
Commun. Korean Math. Soc. 32 (2017), No. 2, pp. 233–260
https://doi.org/10.4134/CKMS.c160069
pISSN: 1225-1763 / eISSN: 2234-3024

ON THE DIVISOR-CLASS GROUP OF MONADIC

SUBMONOIDS OF RINGS OF INTEGER-VALUED

POLYNOMIALS

Andreas Reinhart

Abstract. Let R be a factorial domain. In this work we investigate the
connections between the arithmetic of Int(R) (i.e., the ring of integer-
valued polynomials over R) and its monadic submonoids (i.e., monoids
of the form {g ∈ Int(R) | g |Int(R) fk for some k ∈ N0} for some nonzero

f ∈ Int(R)). Since every monadic submonoid of Int(R) is a Krull monoid
it is possible to describe the arithmetic of these monoids in terms of their
divisor-class group. We give an explicit description of these divisor-class
groups in several situations and provide a few techniques that can be
used to determine them. As an application we show that there are strong
connections between Int(R) and its monadic submonoids. If R = Z or
more generally if R has sufficiently many “nice” atoms, then we prove
that the infinitude of the elasticity and the tame degree of Int(R) can be
explained by using the structure of monadic submonoids of Int(R).

1. Introduction

The class of Krull monoids is among the most well-studied classes of monoids
in factorization theory (see [5]). It is known that the behavior of their factor-
izations only depends on their divisor-class group. On the other hand, there
are many examples of atomic, completely integrally closed monoids that fail
to be Krull. For instance, it is known that the ring of integer-valued polyno-
mials Int(R) over an integral domain R is a Krull domain if and only if R is
a Krull domain and Int(R) = R[X ] (see [1, Corollary I.3.15] and [2, Corollary
2.7]). Recently, it was shown that the ring of integer-valued polynomials over
a Krull domain satisfies a weaker property which is called monadically Krull
[4, 7]. A monoid is called monadically Krull if all its divisor-closed submonoids
generated by one element (i.e., monadic submonoids) are Krull monoids.
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The purpose of this work is to investigate monadic submonoids of rings of
integer-valued polynomials over factorial domains. Since these rings are monad-
ically Krull it is possible to study the arithmetic of their monadic submonoids
by using their divisor-class groups. The restriction to factorial domains (in-
stead of Krull domains) is reasonable, since we are able to give more precise
descriptions in this situation. We pursue two goals. The first goal is a thor-
ough description of divisor-class groups of monadic submonoids of Int(R). We
achieve this goal for monadic submonoids that are generated by nonzero poly-
nomials with coefficients in R. The second goal is to show that the elasticity
and the tame degree of certain rings of integer-valued polynomials are infi-
nite. We present a proof that relies on the structure of divisor-class groups of
monadic submonoids of Int(R).

The second goal is motivated by results in the literature that were proved in
the recent past. More precisely, it is known that every nonempty finite subset
of N≥2 is the set of lengths of some nonzero f ∈ Int(Z) (see [3]). This is a
property that Int(Z) shares with Krull monoids whose divisor-class group is
infinite and where every class contains a height-one prime ideal (see [6]). The
question arises whether it is possible to describe this phenomenon in Int(Z)
by using the theory of Krull monoids. So far, we were not able to solve this
problem. Therefore, we want to pursue a simpler goal and prove that the
infinitude of certain invariants (i.e., the elasticity and the tame degree) can be
derived from the theory of Krull monoids.

In the next section we discuss the notation that is used in this work. We
recall the definitions of saturated, divisor-closed, and monadic submonoids of a
monoid, and present some of their elementary properties. We briefly discuss a
few simple facts about rings of integer-valued polynomials. Another important
notion that will be introduced is the image-content d(f) of a nonzero integer-
valued polynomial f . It is basically a greatest common divisor of the image of
f (over the base ring). This notion is of major importance in this work.

The main purpose of the third section is to study the structure of atoms
and height-one prime ideals of monadic submonoids of Int(R). This is an
important prerequisite concerning the investigation of the divisor-class group,
since it is possible to describe the structure of the divisor-class group of a Krull
monoid by using the v-product decompositions of principal ideals (generated by
atoms) into height-one prime ideals. We will specifically investigate the subset
of constant atoms of a monadic submonoid. We show that every constant
atom generates a radical ideal. Moreover, we present a characterization result
for monadic submonoids where every constant atom is a prime element. We
give a complete description of the set of atoms of monadic submonoids of Int(R)
that are generated by some nonzero f ∈ R[X ]. In what follows we study the set
of height-one prime ideals of monadic submonoids generated by some nonzero
f ∈ R[X ] that do not contain any constant elements. Finally, we present
a result which will enable us to determine the v-product decompositions of
principal ideals into height-one prime ideals in many situations.
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In the fourth section we present the first main result of this work. We show
that the divisor-class group of a monadic submonoid of Int(R) generated by
some nonzero f ∈ R[X ] is torsion-free. Moreover, we present a simple formula
to calculate the torsion-free rank in this case. We proceed with a few results
that hold in a more general context. In particular, we prove a proposition
which relates the P -adic exponents of v-ideals between a Krull monoid and
a saturated submonoid. It is an analogue to a well-known theorem which
connects P -adic exponents of ideals in a Dedekind domain to a subring that
is also a Dedekind domain (see [8]). Moreover, it will be useful to determine
the divisor-class group of monadic submonoids of Int(R) which are not covered
by the first main theorem. We proceed by describing the set of height-one
prime ideals that contain constant elements. These results complement the
achievements in Section 3, and have several applications in the last section.

The fifth section is devoted to the construction of “more involved” examples
of divisor-class groups. We provide basically two sufficient criteria which will
enable us to decompose certain divisor-class groups of monadic submonoids
into a direct product of divisor-class groups (up to an isomorphism). These
criteria will be helpful in last section of this work.

In the last section we provide a few examples and discuss several conse-
quences of the prior sections. Among them are a variety of counterexamples.
For instance, it is shown that several characterization results that hold for
monadic submonoids generated by some nonzero f ∈ R[X ] no longer hold for
arbitrary monadic submonoids. We give non-trivial examples of divisor-class
groups that are torsion groups or torsion-free or none of the two. We prove that
it is possible to find monadic submonoids of Int(Z) whose divisor-class group
is torsion-free with prescribed rank. Finally, we present the second main result
of this work. It shows that rings of integer-valued polynomials over certain
factorial domains have infinite elasticity and tame degree.

2. Notation and preliminaries

All monoids in this work are commutative cancellative monoids. Let H be
a monoid, and T ⊆ H a submonoid. If x, y ∈ H , then we write x |H y if there
is some c ∈ H with y = cx.

• We say that T ⊆ H is saturated if for all x, y ∈ T such that x |H y it
follows that x |T y.

• T ⊆ H is called divisor-closed if for all x, y ∈ H with xy ∈ T we have
x ∈ T .

• If E ⊆ H , then let [[E]]H denote the smallest divisor-closed submonoid
of H which contains E. If x ∈ H , then set [[x]]H = [[{x}]]H .

• We say that T ⊆ H is monadic if T = [[x]]H for some x ∈ H .

If E ⊆ H , then we write [[E]] instead of [[E]]H if the monoid H is the most
obvious choice. Clearly, every monadic submonoid of H is divisor-closed, and
every divisor-closed submonoid of H is saturated. Observe that if x ∈ H , then
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[[x]] = {y ∈ H | y |H xk for some k ∈ N0}. A subset I ⊆ H is called an s-ideal
of H if IH = I. Let spec(H) be the set of all prime s-ideals of H . An s-ideal is
called radical if it is an intersection of prime s-ideals. By X(H) we denote the
set of all height-one prime (s-)ideals of H , i.e., the set of all minimal nonempty
prime s-ideals of H . By H× (resp., A(H)) we denote the set of units of H
(resp., the set of atoms of H). We say that H is reduced if H× = {1}. If
x, y ∈ H , then we say that x and y are associated (we denote this by x ≃H y)
if x = yε for some ε ∈ H×. It is well-known that ≃H defines an equivalence
relation on H . By Hred = {xH× | x ∈ H} we denote the set of equivalence
classes of ≃H . This set forms a monoid under the canonical multiplication. If
E ⊆ H , then F ⊆ E is called a system of representatives of E if for every x ∈ E
there is a unique y ∈ F such that x ≃H y. Let L be a quotient group of H . For
X ⊆ L, set X−1 = {z ∈ L | zX ⊆ H} and Xv = (X−1)−1. A subset I ⊆ H is
called a divisorial ideal (or v-ideal) of H if Iv = I. Every divisorial ideal of H
is an s-ideal of H . Let Iv(H) denote the set of divisorial ideals of H . By Cv(H)
we denote the divisor-class group (or v-class group) of H . It measures how far
(v-invertible) v-ideals are from being principal ideals. A precise definition can
be found in [5, Definition 2.1.8]. If I ∈ Iv(H), then let [I] denote the class of I
in Cv(H). Note that H is called a Krull monoid if H is a completely integrally
closed Mori monoid (or equivalently, every nonempty v-ideal of H is a finite
v-product of height-one prime ideals of H). For a thorough introduction to
Krull monoids we refer to [5, Definition 2.3.1]. We say that H is monadically

Krull if [[x]] is a Krull monoid for every x ∈ H . Most of these notions can be
defined analogously in the context of integral domains.

We want to recapitulate a few basic facts concerning saturated and divisor-
closed submonoids of H . First let T ⊆ H be saturated. Then H× ∩ T = T×.
If H is a Krull monoid, then T is a Krull monoid. Now let T ⊆ H be divisor-
closed. Then T× = H×, and A(T ) = A(H) ∩ T .

If M is a set and l ∈ N, then a finite sequence (ai)
l
i=1 ∈ M l, will be denoted

by a (i.e., a = (ai)
l
i=1).

Recall that if R is an integral domain with quotient field K and X is an
indeterminate over K, then Int(R) = {f ∈ K[X ] | f(x) ∈ R for all x ∈
R} is called the ring of integer-valued polynomials over R. It is well-known
that Int(R)× = R[X ]× = R×. Note that R• = R \ {0} forms a monoid
under multiplication. If we refer to a submonoid of R, then we always mean a
submonoid of R•. Especially, if E ⊆ R•, then let [[E]]R = [[E]]R• . We say that
R is monadically Krull if R• is monadically Krull.

