+(p−1)(1+ε)

|1− 〈z, u〉|n+t
dv(u)

)
(1− |z|2)−ε(p−1)+α

|1− 〈z, w〉|β
dv(z)

=

∫
Bn
|Rf(u)|p(1− |u|2)t+(p−1)(1+ε)

(∫
Bn

(1− |z|2)−ε(p−1)+α dv(z)

|1− 〈z, w〉|β |1− 〈z, u〉|n+t

)
dv(u)

<∼
∫
Bn
|Rf(u)|p(1− |u|2)t+(p−1)(1+ε) dv(u)

(1− |u|2)t−1−α+ε(p−1)|1− 〈u,w〉|β

=

∫
Bn
|Rf(u)|p (1− |u|2)p+α

|1− 〈u,w〉|β
dv(u).

If p = 1, by choosing γ big enough and applying (4), we have∫
Bn
|f(z)− f(0)| (1− |z|2)α

|1− 〈z, w〉|β
dv(z)

<∼
∫
Bn
|Rf(u)|(1− |u|2)γ

(∫
Bn

(1− |z|2)α dv(z)

|1− 〈z, w〉|β |1− 〈z, u〉|n+γ

)
dv(u)

<∼
∫
Bn
|Rf(u)|(1− |u|2)γ

dv(u)

(1− |u|2)γ−1−α|1− 〈u,w〉|β

=

∫
Bn
|Rf(u)|p (1− |u|2)1+α

|1− 〈u,w〉|β
dv(u).

The proof is completed. �

We can get the following corollary from Lemma 3.1 and (5).

Corollary 3.2. Let 1 ≤ p <∞, and let α > −1 and β ≥ 0 with β < n+ 1 +α.
Let f be holomorphic on Bn. Then we have∫

Bn
|f(z)− f(0)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z)

<∼
∫
Bn
|∇̃f(z)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z).(8)
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It is also shown in [10, page 50] that if f ∈ Apα for α > −1, then

|∇̃f(z)|p <∼ (1− |z|2)n+1+β

∫
Bn

|f(w)|pdvβ(w)

|1− 〈z, w〉|2(n+1+β)
(9)

for β > α. We have the following corollary.

Corollary 3.3. If p > 0, α > −1 and f ∈ Apα, then for β > α, we have∫
Bn
|∇̃f(z)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z)

<∼
∫
Bn
|f(z)− f(0)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z).(10)

In particular,∫
Bn
|Rf(z)|p (1− |z|2)p+α

|1− 〈z, w〉|β
dv(z)

<∼
∫
Bn
|f(z)− f(0)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z).(11)

Proof. We only need to verify (10), since (11) can be easily obtained from (5)
and (10).

Replacing f by f − f(0) in (9), we have

|∇̃f(z)|p <∼ (1− |z|2)n+1+β

∫
Bn

|f(w)− f(0)|pdvβ(w)

|1− 〈z, w〉|2(n+1+β)
.

This implies that∫
Bn
|∇̃f(z)|p (1− |z|2)α

|1− 〈z, w〉|β
dv(z)

<∼
∫
Bn

(1− |z|2)n+1+β+α

|1− 〈z, w〉|β

∫
Bn

|f(u)− f(0)|pdvβ(u)

|1− 〈z, u〉|2(n+1+β)
dv(z)

=

∫
Bn
|f(u)− f(0)|p

∫
Bn

(1− |z|2)n+1+β+α dv(z)

|1− 〈z, w〉|β |1− 〈z, u〉|2(n+1+β)
dvβ(u)

<∼
∫
Bn
|f(u)− f(0)|p 1

|1− 〈u,w〉|β(1− |u|2)β−α
dvβ(u)

=

∫
Bn
|f(u)− f(0)|p (1− |u|2)α

|1− 〈u,w〉|β
dv(u).

The proof is completed. �

Theorem 3.4. Let 1 ≤ p < ∞, α > −1 − p, α ≥ −n − 2, and let f be
holomorphic on Bn. Let s, t > −1 such that min(s, t) > α. Then∫

Bn

∫
Bn

|f(z)− f(w)|p

|1− 〈z, w〉|n+1+s+t−α (1− |w|2)s(1− |z|2)tdv(z)dv(w)

is comparable to ∫
Bn
|∇̃f(z)|p(1− |z|2)αdv(z).
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Proof. It suffices to consider the case s = t since s ≤ t implies

2s−t(1−|z|2)t(1−|w|2)t

|1− 〈z, w〉|n+1+2t−α ≤ (1− |z|2)s(1− |w|2)t

|1− 〈z, w〉|n+1+s+t−α ≤
(1− |z|2)s(1− |w|2)s

2s−t|1− 〈z, w〉|n+1+2s−α .

