Browse > Article
http://dx.doi.org/10.14403/jcms.2011.24.3.3

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM  

Yang, Gye Tak (Department of Information Security Konyang University)
Choi, Ki Seong (Department of Information Security Konyang University)
Publication Information
Journal of the Chungcheong Mathematical Society / v.24, no.3, 2011 , pp. 417-426 More about this Journal
Abstract
Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.
Keywords
Bergman metric; Berezin transform; Poisson-$Szeg{\ddot{o}}$ kernel; Poisson-$Szeg{\ddot{o}}$ integral;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. S. Choi, Notes On the Bergman Projection type operators in $C^n$, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74.   DOI   ScienceOn
2 P. L. Druen, Theory of $H^p$ spaces, Academic Press, New York, 1970.
3 K. T. Hahn and K. S. Choi, Weighted Bloch spaces in $\mathbb{C}^n$, J. Korean Math. Soc. 35 (1998), no. 2, 171-189.
4 L. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York/London, 1978.
5 S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth & Brooks/Cole Math. Series, Pacific Grove, CA.
6 D. H. Luecking, A Technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660.   DOI   ScienceOn
7 W. Rudin, Function theory in the unit ball of $\mathbb{C}^n$, Springer Verlag, New York, 1980.
8 M. Stoll, Invariant potential theory in the unit ball of $\mathbb{C}^n$, London mathematical Society Lecture note series 199, 1994.
9 G. T. Yang and K. S. Choi, On some measure related with Poisson integral on the unit ball, J. Chungcheong Math. Soc. 22 (2009), no. 1, 89-99.
10 S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.   DOI
11 C. A. Berger, L.A. Coburn and K.H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbols calculus, Amer. J. Math. 110 (1988), 921-953.
12 D. Bekolle, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350.   DOI
13 K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces Bq, J. Korean Math. Soc. 39 (2002), no. 2, 277-287.   DOI
14 K. S. Choi, little Hankel operators on Weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479.   DOI   ScienceOn