Now let R be a factorial domain, K a field of quotients of R, X an inde-
terminate over K, and Q a system of representatives of A(R). For T ⊆ R,
let GCDR(T ) be the set of all greatest common divisors of T (in R), and let
LCMR(T ) be the set of all least common multiples of T (in R). If f ∈ R[X ]•,
then we say that f is primitive if every greatest common divisor of all co-
efficients of f is a unit of R. For convenience we also allow the units of
R to be primitive polynomials. If q ∈ Q, then let vq : R → N0 ∪ {∞}
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denote the q-adic valuation on R. Let dQ : Int(R)• → R• be defined by

dQ(g) =
∏

p∈Q pmin{vp(g(c))|c∈R} for all g ∈ Int(R)•. Set d = dQ. Note that

d(g) ∈ GCDR({g(c) | c ∈ R}) and g
d(g) ∈ Int(R) for all g ∈ Int(R)•. It

is straightforward to show that d(fk) = d(f)k and d(af) ≃R ad(f) for all
f ∈ Int(R)•, k ∈ N0, and a ∈ R•. Let n ∈ N, f ∈ (Int(R)•)n and x ∈ Nn

0\{0}.
We say that x is f -irreducible if for all y, z ∈ Nn

0 such that x = y + z and

d(
∏n

i=1 f
xi

i ) = d(
∏n

i=1 f
yi

i )d(
∏n

i=1 f
zi
i ) it follows that y = 0 or z = 0. It is well-

known (see [7, Theorem 5.2]) that Int(R) is monadically Krull. If f ∈ Int(R)•,
then we can deduce by [7, Theorem 3.6] and its proof that X([[f ]]), spec([[f ]]),
and {u[[f ]] | u ∈ A([[f ]])} are finite sets. The remarks in this section will be
used without citation.

3. Atoms and height-one prime ideals

In this section we present a few basic preparatory results about atoms and
height-one prime ideals of monadic submonoids of Int(R). Many of the results
in this section refer to monadic submonoids generated by some “f ∈ R[X ]•”.
Note that this is a rather natural assumption because it is straightforward to
prove that every monadic submonoid of Int(R) is contained in some monadic
submonoid of Int(R) generated by some f ∈ R[X ]•. (If g ∈ Int(R)• and b ∈ R•

are such that bg ∈ R[X ], then [[g]] ⊆ [[bg]].) The purpose of the first result is
to describe the set of “constant atoms” of monadic submonoids of Int(R). In
particular, we show that the principal ideals generated by constant atoms are
radical ideals. Furthermore, we prove that a height-one prime ideal contains
at most one constant atom (up to associates).

Lemma 3.1. Let R be a factorial domain, and f ∈ Int(R)•.

1. If g ∈ [[f ]] and u ∈ R, then u |[[f ]] g if and only if u |R d(g).
2. A([[f ]]) ∩R = [[f ]] ∩ A(R) = {u ∈ A(R) | u |R d(f)}.
3. If u ∈ A([[f ]]) ∩R, then u[[f ]] is a radical ideal of [[f ]].
4. If P ∈ X([[f ]]) and u,w ∈ P ∩ A(R), then u ≃[[f ]] w.

Proof. 1. Let g ∈ [[f ]], and u ∈ R. “⇒”: Let u |[[f ]] g. There is some v ∈ [[f ]]
such that g = uv. Since u ∈ R we infer that d(g) ≃R ud(v), and thus u |R d(g).
“⇐”: Let u |R d(g). We have d(g) |Int(R) g, and thus u |Int(R) g. Since g ∈ [[f ]]
it follows that u |[[f ]] g.

2. First we show that A([[f ]]) ∩R = [[f ]] ∩ A(R). “⊆”: Let u ∈ A([[f ]]) ∩ R.
Observe that u 6∈ [[f ]]× = R×. Let x, y ∈ R be such that u = xy. It is clear
that x, y ∈ [[f ]]. Therefore, x ∈ [[f ]]× = R× or y ∈ [[f ]]× = R×. Consequently,
u ∈ [[f ]] ∩ A(R). “⊇”: Let u ∈ [[f ]] ∩ A(R). We have u 6∈ R× = [[f ]]×. Let
x, y ∈ [[f ]] be such that u = xy. Observe that 0 = deg(u) = deg(x) + deg(y),
and thus x, y ∈ R. Therefore, x ∈ R× = [[f ]]× or y ∈ R× = [[f ]]×. We infer
that u ∈ A([[f ]]) ∩R.

Next we show that [[f ]] ∩ A(R) = {u ∈ A(R) | u |R d(f)}. “⊆”: Let
u ∈ [[f ]] ∩ A(R). Then u |Int(R) fk for some k ∈ N. Consequently, u |[[f ]] f

k.
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It follows by 1 that u |R d(fk) = d(f)k. This implies that u |R d(f). “⊇”:
Let u ∈ A(R) be such that u |R d(f). By 1 we have u |[[f ]] f . Therefore,
u ∈ [[f ]] ∩A(R).

3. Let u ∈ A([[f ]]) ∩R. Let g ∈ [[f ]] and n ∈ N be such that u |[[f ]] g
n. Then

u |R d(gn) = d(g)n by 1, and thus u |R d(g). It follows by 1 that u |[[f ]] g.
Therefore, u[[f ]] is a radical ideal of [[f ]].

4. Assume to the contrary that there are P ∈ X([[f ]]) and u,w ∈ P ∩ A(R)
such that u 6≃[[f ]] w. Let K be a quotient field of R, X an indeterminate over K
and L a quotient group of [[f ]]. Let h ∈ L be such that uh,wh ∈ [[f ]]. We have
h ∈ K[X ], uh,wh ∈ Int(R), and thus uh(z), wh(z) ∈ R for all z ∈ R. Observe
that u 6≃R w. If z ∈ R, then u |R uwh(z) = wuh(z), and thus u |R uh(z), hence
h(z) ∈ R. Therefore, h ∈ Int(R) ∩ L = [[f ]]. We infer that u−1[[f ]] ∩ w−1[[f ]] =
[[f ]]. Consequently, [[f ]] = {u,w}v[[f]]

⊆ P , a contradiction. �

Let R be a factorial domain, and f ∈ Int(R)•. Then A([[f ]])∩R is called the
set of constant atoms of [[f ]]. Next, we characterize when every constant atom
is a prime element.

Proposition 3.2. Let R be a factorial domain, and f ∈ Int(R)•. The following
are equivalent:

1. Every P ∈ X([[f ]]) such that P ∩R 6= ∅ is principal.

2. For every P ∈ X([[f ]]) such that P ∩ R 6= ∅ there is some n ∈ N such

that (Pn)v is principal.

3. Every constant atom of [[f ]] is a prime element.

4. d(gh) = d(g)d(h) for all g, h ∈ [[f ]].

If Cv([[f ]]) is finite, then these conditions are satisfied.

Proof. 1 ⇒ 2: Trivial.
2 ⇒ 3: Let u be a constant atom of [[f ]]. Since [[f ]] is a Krull monoid

there is some P ∈ X([[f ]]) such that u ∈ P . Some v-power of P is principal,

and thus there is some x ∈ [[f ]] such that P =
√

x[[f ]]. There is some k ∈ N
such that x |[[f ]] u

k. Therefore, x ∈ R and x |R uk. Since R is factorial this

implies that x ≃R ul for some l ∈ N. Consequently, x ≃[[f ]] u
l. It follows that

P =
√

ul[[f ]] =
√

u[[f ]] = u[[f ]], hence u is a prime element of [[f ]].
3 ⇒ 1: Let P ∈ X([[f ]]) be such that P ∩ R 6= ∅. There is some x ∈ P ∩ R

and some u ∈ A(R) such that u |R x and u ∈ P . Observe that u is a constant
atom of [[f ]], hence u is a prime element of [[f ]]. Therefore, P = u[[f ]].

3 ⇒ 4: Let g, h ∈ [[f ]]. It is sufficient to show that d( gh
d(g)d(h)) = 1. Assume

to the contrary that d( gh
d(g)d(h)) 6= 1. Then there is some p ∈ A(R) such that

p |R d( gh
d(g)d(h)). Obviously, p is a constant atom of [[f ]] and p |[[f ]]

g
d(g)

h
d(h) .

Therefore, p |[[f ]]
g

d(g) or p |[[f ]]
h

d(h) . This implies that p |R d( g
d(g) ) = 1 or

p |R d( h
d(h)) = 1, a contradiction.
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4 ⇒ 3: Let u be a constant atom of [[f ]], and g, h ∈ [[f ]] such that u |[[f ]] gh.
Then u ∈ A(R) and u |R d(gh) = d(g)d(h). We infer that u |R d(g) or
u |R d(h). Consequently, u |[[f ]] g or u |[[f ]] h.

If Cv([[f ]]) is finite, then for every P ∈ X([[f ]]) there is some n ∈ N such that
(Pn)v is principal, hence 2 is satisfied. �

Now we show that elements of monadic submonoids that are generated by
some f ∈ R[X ]• can be represented in form of special fractions. As a con-
sequence, we provide a simple set of generators of the quotient group of [[f ]].
This type of representability will turn out to be a crucial ingredient for our
first main result in Section 4.

Lemma 3.3. Let R be a factorial domain, X an indeterminate over R, and

f ∈ R[X ]•. For every g ∈ [[f ]] there are some a, b ∈ [[f ]]∩R and some primitive

h ∈ [[f ]] ∩ R[X ] such that h |R[X] f
k for some k ∈ N, GCDR(a, b) = R× and

g = bh
a
.

Proof. Let g ∈ [[f ]]. There are some primitive h ∈ R[X ] and some a, b ∈ R•

such that GCDR(a, b) = R× and g = bh
a
. Since g ∈ [[f ]] there are some k ∈ N,

z ∈ R[X ]• and c ∈ R• such that bhz
ac

= fk. It follows that bhz = fkac.

Since h is primitive we infer that h |R[X] f
k, and thus h ∈ [[f ]]. Observe that

a |R d(bh) ≃R bd(h). We infer that a |R d(h). Since d(h) ∈ [[f ]] we have a ∈ [[f ]].
Moreover, bh = ga ∈ [[f ]], and thus b ∈ [[f ]]. �

Lemma 3.4. Let R be a factorial domain, X an indeterminate over R, and f ∈
R[X ]•. Then the quotient group of [[f ]] is generated by ([[f ]]∩A(R[X ]))∪ [[f ]]×.

Proof. It is sufficient to show that [[f ]] ⊆ 〈([[f ]]∩A(R[X ]))∪ [[f ]]×〉. Let x ∈ [[f ]].
By Lemma 3.3 there are some h ∈ [[f ]]∩R[X ] and a ∈ [[f ]]∩R such that x = h

a
.