Let ζ = ϕw(z) and recall that

1− 〈ϕw(ζ), ϕw(a)〉 =
(1− |w|2)(1− 〈ζ, a〉)

(1− 〈ζ, w〉)(1− 〈w, a〉)
, w, a, ζ ∈ Bn.(12)

It follows from Corollary 3.2 that∫
Bn

∫
Bn

|f(z)− f(w)|p

|1− 〈z, w〉|n+1+2s−α (1− |w|2)s(1− |z|2)sdv(z)dv(w)

=

∫
Bn

∫
Bn

|f(ϕw(ζ))− f(ϕw(0))|p(1− |ϕw(ζ)|2)s

|1− 〈ϕw(ζ), ϕw(0)〉|n+1+2s−α(1− |w|2)−s
dv(ϕw(ζ))dv(w)

=

∫
Bn

(1− |w|2)α
∫
Bn

|f(ϕw(ζ))− f(ϕw(0))|p(1− |ζ|2)s

|1− 〈ζ, w〉|n+1+α
dv(ζ)dv(w)

<∼
∫
Bn

(1− |w|2)α
∫
Bn
|∇̃(f ◦ ϕw)(ζ)|p (1− |ζ|2)s

|1− 〈ζ, w〉|n+1+α
dv(ζ)dv(w)

=

∫
Bn

(1− |w|2)α
∫
Bn
|∇̃(f) ◦ ϕw(ζ)|p (1− |ζ|2)s+n+1

|1− 〈ζ, w〉|n+1+α
dλ(ζ)dv(w)

=

∫
Bn

(1− |w|2)α
∫
Bn
|∇̃(f)(z)|p (1− |ϕw(z)|2)s+n+1

|1− 〈ϕw(z), w〉|n+1+α
dλ(z)dv(w)

=

∫
Bn

(1− |w|2)s
∫
Bn
|∇̃(f)(z)|p (1− |z|2)s

|1− 〈z, w〉|n+1+2s−α dv(z)dv(w)

=

∫
Bn
|∇̃(f)(z)|p(1− |z|2)s

∫
Bn

(1− |w|2)s

|1− 〈z, w〉|n+1+2s−α dv(w)dv(z)

=

∫
Bn
|∇̃(f)(z)|p(1− |z|2)αdv(z).

For the converse direction, recall that if f ∈ H(Bn), then (see [10, page 87])

|∇̃(f)(z)|p <∼
∫
Bn
|f ◦ ϕz(w)− f(z)|pdvβ(w)(13)

for all z ∈ Bn and β > −1. Choose β = 1 + s and let w = ϕz(η) in (13) we get∫
Bn
|∇̃(f)(z)|pdvα(z)

<∼
∫
Bn

∫
Bn
|f ◦ ϕz(w)− f(z)|pdvβ(w)dvα(z)

=

∫
Bn

∫
Bn
|f(η)− f(z)|p(1− |ϕz(η)|2)β+n+1dλ(ϕz(η))dvα(z)

=

∫
Bn

∫
Bn
|f(η)− f(z)|p (1− |z|2)β+n+1(1− |η|2)β+n+1

|1− 〈z, η〉|2(β+n+1)
dλ(η)dvα(z)
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=

∫
Bn

∫
Bn

|f(η)−f(z)|p(1−|z|2)s(1−|η|2)s

|1−〈z, η〉|n+1+2s−α
(1−|z|2)α+n+2(1−|η|2)

|1−〈z, η〉|n+3+α
dv(η)dv(z)

<∼
∫
Bn

∫
Bn

|f(η)− f(z)|p(1− |z|2)s(1− |η|2)s

|1− 〈z, η〉|n+1+2s−α dv(η)dv(z),

where the last inequality follows from the assumption α ≥ −n−2, which implies
that

(1− |z|2)α+n+2(1− |η|2)

|1− 〈z, η〉|n+3+α

<∼ 1.

This gives the desired result. �

Proof of Theorem 1.1. Put Theorem 3.4 and Lemma 2.1 together, we get The-
orem 1.1. �

A slight modification of the proof of Theorem 3.4 can give the following
corollary.

Corollary 3.5. (1) Let 1 ≤ p <∞ and f be holomorphic on Bn. Let s, t > −1,
and γ > t+ n+ 1. Then∫

Bn

∫
Bn

|f(z)− f(w)|p

|1− 〈z, w〉|γ
(1− |w|2)s(1− |z|2)tdv(z)dv(w)

<∼


∫
Bn |∇̃f(z)|p(1− |z|2)t+s+n+1−γdv(z), if γ > n+ 1 + s;∫
Bn |∇̃f(z)|p(1− |z|2)t log 1

1−|z|2 dv(z), if γ = n+ 1 + s;∫
Bn |∇̃f(z)|p(1− |z|2)t dv(z), if γ < n+ 1 + s.