Since R and R[X ] are factorial we infer that h ∈ 〈([[f ]]∩A(R[X ]))∪ [[f ]]×〉 and
a ∈ 〈([[f ]] ∩ A(R)) ∪ [[f ]]×〉. Therefore, x ∈ 〈([[f ]] ∩ A(R[X ])) ∪ [[f ]]×〉. �

Next we give a complete description of the set of atoms of monadic sub-
monoids of Int(R)• that are generated by some f ∈ R[X ]•. A part of this
description can be found in the proof of [7, Theorem 5.2].

Proposition 3.5. Let R be a factorial domain, a ∈ R•, n ∈ N and f ∈
(A(R[X ]) \ R)n a sequence of pairwise non-associated elements of R[X ]. Set

f = a
∏n

i=1 fi. Then {u[[f ]] | u ∈ A([[f ]])} = {u[[f ]] | u ∈ A(R), u |R d(f)} ∪

{
∏n

i=1 f
yi
i

d(
∏

n
i=1 f

yi
i

)
[[f ]] | y ∈ Nn

0 , y is f-irreducible}.

Proof. “⊆”: Let u ∈ A([[f ]]). Observe that u ∈ A(Int(R)). There is some
k ∈ N such that u |Int(R) f

k.

Case 1. u ∈ R: Clearly, u ∈ A(R). We have u |R d(fk) = d(f)k, and thus
u |R d(f).

Case 2. u 6∈ R: There are some primitive t ∈ R[X ] and some b, c ∈ R•

such that GCDR[X](bt, c) = R[X ]× and u = bt
c
. Obviously, c |R d(t), and thus
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t
d(t) ,

bd(t)
c

∈ Int(R) and u = t
d(t)

bd(t)
c

. Therefore, u ≃Int(R)
t

d(t) . There are

some e ∈ R• and some s ∈ R[X ] such that u s
e
= fk. This implies that bst =

akce
∏n

i=1 f
k
i . Therefore, t |R[X]

∏n

i=1 f
k
i , hence t ≃R[X]

∏n

i=1 f
yi

i for some y ∈

Nn
0 \ {0}. Observe that u ≃Int(R)

∏n
i=1 f

yi
i

d(
∏

n
i=1 f

yi
i

)
, and thus u[[f ]] =

∏n
i=1 f

yi
i

d(
∏

n
i=1 f

yi
i

)
[[f ]].

We need to show that y is f -irreducible. Let α, β ∈ Nn
0 be such that y = α+ β

and d(
∏n

i=1 f
yi

i ) = d(
∏n

i=1 f
αi

i )d(
∏n

i=1 f
βi

i ). Clearly,
∏n

i=1 f
αi
i

d(
∏

n
i=1 f

αi
i

)
,

∏n
i=1 f

βi
i

d(
∏

n
i=1 f

βi
i

)
∈

Int(R) and
∏n

i=1 f
yi
i

d(
∏

n
i=1 f

yi
i

)
=

∏n
i=1 f

αi
i

d(
∏

n
i=1 f

αi
i

)

∏n
i=1 f

βi
i

d(
∏

n
i=1 f

βi
i

)
. Consequently,

∏n
i=1 f

αi
i

d(
∏

n
i=1 f

αi
i

)
∈

Int(R)× or
∏

n
i=1 f

βi
i

d(
∏

n
i=1 f

βi
i

)
∈ Int(R)×. This implies that α = 0 or β = 0.

“⊇”: Case 1. Let u ∈ A(R) be such that u |R d(f). We have d(f) ∈ [[f ]],
and thus u ∈ [[f ]]. Let y, z ∈ [[f ]] be such that u = yz. Then y, z ∈ R, hence
y ∈ R× = [[f ]]× or z ∈ R× = [[f ]]×. Consequently, u ∈ A([[f ]]).

Case 2. Let y ∈ Nn
0 be f -irreducible. First we show that

∏
n
i=1 f

yi
i

d(
∏

n
i=1 f

yi
i

)
∈

A(Int(R)). Let y, z ∈ Int(R) be such that
∏n

i=1 f
yi
i

d(
∏

n
i=1 f

yi
i

)
= yz. There are some

b, c, e, r ∈ R• and some primitive g, h ∈ R[X ] such that GCD(b, e) = R×,

GCD(c, r) = R×, y = bg
e

and z = ch
r
. This implies that g |R[X]

∏n
i=1 f

yi

i and

h |R[X]

∏n

i=1 f
yi

i . Consequently, there are some v, w ∈ Nn
0 such that g ≃R[X]

∏n

i=1 f
vi
i and h ≃R[X]

∏n

i=1 f
wi

i . Observe that e |R d(g) and r |R d(h). Since
d(yz) = 1, it follows that d(y) = d(z) = 1. Therefore, e

b
≃R d(g) and r

c
≃R

d(h). We infer that
∏

n
i=1 f

yi
i

d(
∏

n
i=1 f

yi
i

)
≃Int(R)

∏
n
i=1 f

vi
i

d(
∏

n
i=1 f

vi
i

)

∏
n
i=1 f

wi
i

d(
∏

n
i=1 f

wi
i

)
. This implies that

y = v +w and d(
∏n

i=1 f
yi

i ) = d(
∏n

i=1 f
vi
i )d(

∏n

i=1 f
wi

i ). Consequently, v = 0 or

w = 0, and thus y ∈ Int(R)× or z ∈ Int(R)×.

It is clear that
∏n

i=1 f
yi

i ∈ [[f ]], hence
∏n

i=1 f
yi
i

d(
∏

n
i=1 f

yi
i

)
∈ [[f ]]. This implies that

∏n
i=1 f

yi
i

d(
∏

n
i=1 f

yi
i

)
∈ [[f ]] ∩ A(Int(R)) = A([[f ]]). �

Note that the set of atoms of an arbitrary monadic submonoid H of Int(R)
can be derived from Proposition 3.5 and the fact that A(H) = A(Int(R))∩H .
We proceed with an important lemma which will enable us to identify certain
divisorial ideals of monadic submonoids of Int(R).

Lemma 3.6. Let R be a factorial domain, f ∈ Int(R)•, and g ∈ [[f ]]. Then

{0} 6= LCMR({
d(gh)
d(h) | h ∈ [[f ]]}) ⊆ [[f ]].

Proof. Let Q be a system of representatives of A(R) and d = dQ. We show
that there is some T ⊆ R such that for all h ∈ [[f ]], h(y) 6= 0 for all y ∈ T
and min{vp(h(x)) | x ∈ R} = min{vp(h(x)) | x ∈ T } for all p ∈ Q. Set
T = {x ∈ R | f(x) 6= 0}. Let h ∈ [[f ]]. Then h |Int(R) f

k for some k ∈ N. Let

y ∈ T . Then f(y) 6= 0, hence f(y)k 6= 0, and thus h(y) 6= 0. Let p ∈ Q. There is
some v ∈ R such that min{vp(h(x)) | x ∈ R} = vp(h(v)). It is straightforward
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to prove that there is some m ∈ N such that vp(h(v + pl)) = vp(h(v)) for
all l ∈ N≥m. Since R \ T is finite, we can find some n ∈ N≥m such that
v + pn ∈ T . This implies that min{vp(h(x)) | x ∈ R} = vp(h(v + pl)), hence
min{vp(h(x)) | x ∈ R} = min{vp(h(x)) | x ∈ T }.

Next we prove that for every p ∈ Q there is some z ∈ N0 such that

vp(
d(gk)
d(k) ) ≤ z for all k ∈ [[f ]].

Without restriction let f 6∈ R×. By [7, Theorem 3.6 and Theorem 5.2] there
is some finite ∅ 6= U ⊆ A([[f ]]) such that [[f ]] is the monoid generated by U∪[[f ]]×.
Let p ∈ Q. By Dickson’s theorem (see [5, Theorem 1.5.3]) there is some finite
∅ 6= S ⊆ T such that Min({(vp(u(x)))u∈U | x ∈ T }) = {(vp(u(x)))u∈U |
x ∈ S}. We show that min{vp(l(x)) | x ∈ R} = min{vp(l(x)) | x ∈ S}
for all l ∈ [[f ]]. Let l ∈ [[f ]]. There are some η ∈ [[f ]]× and (eu)u∈U ∈ NU

0

such that l = η
∏

u∈U ueu . Clearly, min{vp(l(x)) | x ∈ R} = vp(l(w)) =
∑

u∈U euvp(u(w)) for some w ∈ T . By Dickson’s theorem (see [5, Theorem
1.5.3]) we can find some y ∈ S such that vp(u(y)) ≤ vp(u(w)) for all u ∈ U .
Since vp(l(y)) =

∑

u∈U euvp(u(y)) ≤
∑

u∈U euvp(u(w)) = vp(l(w)) we infer
that min{vp(l(x)) | x ∈ R} = vp(l(y)) = min{vp(l(x)) | x ∈ S}.

Set z = max{vp(g(x)) | x ∈ S}. Then z ∈ N0. Let k ∈ [[f ]]. Now we prove

that vp(
d(gk)
d(k) ) ≤ z. There is some v ∈ S such that min{vp(k(x)) | x ∈ S} =

vp(k(v)). We have vp(
d(gk)
d(k) ) = min{vp((gk)(x)) | x ∈ R} − min{vp(k(x)) |

x ∈ R} = min{vp((gk)(x)) | x ∈ S} −min{vp(k(x)) | x ∈ S} ≤ vp((gk)(v)) −
vp(k(v)) = vp(g(v)) ≤ z.

Set P = {p ∈ Q | vp(d(f)) > 0}. Then P is finite. For every h ∈

[[f ]] it follows that {p ∈ Q | vp(
d(gh)
d(h) ) > 0} ⊆ P . This implies that 0 6=

∏

p∈P pmax{vp(
d(gh)
d(h)

)|h∈[[f ]]} ∈ LCMR({
d(gh)
d(h) | h ∈ [[f ]]}).

Note that d(f) ∈ [[f ]]. Consequently, P ⊆ [[f ]], and thus
∏

p∈P

pmax{vp(
d(gh)
d(h) )|h∈[[f ]]} ∈ [[f ]].

Since least common multiples are unique up to units it follows immediately

that LCMR({
d(gh)
d(h) | h ∈ [[f ]]}) ⊆ [[f ]]. �

Let R be a factorial domain, Q a system of representatives of A(R), and
f ∈ Int(R)•. Then let ef,Q : [[f ]] → R• be defined by

ef,Q(g) =
∏

p∈Q

pmax{vp(
d(gh)
d(h)

)|h∈[[f ]]}

for all g ∈ [[f ]]. It follows from Lemma 3.6 that ef,Q is well defined, and

ef,Q([[f ]]) ⊆ [[f ]]. Observe that LCMR({
d(gh)
d(h) | h ∈ [[f ]]}) = ef,Q(g)R

× for all

g ∈ [[f ]]. In the following we suppose that a fixed Q is given and set ef = ef,Q.
A well-known and very basic result in ring theory is that contractions of

ideals to subrings are ideals again. In analogy, it holds that contractions of
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s-ideals of monoids to submonoids are s-ideals again. The system of v-ideals
has a very different behavior. In the last section of this work we show that
the contraction of a v-ideal of a Krull monoid to a monadic submonoid can fail
to be a v-ideal. The next result, however, gives a positive answer under more
restrictive conditions.

Proposition 3.7. Let R be a factorial domain, K a field of quotients of R,

X an indeterminate over K, f ∈ R[X ]•, and g ∈ [[f ]]. Then gK[X ] ∩ [[f ]] =
g

ef (g)
[[f ]]∩ [[f ]]. In particular, gK[X ]∩ [[f ]] ∈ Iv([[f ]]), and if g ∈ A(K[X ]), then

gK[X ] ∩ [[f ]] ∈ X([[f ]]).

Proof. Set e = ef (g). “⊆”: Let z ∈ gK[X ] ∩ [[f ]]. Then there are some
a, b ∈ R• and some h′ ∈ Int(R) such that d(h′) = 1, GCDR(a, b) = R× and

z = agh′

b
. Clearly, h′h′′ = bfk for some k ∈ N and some h′′ ∈ Int(R). There

are some primitive y′ ∈ R[X ], some y′′ ∈ R[X ] and some d ∈ R such that

h′ = y′

d(y′) and h′′ = y′′

d
. We infer that y′y′′ = d(y′)dbfk. Since y′ is primitive

it follows that y′ |R[X] fk, and thus y′ ∈ [[f ]]. Therefore, h′ = y′

d(y′) ∈ [[f ]].

Since bz = agh′, we have bd(z) ≃R ad(gh′). This implies that a |R d(z) and

b |R d(gh′) = d(gh′)
d(h′) |R e. By Lemma 3.6 we have e ∈ [[f ]]. It follows that

a, e
b
∈ [[f ]], hence e

g
z = e

b
ah′ ∈ [[f ]]. Consequently, z ∈ g

e
[[f ]]∩ [[f ]]. “⊇”: Trivial.

Observe that g
e

is an element of the quotient group of [[f ]]. Therefore,
gK[X ] ∩ [[f ]] is an intersection of fractional principal ideals of [[f ]], and thus
gK[X ] ∩ [[f ]] ∈ Iv([[f ]]).

Now let g ∈ A(K[X ]). Clearly, gK[X ] ∈ spec(K[X ]), and thus gK[X ]• ∈
s-spec(K[X ]•) \ {∅}. This implies that gK[X ] ∩ [[f ]] = gK[X ]• ∩ [[f ]] ∈ s-
spec([[f ]]) \ {∅}. Since [[f ]] is a Krull monoid and gK[X ] ∩ [[f ]] is divisorial, we
have gK[X ] ∩ [[f ]] ∈ X([[f ]]). �

As a consequence, we obtain a description of the set of height-one prime
ideals (of monadic submonoids generated by some f ∈ R[X ]•) that do not
contain constant elements.

Corollary 3.8. Let R be a factorial domain, K a field of quotients of R, X
an indeterminate over K, and f ∈ R[X ]•. Then {P ∈ X([[f ]]) | P ∩R = ∅} =
{gK[X ] ∩ [[f ]] | g ∈ [[f ]] ∩ A(R[X ]) \R} = {gK[X ] ∩ [[f ]] | g ∈ [[f ]] ∩ A(K[X ])}.
In particular, if R is a system of representatives of [[f ]] ∩ A(R[X ]) \ R, then

Q : R → {P ∈ X([[f ]]) | P ∩R = ∅} defined by Q(t) = tK[X ]∩ [[f ]] is a bijection.

Proof. Since R is factorial it follows that A(R[X ]) \R ⊆ A(K[X ]).
First we prove that {P ∈ X([[f ]]) | P ∩ R = ∅} ⊆ {gK[X ] ∩ [[f ]] | g ∈

[[f ]] ∩ A(R[X ]) \R}. Let P ∈ X([[f ]]) be such that P ∩R = ∅. There are some
a ∈ [[f ]]∩R, some n ∈ N and some finite sequence f ∈ ([[f ]]∩A(R[X ])\R)n such

that f = a
∏n

i=1 fi. Clearly, f ∈ P . Consequently, there is some i ∈ [1, n] such

that fi ∈ P . It follows by Proposition 3.7 that fi
ef (fi)

[[f ]]∩ [[f ]] = fiK[X ]∩ [[f ]] ∈
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X([[f ]]). Let z ∈ fiK[X ] ∩ [[f ]]. Then ef (fi)z ∈ fi[[f ]] ⊆ P , and thus z ∈ P .
This implies that fiK[X ] ∩ [[f ]] ⊆ P , hence P = fiK[X ] ∩ [[f ]].

It is obvious that {gK[X ] ∩ [[f ]] | g ∈ [[f ]] ∩ A(R[X ]) \ R} ⊆ {gK[X ] ∩ [[f ]] |
g ∈ [[f ]] ∩A(K[X ])}.

Finally we show that {gK[X ] ∩ [[f ]] | g ∈ [[f ]] ∩ A(K[X ])} ⊆ {P ∈ X([[f ]]) |
P ∩ R = ∅}. Let g ∈ [[f ]] ∩ A(K[X ]). Set P = gK[X ] ∩ [[f ]]. It follows by
Proposition 3.7 that P ∈ X([[f ]]). Since g 6∈ K we have gK[X ]∩R = {0}, hence
P ∩R = ∅. �

One method of determining the divisor-class group of a Krull monoid is to
identify the v-product decompositions of certain principal ideals into height-
one prime ideals. Next, we present a useful tool which can be used for that
purpose.

Proposition 3.9. Let R be a factorial domain, K a field of quotients of R,

X an indeterminate over K, f ∈ R[X ]•, and L a quotient group of [[f ]]. For

g ∈ [[f ]] set Pg = gK[X ] ∩ [[f ]].

1. (PgPh)v = Pgh for all g, h ∈ [[f ]].
2. If g ∈ [[f ]] ∩ A(K[X ]), then vPg

(x[[f ]]) = vg(x) for all x ∈ L.
3. If g ∈ [[f ]], Q ∈ X([[f ]]) and q ∈ Q ∩ A(R), then vQ(g[[f ]]) ≤ vq(ef (g)).

Proof. Let R be a system of representatives of [[f ]] ∩ A(R[X ]) \ R. Note that
R is finite.

1. First we show by induction that for all k ∈ N0 and t ∈ R it follows
that (P k

t )v = Ptk . The assertion is clear for k = 0. Now let k ∈ N0 and
t ∈ R. Since Ptk+1 is a divisorial ideal of [[f ]] (by Proposition 3.7) it follows

that (P k+1
t )v ⊆ Ptk+1 ( Ptk = (P k

t )v. We infer that (P k+1
t )v = Ptk+1 .

Next we prove that P∏
t∈R tnt = (

∏

t∈R Pnt

t )v for all (nt)t∈R ∈ NR
0 . Let

(nt)t∈R ∈ NR
0 . Observe that Ps and Pt are v-coprime for all distinct s, t ∈

R. Since [[f ]] is a Krull monoid we have (
∏

t∈R Pnt

t )v =
⋂

t∈R(Pnt

t )v =
⋂

t∈R Ptnt = (
⋂

t∈R tntK[X ]) ∩ [[f ]] = P∏
t∈R tnt .

Now let g, h ∈ [[f ]]. It follows from Lemma 3.3 that there are some (nt)t∈R,
(mt)t∈R ∈ NR

0 such that g ≃K[X]

∏

t∈R tnt and h ≃K[X]

∏

t∈R tmt . Therefore,

Pgh = P∏
t∈R tnt+mt = (

∏

t∈R Pnt+mt

t )v = ((
∏

t∈R Pnt

t )v(
∏

t∈R Pmt

t )v)v =

(P∏
t∈R tntP∏

t∈R tmt )v = (PgPh)v.

2. Let g ∈ [[f ]] ∩ A(K[X ]) and x ∈ L. There are some y, z ∈ [[f ]] such that

x = y
z
. By 1 we have y ∈ gvg(y)K[X ]∩ [[f ]] = (P

vg(y)
g )v and y 6∈ gvg(y)+1K[X ]∩

[[f ]] = (P
vg(y)+1
g )v, and thus vPg

(y[[f ]]) = vg(y). Analogously, it follows that
vPg

(z[[f ]]) = vg(z), hence vPg
(x[[f ]]) = vPg

(y[[f ]])− vPg
(z[[f ]]) = vg(y)− vg(z) =

vg(x).
3. Let g ∈ [[f ]], Q ∈ X([[f ]]), and q ∈ Q ∩ A(R). It is an easy consequence

of Proposition 3.7, Corollary 3.8, 1 and 2 that (
∏

P∈X([[f ]]),P∩R=∅ P
vP (g[[f ]]))v =

(
∏

t∈R P
vPt

(g[[f ]])
t )v = (

∏

t∈R P
vt(g)
t )v = P∏

t∈R tvt(g) = Pg = g
ef (g)

[[f ]] ∩ [[f ]] =
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(
ef (g)

g
[[f ]] ∪ [[f ]])−1. Therefore, (

∏

P∈X([[f ]]),P∩R 6=∅P
vP (g[[f ]]))v = g(

ef (g)
g

[[f ]] ∪

[[f ]])v = (g[[f ]] ∪ ef(g)[[f ]])v . We infer that

vQ(g[[f ]]) = min{vQ(g[[f ]]), vQ(ef (g)[[f ]])}.

Let S be a system of representatives of [[f ]] ∩A(R) such that q ∈ S. It follows
from Lemmas 3.1.3 and 3.1.4 that

vQ(g[[f ]]) ≤ vQ(ef (g)[[f ]]) = vQ(
∏

p∈S

(p[[f ]])vp(ef (g))) =
∑

p∈S

vp(ef (g))vQ(p[[f ]])

=
∑

p∈S

vp(ef (g))δp,q = vq(ef (g)).
�

It is clear that every principal ideal of a monoid is a v-ideal. The converse
is, of course, far from true. In the last part of this section we describe when
the v-ideals in Proposition 3.7 are principal.