(2) Let 0 < p <∞ and f be holomorphic on Bn. Let β > −1 and α is real.
Then ∫

Bn
|∇̃f(z)|p(1− |z|2)αdv(z)

<∼
∫
Bn

∫
Bn
|f(z)− f(w)|p (1− |z|2)α+β+n+1(1− |w|2)β

|1− 〈z, w〉|2(β+n+1)
dv(z)dv(w)

<∼
∫
Bn

∫
Bn

|f(z)− f(w)|p

|1− 〈z, w〉|γ
(1− |z|2)t(1− |w|2)sdv(z)dv(w)

for all s ≤ β, t ≤ α+ β + n+ 1 and γ ≥ n+ 1 + t+ s− α.

4. The Möbius invariant subspace of Apα

Proof of Theorem 1.3. For a ∈ Bn, an easily application of (12) and (6) gives
that∫

Bn

∫
Bn

|f ◦ ϕa(z)− f ◦ ϕa(w)|p

|1− 〈z, w〉|n+1+s+t−α (1− |w|2)s(1− |z|2)tdv(z)dv(w)

=

∫
Bn

∫
Bn

|f(u)− f(ξ)|p(1− |ϕa(ξ)|2)s+n+1(1− |ϕa(u)|2)t+n+1

|1− 〈ϕa(u), ϕa(ξ)〉|n+1+s+t−α dλ(u)dλ(ξ)
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=

∫
Bn

∫
Bn

|f(u)−f(ξ)|p(1−|a|2)n+1+α(1−|ξ|2)n+1+s(1−|u|2)n+1+t dλ(u)dλ(ξ)

|1−〈u, ξ〉|n+1+s+t−α|1−〈a, ξ〉|n+1+α+s−t|1−〈a, u〉|n+1+α+t−s

=

∫
Bn

∫
Bn

|f(u)− f(ξ)|p(1− |a|2)n+1+α(1− |ξ|2)s(1− |u|2)t dv(u)dv(ξ)

|1− 〈u, ξ〉|n+1+s+t−α|1− 〈a, ξ〉|n+1+α+s−t|1− 〈a, u〉|n+1+α+t−s .

The proof is completed by taking supremum over a ∈ Bn. �

The holomorphic function spaces Qs on the unit ball is introduced in [6].
For s > 0, Qs is defined by

Qs =

{
f ∈ H(Bn) : sup

a∈Bn

∫
Bn

∣∣∣∇̃f(z)
∣∣∣2G(z, a)sdλ(z) <∞

}
,

where G(z, a) is invariant Green’s function of Bn defined by G(z, a) = g(ϕa(z)),
and

g(z) =
n+ 1

2n

∫ 1

|z|
(1− t2)n−1t−2n+1dt.

It is shown in [6, Proposition 3.4] that when 0 < s ≤ 1, a holomorphic
function f on Bn is belonging to Qs if and only if

sup
a∈Bn

∫
Bn
|∇̃f(z)|2(1− |ϕa(z)|2)nsdλ(z) <∞.

Moreover, when 1 < s < n
n−1 , f ∈ Qs if and only if f is in the Bloch space, or

equivalently,

sup
a∈Bn

∫
Bn
|∇̃f(z)|2(1− |ϕa(z)|2)nqdλ(z) <∞

for all q > 1. Therefore, when 0 < s ≤ 1, Qs can be viewed as the Möbius
invariant subspace of a holomorphic function space on Bn satisfying∫

Bn
|∇̃f(z)|2(1− |z|2)nsdλ(z) <∞.

On the other hand, it is well known that Qs is nontrivial (i.e., contains all
polynomials) if and only if n−1

n < s < n
n−1 . Thus, we have the following

characterization of Qs on Bn.

Corollary 4.1. Let n−1
n < s < n

n−1 and let f be holomorphic on Bn. Let

β, γ > −1 such that min(β, γ) > ns− n− 1. Then f ∈ Qs if and only if

sup
a∈Bn

∫
Bn

∫
Bn

|f(z)− f(w)|2(1− |a|2)ns(1− |w|2)β(1− |z|2)γdv(z)dv(w)

|1− 〈z, w〉|2(n+1)+β+γ−ns|1− 〈a,w〉|ns+β−γ |1− 〈a, z〉|ns−β+γ
<∞.
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[5] J. M. Ortega and J. Fàbrega, Pointwise multipliers and corona type decomposition in

BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111–137.
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