Proposition 3.10. Let R be a factorial domain, K a field of quotients of

R, X an indeterminate over K, f ∈ R[X ]•, and g ∈ [[f ]]. The following are

equivalent:

1. gK[X ] ∩ [[f ]] is a principal ideal of [[f ]].
2. gK[X ] ∩ [[f ]] = g

d(g) [[f ]].

3. d(gh) = d(g)d(h) for all h ∈ [[f ]].

Proof. Set e = ef (g). By Proposition 3.7 we have gK[X ] ∩ [[f ]] = g
e
[[f ]] ∩ [[f ]].

1 ⇒ 2: There is some a ∈ [[f ]] such that gK[X ] ∩ [[f ]] = a[[f ]]. There are

some h′, h′′ ∈ [[f ]] such that a = gh′

e
and g

d(g) = ah′′. Therefore, e = d(g)h′h′′,

and thus a = g
d(g)h′′ . This implies that d(g)h′′ |R d(g), hence h′′ ∈ [[f ]]×.

Consequently, gK[X ] ∩ [[f ]] = g
d(g) [[f ]].

2 ⇒ 3: Let h ∈ [[f ]]. Since d(g)d(h) |R d(gh), it is sufficient to show that
vp(d(gh)) ≤ vp(d(g))+vp(d(h)) for all p ∈ A(R). Let p ∈ A(R). There is some

a ∈ [[f ]] such that vp(
d(ga)
d(a) ) = vp(e). Observe that ga

d(a)pvp(e) ∈ gK[X ] ∩ [[f ]] =
g

d(g) [[f ]]. Therefore, there is some k ∈ [[f ]] such that ad(g) = kpvp(e)d(a). This

implies that d(a)d(g) ≃R d(k)pvp(e)d(a). Consequently, vp(d(g)) ≥ vp(e) ≥

vp(
d(gh)
d(h) ), and thus vp(d(gh)) ≤ vp(d(g)) + vp(d(h)).

3 ⇒ 1: Obviously, e ≃R d(g), hence gK[X ]∩R = g
e
[[f ]]∩[[f ]] = g

d(g) [[f ]]∩[[f ]] =
g

d(g) [[f ]]. �

4. First main result and important preparation results

In this section we present the first of two main results of this work. It
basically states that the divisor-class group of a monadic submonoid of Int(R)
generated by some f ∈ R[X ]• (where R is a factorial domain) is torsion-free.
It is pointed out in the last section of this work that the condition “f ∈ R[X ]•”
is crucial here, since there are monadic submonoids of Int(Z) generated by
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some f ∈ Int(Z)• whose divisor-class group is not torsion-free. We proceed by
preparing several useful results (which might be interesting on their own) to
investigate the divisor-class group of arbitrary monadic submonoids of Int(R).
We were not able to give a complete description of the structure of the divisor-
class group of arbitrary monadic submonoids of Int(R). However, note that
they are always finitely generated abelian groups.

Theorem 4.1. Let R be a factorial domain, K a field of quotients of R, X
an indeterminate over K, and f ∈ R[X ]•. Set r = |{P ∈ X([[f ]]) | P ∩ R 6=
∅}| − |{u[[f ]] | u ∈ A([[f ]]) ∩ R}|. Then Cv([[f ]]) ∼= Zr, |{[P ] | P ∈ X([[f ]])}| ≥
|{P ∈ X([[f ]]) | P ∩R 6= ∅, P is not principal}|, and the following are equivalent:

1. [[f ]] is factorial.

2. Cv([[f ]]) is finite.

3. d(gh) = d(g)d(h) for all g, h ∈ [[f ]].

Proof. There is some P ⊆ {P ∈ X([[f ]]) | P ∩R 6= ∅} such that |{Q ∈ X([[f ]]) |
u ∈ Q and Q 6∈ P}| = 1 for every constant atom u of [[f ]]. Let h : ZP → Cv([[f ]])
be defined by h((nP )P∈P) = [(

∏

P∈P PnP )v] for all (nP )P∈P ∈ ZP . Clearly, h
is a well-defined group homomorphism. We show that h is a group isomorphism.

First we show that h is surjective. It suffices to prove that for every P ∈
X([[f ]]) there is some (nQ)Q∈P ∈ ZP such that h((nQ)Q∈P) = [P ]. Let P ∈
X([[f ]]).

Case 1. P ∈ P : Set nQ = δP,Q for all Q ∈ P . Then h((nQ)Q∈P) = [P ].
Case 2. P ∩ R 6= ∅ and P 6∈ P : Clearly, there is some constant atom

u of [[f ]] such that u ∈ P . Set nQ = −1 if Q ∈ P and u ∈ Q and nQ = 0 if
Q ∈ P and u 6∈ Q. We have u[[f ]] = (

∏

Q∈X([[f ]]),u∈QQ)v by Lemma 3.1.3, hence

(
∏

Q∈P,u∈Q Q−1)v = u−1P . Therefore, h((nQ)Q∈P) = [(
∏

Q∈P,u∈Q Q−1)v] =

[P ].
Case 3. P ∩R = ∅: By Corollary 3.8 there is some g ∈ [[f ]] ∩ A(K[X ]) such

that P = gK[X ] ∩ [[f ]]. It follows from Proposition 3.9 that vQ(g[[f ]]) = δP,Q

for all Q ∈ X([[f ]]) such that Q ∩ R = ∅. Consequently, g[[f ]] = (P
∏m

i=1 Qi)v
for some m ∈ N0 and some sequence Q ∈ {Q ∈ X([[f ]]) | Q ∩R 6= ∅}m. Since h
is a group homomorphism, it follows by case 1 and case 2 that h((nQ)Q∈P) =

[(
∏m

i=1 Q
−1
i )v] for some (nQ)Q∈P ∈ ZP . Since (

∏m

i=1 Q
−1
i )v = g−1P we infer

that h((nQ)Q∈P ) = [P ].
Next we show that h is injective. Let (nP )P∈P ∈ ZP be such that

(
∏

P∈P PnP )v is principal. Let R be a system of representatives of [[f ]] ∩

A(R[X ]). By Lemma 3.4 there is some (nu)u∈R ∈ ZR such that (
∏

P∈P PnP )v
=

∏

u∈R unu [[f ]]. By Corollary 3.8 and Proposition 3.9.2 we infer that nu = 0
for all u ∈ R \R.

Claim: If M ∈ X([[f ]]) and w ∈ M ∩R ∩R, then vM ((
∏

P∈P PnP )v) = nw.
Let M ∈ X([[f ]]) and w ∈ M ∩ R ∩ R. It follows by Lemmas 3.1.3 and 3.1.4
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that vM (u[[f ]]) = δu,w for all u ∈ R ∩R. Therefore,

vM ((
∏

P∈P

PnP )v) = vM (
∏

u∈R

unu [[f ]]) =
∑

u∈R

nuvM (u[[f ]])

=
∑

u∈R∩R

nuvM (u[[f ]]) =
∑

u∈R∩R

nuδu,w = nw.

We have to show that nM = 0 for all M ∈ P . Let M ∈ P . Obviously, there
is some w ∈ M ∩ R ∩ R. It is clear that there is some Q ∈ X([[f ]]) such that
w ∈ Q and Q 6∈ P . It follows by the claim that nM = vM ((

∏

P∈P PnP )v) =
nw = vQ((

∏

P∈P PnP )v) = 0.

Observe that |P| = r. This implies that Cv([[f ]]) ∼= ZP ∼= Z|P| = Zr.
Set S = {P ∈ X([[f ]]) | P ∩ R 6= ∅, P is not principal}. To show that

|{[P ] | P ∈ X([[f ]])}| ≥ |S| it is sufficient to show that for all P,Q ∈ S such
that h−1([P ]) = h−1([Q]) it follows that P = Q. Let P,Q ∈ S be such
that h−1([P ]) = h−1([Q]). Note that if P ∈ P , then h−1([P ]) = (δP,M )M∈P .
Moreover, if P 6∈ P and u ∈ P ∩ A(R), then h−1([P ])M = −1 if M ∈ P and
u ∈ M and h−1([P ])M = 0 if M ∈ P and u 6∈ M . In particular, if P 6∈ P , then
(h−1([P ]))M 6= 1 for all M ∈ P . Therefore, we have that either P,Q ∈ P or
P,Q 6∈ P .

Case 1. P,Q ∈ P : Observe that (δP,M )M∈P = h−1([P ]) = h−1([Q]) =
(δQ,M )M∈P , hence P = Q.

Case 2. P,Q 6∈ P : There are some u ∈ P ∩ A(R) and v ∈ Q ∩ A(R). Since
h−1([P ]) = h−1([Q]), we infer that for all M ∈ P , u ∈ M if and only if v ∈ M .
Since P and Q are not principal and u[[f ]] and v[[f ]] are radical ideals of [[f ]] (by
Lemma 3.1.3), there are some P ′ ∈ X([[f ]]) \ {P} and Q′ ∈ X([[f ]]) \ {Q} such
that u ∈ P ′ and v ∈ Q′. It is immediately clear that P ′, Q′ ∈ P . It follows that
u, v ∈ P ′, and thus u ≃[[f ]] v by Lemma 3.1.4. The choice of P immediately
implies that P = Q. Finally, we prove the equivalence.

1 ⇒ 2: Trivial.
2 ⇒ 3: This is an immediate consequence of Proposition 3.2.
3 ⇒ 1: Since [[f ]] is a Krull monoid it is sufficient to show that every P ∈

X([[f ]]) is principal. Let P ∈ X([[f ]]).
Case 1. P ∩R 6= ∅: It follows by Proposition 3.2 that P is principal.
Case 2. P ∩R = ∅: By Corollary 3.8 there is some g ∈ [[f ]] ∩ A(K[X ]) such

that P = gK[X ] ∩ [[f ]]. Therefore, P is principal by Proposition 3.10. �

We continue with a few result concerning the structure of height-one prime
ideals.

Lemma 4.2. Let R be a factorial domain, and f ∈ Int(R)•. Then {[[a]] | a ∈
[[f ]]} = {[[f ]] \

⋃

P∈P P | P ⊆ X([[f ]])} is the set of divisor-closed submonoids of

[[f ]].

Proof. Note that [[f ]] is a Krull monoid. Therefore, {
⋃

P∈P P | P ⊆ X([[f ]])} is
the set of prime s-ideals of [[f ]]. It is well known that the set of prime s-ideals
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of [[f ]] is finite. Consequently, the assertion follows from [5, Lemmas 2.2.1 and
2.2.3]. �

Lemma 4.3. Let T be a Krull monoid, and H ⊆ T a saturated submonoid.

Then for every P ∈ X(H) there is some Q ∈ X(T ) such that P = Q ∩ H. In

particular, X(H) is the set of minimal elements of {Q ∩H | Q ∈ X(T )} \ {∅}.

Proof. Let P ∈ X(H). Clearly, H is a Krull monoid, and thus P is a divisorial
ideal of H . Therefore, [5, Proposition 2.4.2.3] implies that PvT ∩ H = P .
There is some n ∈ N, some injective sequence Q ∈ X(T )n and some n ∈ Nn

such that PvT = (
∏n

i=1(Q
ni

i )vT )vT =
⋂n

i=1(Q
ni

i )vT . This implies that P =
⋂n

i=1((Q
ni

i )vT ∩H), and thus P = (Q
nj

j )vT ∩H for some j ∈ [1, n]. Set Q = Qj .

We infer that P = H
√

(Qnj )vT ∩H = T
√

(Qnj )vT ∩H = Q ∩H . �

Lemma 4.4. Let H be a monoid, I a finite nonempty set and (LI)I∈I a family

of nonempty s-ideals of H such that (LI ∪ LJ)v = H for all distinct I, J ∈ I.

Then (
⋂

I∈I
LI)v =

⋂

I∈I
(LI)v.

Proof. Observe that
⋂

I∈I

(LI)v = (
∏

I∈I

(LI)v)v = (
∏

I∈I

LI)v ⊆ (
⋂

I∈I

LI)v ⊆
⋂

I∈I

(LI)v.
�

The next result has some well-known analogue in the case of extension of
Dedekind domains (e.g. see [8, Proposition 2.10.2]).

Proposition 4.5. Let T be a Krull monoid, H ⊆ T a saturated submonoid,

I ∈ Iv(H) \ {∅}, and P ∈ X(H). Then vP (I) = max{⌈
vQ(IvT )

vQ(PvT
)⌉ | Q ∈ X(T ),

Q ∩H = P}.

Proof. Without restriction let I ⊆ P . Set m = max{⌈
vQ(IvT )

vQ(PvT
)⌉ | Q ∈ X(T ),

Q ∩ H = P}. First we show that vP (I) ≤ m. Set P = {Q ∩ H | Q ∈
X(T ), I ⊆ Q}. By Lemma 4.3 we have P ∈ P . For L ∈ P set IL =
⋂

Q∈X(T ),Q∩H=L(Q
vQ(IvT ))vT ∩ H . Let M ∈ X(T ) be such that M ∩ H = P .

Note that Pm ⊆ P
⌈

vM (IvT
)

vM (PvT
)
⌉
⊆ (PvT )

⌈
vM (IvT

)

vM (PvT
)
⌉
⊆ ((MvM (PvT

))vT )
⌈

vM (IvT
)

vM (PvT
)
⌉
⊆

(M
vM (PvT

)⌈
vM (IvT

)

vM (PvT
)
⌉
)vT ⊆ (MvM(IvT ))vT . Therefore, (Pm)vH ⊆ (IP )vH , and

thus vP ((IP )vH ) ≤ m.
Claim: For every L ∈ P there is some a ∈ N0 such that IL ⊇ La. Let

L ∈ P . Set a = max{vQ(IvT ) | Q ∈ X(T ), Q ∩ H = L}. Then IL ⊇
⋂

Q∈X(T ),Q∩H=L(Q
vQ(IvT )) ∩H ⊇

⋂

Q∈X(T ),Q∩H=L LvQ(IvT ) = La.

By the claim we have vP ((IL)vH ) = 0 for all L ∈ P\{P}. Moreover, it follows
by the claim that (IL ∪ IM )vH = H for all distinct L,M ∈ P . Observe that

IvT =
⋂

Q∈X(T ),I⊆Q(Q
vQ(IvT ))vT , hence I =

⋂

Q∈X(T ),I⊆Q(Q
vQ(IvT ))vT ∩H =

⋂

L∈P IL. We infer by Lemma 4.4 that I = (
⋂

L∈P IL)vH =
⋂

L∈P(IL)vH , hence
vP (I) = max{vP ((IL)vH ) | L ∈ P} = vP ((IP )vH ) ≤ m.
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Next we show that m ≤ vP (I). We have

I = (
∏

L∈X(H)

LvL(I))vH ⊇
∏

L∈X(H)

LvL(I),

hence

IvT ⊇
(

∏

L∈X(H)

LvL(I)
)

vT

=
(

∏

L∈X(H)

(LvT )
vL(I)

)

vT

=
(

∏

L∈X(H)

((

∏

M∈X(T )

MvM (LvT
)
)

vT

)vL(I))

vT

=
(

∏

L∈X(H)

∏

M∈X(T )

MvM (LvT
)vL(I)

)

vT

=
(

∏

M∈X(T )

∏

L∈X(H)

MvM (LvT
)vL(I)

)

vT

=
(

∏

M∈X(T )

M
∑

L∈X(H) vM (LvT
)vL(I)

)

vT
.

Let Q ∈ X(T ) be such that Q∩H = P . Observe that vQ(LvT ) = δL,PvQ(PvT )
for all L ∈ X(H). We infer that

vQ(IvT ) ≤
∑

L∈X(H)

vQ(LvT )vL(I) = vQ(PvT )vP (I),

and thus vP (I) ≥ ⌈
vQ(IvT )

vQ(PvT
)⌉. �

Let T be a monadic submonoid of Int(R), and let H be a monadic sub-
monoid of Int(R) that is contained in T . Suppose that we know how v-product
decompositions of principal ideals (generated by atoms) in T look like. Then
Proposition 4.5 enables us to derive all v-product decompositions of principal
ideals (generated by atoms) in H .

Remark 4.6. Let R be a factorial domain, f ∈ Int(R)•, and R a system of

representatives of A([[f ]]) ∩ R. Then {P ∈ X([[f ]]) | P ∩ R 6= ∅} = ˙⋃
p∈R{P ∈

X([[f ]]) | p ∈ P}.

Proof. It is straightforward to prove the equality. That the union is a disjoint
union follows from Lemma 3.1.4. �

Corollary 4.7. Let R be a factorial domain, f ∈ Int(R)•, g ∈ [[f ]], I ∈ Iv([[g]])\
{∅}, and P ∈ X([[g]]) such that P ∩R 6= ∅. Then vP (I) = max{vQ(Iv[[f]]

) | Q ∈
X([[f ]]), Q ∩ [[g]] = P}.
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Proof. Because of Proposition 4.5 it suffices to show that vQ(Pv[[f]]
) = 1 for all

Q ∈ X([[f ]]) such that Q ∩ [[g]] = P . Let Q ∈ X([[f ]]) be such that Q ∩ [[g]] = P .
By Remark 4.6 there is some u ∈ A([[g]])∩P ∩R. Note that u ∈ A([[f ]])∩Q∩R.
It follows by Lemma 3.1.3 that u[[f ]] is a radical ideal of [[f ]]. Therefore, u 6∈
(Q2)v[[f]]

, hence P * (Q2)v[[f]]
, and thus vQ(Pv[[f]]

) = 1. �

In the last part of this section we describe the structure of height-one prime
ideals that contain constant elements. We make an ad hoc definition to state
the following results more easily. Let R be a factorial domain, f ∈ Int(R)•,
a ∈ [[f ]] ∩ R, and A ⊆ B ⊆ [[f ]]. We say that A is a-compatible if there is

some w ∈ [[f ]] such that a |R
d(uw)
d(w) for all u ∈ A. Moreover, A is called

maximal a-compatible in B if A is maximal (with respect to inclusion) among
the a-compatible subsets of B.

Lemma 4.8. Let R be a factorial domain, f ∈ Int(R)•, S a system of repre-

sentatives of A([[f ]]) \R, p a constant atom of [[f ]], and A ⊆ [[f ]].

1. A is p-compatible if and only if (A ∪ {p})v[[f]]
( [[f ]].

2. {P ∈ X([[f ]]) | p ∈ P} = {(Q ∪ {p})[[f ]] | Q ⊆ S, Q is maximal p-
compatible in S}.

Proof. 1. Let L be a quotient group of [[f ]]. First let A be p-compatible. Then

there is some w ∈ [[f ]] such that p |R
d(uw)
d(w) for all u ∈ A. Set z = w

pd(w) .

Observe that z ∈ L. It follows by Lemma 3.1.1 that zu = uw
pd(w) ∈ [[f ]] for

all u ∈ A. Therefore, z(A ∪ {p}) ⊆ [[f ]]. Suppose that z ∈ [[f ]]. Then 1
p
=

d(w)
pd(w) ≃R d(z) ∈ R, a contradiction. Consequently, z 6∈ [[f ]]. We infer that

[[f ]] ( ([[f ]] :L A ∪ {p}), and thus (A ∪ {p})v[[f]]
( [[f ]].

Next let (A∪{p})v[[f]]
( [[f ]]. There is some z ∈ L\[[f ]] such that z(A∪{p}) ⊆

[[f ]]. Set w = zp. It is clear that w ∈ [[f ]]. Let u ∈ A. Then wu
p

∈ [[f ]], hence

p |R d(wu) by Lemma 3.1.1. Since z 6∈ [[f ]] it follows by Lemma 3.1.1 that

p ∤R d(w), and thus p |R
d(wu)
d(w) .

2. “⊆”: Let P ∈ X([[f ]]) be such that p ∈ P . Set Q = S ∩ P . It is obvious
that (Q ∪ {p})[[f ]] ⊆ P . Let x ∈ P . There is some u ∈ A([[f ]]) such that
x ∈ u[[f ]] ⊆ P .

Case 1. u ∈ R: It follows by Lemma 3.1.4 that u ≃[[f ]] p, and thus x ∈
p[[f ]] ⊆ (Q ∪ {p})[[f ]].

Case 2. u 6∈ R: There is some z ∈ S such that u ≃[[f ]] z, hence x ∈ z[[f ]] ⊆
(Q ∪ {p})[[f ]].

Consequently, P = (Q ∪ {p})[[f ]]. We have (Q∪ {p})v[[f]]
⊆ Pv[[f]]

= P , hence

Q is p-compatible by 1. Let Q′ ⊆ S be p-compatible such that Q ⊆ Q′. It
follows by 1 that there is some M ∈ X([[f ]]) such that Q′ ∪ {p} ⊆ M . We infer
that P = (Q ∪ {p})[[f ]] ⊆ (Q′ ∪ {p})[[f ]] ⊆ M , and thus M = P . Therefore,
Q′ ⊆ S ∩ P = Q. This shows that Q is maximal p-compatible in S.



250 A. REINHART

“⊇”: Let Q ⊆ S be maximal p-compatible in S. Set P = (Q∪{p})[[f ]]. It is
clear that p ∈ P . It follows by 1 that P ⊆ M for some M ∈ X([[f ]]). Assume
that P ( M . There is some u ∈ A([[f ]]) such that u ∈ M \ P . It follows
by Lemma 3.1.4 that u 6∈ R. Consequently, there is some w ∈ S such that
u ≃[[f ]] w. Set Q

′ = Q∪{w}. It is clear that Q′ ⊆ M , hence Q′ is p-compatible
in S by 1. It follows that w ∈ Q′ = Q ⊆ P , and thus u ∈ P , a contradiction.
We infer that P = M ∈ X([[f ]]). �

Remark 4.9. Let R be a factorial domain, X an indeterminate over R, f ∈
R[X ]•, a ∈ [[f ]] ∩ R, and A ⊆ [[f ]]. Then A is a-compatible if and only if there

is some primitive g ∈ [[f ]] ∩R[X ] such that a |R
d(ug)
d(g) for all u ∈ A.

Proof. First let A be a-compatible. Then there is some w ∈ [[f ]] such that

a |R
d(uw)
d(w) for all u ∈ A. By Lemma 3.3 there are some b, c ∈ [[f ]]∩R and some

primitive g ∈ [[f ]] ∩ R[X ] such that w = bg
c
. We infer that a |R

d(uw)
d(w) = d(ug)

d(g)

for all u ∈ A. The converse is trivially satisfied. �

5. Construction of divisor-class groups

In this section we present a few methods which can be used to construct
“more complicated” divisor-class groups. We start with a few preparatory
results.

Lemma 5.1. Let R be a factorial domain, X an indeterminate over R, and

f, g ∈ R[X ]• such that GCDR[X](f, g) = R[X ]× and d(rs) = d(r)d(s) for all

r ∈ [[f ]] and s ∈ [[g]]. Then [[fg]] = {xy | x ∈ [[f ]], y ∈ [[g]]}.

Proof. “⊆”: Let z ∈ [[fg]]. By Lemma 3.3 there are some a, b ∈ [[fg]] ∩ R
and some primitive h ∈ [[fg]] ∩ R[X ] such that h |R[X] fkgk for some k ∈

N, GCDR(a, b) = R× and z = bh
a
. Since R[X ] is factorial, there are some

h′, h′′ ∈ R[X ] such that h = h′h′′, h′ |R[X] f
k and h′′ |R[X] g

k. Consequently,
h′ ∈ [[f ]] and h′′ ∈ [[g]]. We infer that a |R d(h) = d(h′)d(h′′), and thus there are
some a′, a′′ ∈ R such that a = a′a′′, a′ |R d(h′) and a′′ |R d(h′′). Observe that
a′ ∈ [[f ]] and a′′ ∈ [[g]]. Moreover, b |R d((fg)l) = d(f)ld(g)l for some l ∈ N, and
thus there are some b′, b′′ ∈ R such that b = b′b′′, b′ |R d(f)l and b′′ |R d(g)l.

We infer that b′ ∈ [[f ]] and b′′ ∈ [[g]]. Set x = b′h′

a′ and y = b′′h′′

a′′ . Note that
z = xy. Since a′ |R d(h′) we have x ∈ Int(R). Obviously, xa′ = b′h′ ∈ [[f ]], and
thus x ∈ [[f ]]. Analogously, it follows that y ∈ [[g]]. “⊇”: Trivial. �

Lemma 5.2. Let R be a factorial domain, K a quotient field of R, X an

indeterminate over K, and f, g ∈ Int(R)• such that GCDK[X](f, g) = K[X ]×

and GCDR(f(x), g(x)) = R× for all but finitely many x ∈ R. If h ∈ [[f ]], then
[[f ]] ∩ [[hg]] = [[h]].

Proof. Let h ∈ [[f ]]. “⊆”: Let z ∈ [[f ]] ∩ [[hg]]. There is some k ∈ N such that
z |Int(R) f

k and z |Int(R) h
kgk. Since GCDK[X](f, g) = K[X ]×, it follows that
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z |K[X] h
k. Therefore, zy = hk for some y ∈ K[X ]. Let w ∈ R be such that

GCDR(f(w), g(w)) = R×. Then z(w) |R f(w)k and z(w) |R h(w)kg(w)k. Since
GCDR(z(w), g(w)

k) = R× we have z(w) |R h(w)k. We infer that y(x) ∈ R for
all but finitely many x ∈ R. Consequently, y ∈ Int(R), and thus z ∈ [[h]]. “⊇”:
Trivial. �

Lemma 5.3. Let R be a factorial domain, K a quotient field of R, X an

indeterminate over K, and f, g ∈ Int(R)• such that GCDK[X](f, g) = K[X ]×

and GCDR(f(z), g(z)) = R× for some z ∈ R. Then for all x, x′ ∈ [[f ]] and
y, y′ ∈ [[g]] such that xy = x′y′ it follows that x ≃[[f ]] x

′ and y ≃[[g]] y
′.

Proof. Let x, x′ ∈ [[f ]] and y, y′ ∈ [[g]] be such that xy = x′y′. There is some
k ∈ N such that x |Int(R) f

k, x′ |Int(R) f
k, y |Int(R) g

k and y′ |Int(R) g
k. Since

GCDK[X](f, g) = K[X ]×, we infer that GCDK[X](x, y
′) = GCDK[X](x

′, y) =

K[X ]×, and thus there is some ε ∈ K[X ]× = K× such that x = εx′ and y =
ε−1y′. Moreover, x(z)y(z) = x′(z)y′(z) and GCDR(x(z), y

′(z)) = GCDR(x
′(z),

y(z)) = R×, hence there is some r ∈ R× such that x(z) = rx′(z) and y(z) =
r−1y′(z). Since GCDR(x

′(z), y′(z)) = R× we have x′(z) 6= 0 or y′(z) 6= 0.
Case 1. x′(z) 6= 0: Observe that rx′(z) = x(z) = εx′(z), and thus ε = r.
Case 2. y′(z) 6= 0: Note that r−1y′(z) = y(z) = ε−1y′(z), hence ε = r.
In any case it follows that ε ∈ R× = [[f ]]× = [[g]]×. This implies that

x ≃[[f ]] x
′ and y ≃[[g]] y

′. �

Proposition 5.4. Let R be a factorial domain, X an indeterminate over R,

and f, g ∈ R[X ]• such that GCDR[X](f, g) = R[X ]×, GCDR(f(x), g(x)) = R×

for all but finitely many x ∈ R and d(rs) = d(r)d(s) for all r ∈ [[f ]] and s ∈ [[g]].
If x ∈ [[f ]] and y ∈ [[g]], then Cv([[xy]]) ∼= Cv([[x]]) × Cv([[y]]).

Proof. Without restriction let R be not a field. Let x ∈ [[f ]] and y ∈ [[g]]. We
show that [[xy]]red ∼= [[x]]red× [[y]]red. Let ϕ : [[xy]]red → [[x]]red× [[y]]red be defined
by ϕ(u[[xy]]×) = (v[[x]]×, w[[y]]×) if u ∈ [[xy]], v ∈ [[x]] and w ∈ [[y]] are such that
u = vw.

First we show that ϕ is well-defined. Let z ∈ [[xy]]red. Then there is some
u ∈ [[xy]] such that z = u[[xy]]×. By Lemmas 5.1 and 5.2 there are some
v ∈ [[f ]] ∩ [[xy]] ⊆ [[f ]] ∩ [[xg]] = [[x]] and w ∈ [[g]] ∩ [[xy]] ⊆ [[g]] ∩ [[fy]] = [[y]] such
that u = vw. Now let u′ ∈ [[xy]], v′ ∈ [[x]] and w′ ∈ [[y]] be such that u′ = v′w′

and z = u′[[xy]]×. There is some ε ∈ [[xy]]× = [[x]]× = [[y]]× such that u = εu′.
Therefore, vw = εv′w′, and thus v ≃[[x]] εv

′ ≃[[x]] v
′ and w ≃[[y]] w

′ by Lemma

5.3. Consequently, (v[[x]]×, w[[y]]×) = (v′[[x]]×, w′[[y]]×).
Next we show that ϕ is an injective monoid homomorphism. It is clear

that ϕ([[xy]]) = ([[x]], [[y]]). Let z, z′ ∈ [[xy]]red. There are some u, u′ ∈ [[xy]],
v, v′ ∈ [[x]] and w,w′ ∈ [[y]] such that z = u[[xy]]×, z′ = u′[[xy]]×, u = vw and
u′ = v′w′. Since uu′ = vv′ww′ we infer that ϕ(zz′) = (vv′[[x]]×, ww′[[y]]×) =
(v[[x]]×, w[[y]]×)(v′[[x]]×, w′[[y]]×) = ϕ(z)ϕ(z′). Now let ϕ(z) = ϕ(z′). Then
v[[x]] = v′[[x]] and w[[y]] = w′[[y]], and thus v ≃[[xy]] v

′ and w ≃[[xy]] w
′. This

implies that u ≃[[xy]] u
′, hence z = z′.
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It is clear that ϕ is surjective. We conclude by [5, Proposition 2.1.11.2] that
Cv([[xy]]) ∼= Cv([[xy]]red) ∼= Cv([[x]]red)× Cv([[y]]red) ∼= Cv([[x]]) × Cv([[y]]). �

By Theorem 4.1 we know that if H is a monadic submonoid generated by
some f ∈ R[X ]•, then d is multiplicative on H if and only if H is factorial.
The last proposition requires a less stringent form of being multiplicative. Next
we show that there is an interesting class of monadic submonoids for which d
satisfies this weak form of being multiplicative.

Lemma 5.5. Let R be a factorial domain, K a field of quotients of R, X an

indeterminate over K, a ∈ R, and f, g ∈ R[X ]• such that GCDR(f(a), g(a)) =
R× and for all p ∈ A(R) and h ∈ A(R[X ]) with (p |R f(a) and h |R[X] g) or

(p |R g(a) and h |R[X] f) it follows that p |R[X] h−h(a). Then d(rs) = d(r)d(s)
for all r ∈ [[f ]] and s ∈ [[g]].

Proof. Let r ∈ [[f ]] and s ∈ [[g]]. Let P be a system of representatives of A(R).
To prove that d(rs) = d(r)d(s), we need to show that for each p ∈ P there
is some y ∈ R such that vp(r(y)) = min{vp(r(x)) | x ∈ R} and vp(s(y)) =
min{vp(s(x)) | x ∈ R}. Let p ∈ P . It is an easy consequence of Lemma 3.3
that there are some b, c ∈ K•, n,m ∈ N, α ∈ Nn

0 , β ∈ Nm
0 , f ∈ A(R[X ])n

and g ∈ A(R[X ])m such that r = b
∏n

i=1 f
αi

i , s = c
∏m

j=1 g
βj

j , fi |R[X] f for all

i ∈ [1, n] and gj |R[X] g for all j ∈ [1,m].
If z ∈ R is such that vp(fi(z)) = 0 for all i ∈ [1, n], then vp(r(z)) =

vp(b) +
∑n

i=1 αivp(fi(z)) = vp(b) ≤ vp(b) +
∑n

i=1 αivp(fi(v)) = vp(r(v)) for all
v ∈ R, and thus vp(r(z)) = min{vp(r(x)) | x ∈ R}.

Analogously, if w ∈ R is such that vp(gj(w)) = 0 for all j ∈ [1,m], then
vp(s(w)) = min{vp(s(x)) | x ∈ R}.

Case 1. p ∤R (fg)(a): Observe that vp(fi(a)) = vp(gj(a)) = 0 for all i ∈ [1, n]
and j ∈ [1,m]. Therefore, vp(r(a)) = min{vp(r(x)) | x ∈ R} and vp(s(a)) =
min{vp(s(x)) | x ∈ R}.

Case 2. p |R f(a): There is some y ∈ R such that vp(r(y)) = min{vp(r(x)) |
x ∈ R}. Let j ∈ [1,m]. Note that p |R[X] gj − gj(a). Consequently, p |R
gj(y) − gj(a), and since p ∤R gj(a), we have vp(gj(y)) = 0. This implies that
vp(s(y)) = min{vp(s(x)) | x ∈ R}.

Case 3. p |R g(a): Goes along the same lines as case 2. �

Proposition 5.6. Let R be a factorial domain, X an indeterminate over R,

a ∈ R, and f, g ∈ R[X ]• such that GCDR[X](f, g) = R[X ]×, GCDR(f(a), g(a))

= R×, and d(rs) = d(r)d(s) for all r ∈ [[f ]] and s ∈ [[g]]. Then Cv([[fg]]) ∼=
Cv([[f ]])× Cv([[g]]).

Proof. As in the proof of Proposition 5.4 it follows from Lemmas 5.1 and 5.3
that [[fg]]red ∼= [[f ]]red × [[g]]red. We conclude by [5, Proposition 2.1.11.2] that
Cv([[fg]]) ∼= Cv([[fg]]red) ∼= Cv([[f ]]red)× Cv([[g]]red) ∼= Cv([[f ]])× Cv([[g]]). �

Corollary 5.7. Let R be a factorial domain, X an indeterminate over R, a ∈
R, and f, g ∈ R[X ]• such that GCDR[X](f, g) = R[X ]×, GCDR(f(a), g(a)) =
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R× and for all p ∈ A(R) and h ∈ A(R[X ]) with (p |R f(a) and h |R[X] g) or

(p |R g(a) and h |R[X] f) it follows that p |R[X] h − h(a). Then Cv([[fg]]) ∼=
Cv([[f ]])× Cv([[g]]).

Proof. This is an immediate consequence of Lemma 5.5 and Proposition 5.6.
�

6. Examples, important consequences and second main result

In this section we present several applications of the abstract theory. We
start with a bunch of examples that serve as counterexamples for various ques-
tions. We use the set of prime numbers as choice for the set of representatives of
A(Z). If Z is the base ring, then let all monadic submonoids be monadic sub-
monoids of Int(Z). Note that if H is an atomic monoid (e.g. H is a Krull
monoid), Q is a system of representatives of A(H), and P ∈ X(H), then
P =

⋃

u∈Q∩P uH . We will use this fact without citation. It was used im-
plicitly in the proof of Lemma 4.8. Also note that if T ⊆ H is a divisor-closed
submonoid of H , and z ∈ H , then either zH ∩ T = zT or zH ∩ T = ∅.

Example 6.1. Let X be an indeterminate over Q. Set u1 = 2, u2 = 3, u3 = X ,

u4 = X − 1, u5 = X − 2, u6 = u3u4

2 , u7 = u4u5

2 , u8 = u3u4u5

6 , u9 =
u3u

2
4u5

12 ,

and u10 =
u3u

3
4u5

24 . For J ⊆ [1, 10], set UJ = {uj | j ∈ J}. Set H = [[u3u4u5]],

S = [[
u2
3u

3
4u

2
5

8 ]], T = [[
u3u

3
4u

3
5

24 ]], V = [[
u3u

3
4u5

6 ]], W = [[
u3u

2
4u5

12 ]], Y = [[u3u4]], and

Z = [[
u2
3u4

2 ]].
• S = H \ U{1,4}H , T = H \ U{1,2,3,4,6}H , and V = H \ U{2,3,5,6,7}H .
• W = H \ U{1,2,3,4,5,6,7}H , Y = H \ U{2,5,7,8,9,10}H , and

Z = H \ U{1,2,4,5,7,8,9,10}H .
• {uH | u ∈ A(H)} = {u1H,u2H,u3H,u4H,u5H,u6H,u7H,u8H,u9H,u10H}.
• {uS | u ∈ A(S)} = {u2S, u3S, u5S, u6S, u7S, u8S, u9S, u10S}.
• {uT | u ∈ A(T )} = {u5T, u7T, u8T, u9T, u10T }, and
{uV | u ∈ A(V )} = {u1V, u4V, u8V, u9V, u10V }.

• {uW | u ∈ A(W )} = {u8W,u9W,u10W}, and
{uY | u ∈ A(Y )} = {u1Y, u3Y, u4Y, u6Y }.

• {uZ | u ∈ A(Z)} = {u3Z, u6Z}.
• X(H) = {U{1,3,5,6,8,9}H,U{1,3,5,7,8,9}H,U{1,4}H,U{2,3,6}H,U{2,4,6,7,9,10}H ,

U{2,5,7}H,U{3,6,8,9,10}H,U{4,6,7,8,9,10}H,U{5,7,8,9,10}H}.
• X(S) = {U{2,3,6}S,U{2,5,7}S,U{2,6,7,9,10}S,U{3,5,6,8,9}S,U{3,5,7,8,9}S,

U{3,6,8,9,10}S,U{5,7,8,9,10}S,U{6,7,8,9,10}S}.
• X(T ) = {U{5,7}T, U{5,8,9}T, U{7,9,10}T, U{8,9,10}T }, and
X(V ) = {U{1,4}V, U{1,8,9}V, U{4,9,10}V, U{8,9,10}V }.

• X(W ) = {U{8,9}W,U{9,10}W}, X(Y ) = {U{1,3}Y, U{1,4}Y, U{3,6}Y, U{4,6}Y },
and X(Z) = {u3Z, u6Z}.

• Cv(H) ∼= Cv(S) ∼= Z4, Cv(T ) ∼= Cv(V ) ∼= Cv(Y ) ∼= Z, and Cv(W ) ∼= Z/2Z.
• Z is factorial, and u3Q[X ] ∩ Z = U{3,6}Z = Z \ Z× is not divisorial.
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Proof. It is straightforward to prove that

d(uk
3u

l
4u

m
5 ) = 2min{2k+m,l,k+2m}3min{k,l,m}

for all k, l,m ∈ N0. Now one can show by a careful case analysis that {x ∈
N3

0 | x is (u3, u4, u5)-irreducible} = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1),
(1, 1, 1), (1, 2, 1), (1, 3, 1)}. It follows that {uH | u ∈ A(H)} = {uiH | i ∈
[1, 10]}, by Proposition 3.5.

It is clear that U[3,10] is a system of representatives of A(H) \ Z. Note
that each primitive g ∈ H ∩ R[X ] is associated to some element of the form

uk
3u

l
4u

m
5 for some k, l,m ∈ N0. We have 2 | d(u3u

2
4u5)

d(u3u4u5)
. If k, l,m ∈ N0 are

such that 2 |
d(uk

3u
l+1
4 um

5 )

d(uk
3u

l
4u

m
5 )

, then l < min{2k +m, k + 2m}, and then it is easy

to show that 2 ∤ d(uju
k
3u

l
4u

m
5 )

d(uk
3u

l
4u

m
5 )

for every j ∈ {3, 5, 6, 7, 8, 9, 10}. Consequently,

U{4} is maximal 2-compatible in U[3,10]. Analogously, we have U{3,5,6,8,9} and
U{3,5,7,8,9} are maximal 2-compatible in U[3,10], and U{3,6}, U{4,6,7,9,10}, and
U{5,7} are maximal 3-compatible in U[3,10]. Clearly, we have u3Q[X ] ∩ H =
U{3,6,8,9,10}H , u4Q[X ]∩H = U{4,6,7,8,9,10}H , and u5Q[X ]∩H = U{5,7,8,9,10}H .
It follows from Corollary 3.8, Remark 4.6, Lemma 4.8.2, and Remark 4.9 that
X(H) can be expressed as asserted.

It is easy to see that the other monoids (S, T, V,W, Y , and Z) are all monadic
submonoids of H . They are, therefore, complements of unions of height-one
prime ideals of H by Lemma 4.2. We show that S = H \ U{1,4}H . The corre-
sponding equalities for the remaining monoids can be proved in analogy. Set
A = H\U{1,4}H . First, note that A = [[h]] for some h ∈ H by Lemma 4.2. Since
h is a product of atoms of H , and h ∈ A we have h is associated to a product of
elements of U{2,3,5,6,7,8,9,10}. Observe that U{2,3,5,6,7,8,9,10} ⊆ A. Consequently,

A = [[u2u3

∏10
i=5 ui]] = [[u2(

u3u4u5

2 )2(
u3u

2
4u5

12 )3]] = [[u2
u3u4u5

2
u3u

2
4u5

12 ]] = S. It is
now simple to prove the remaining statements concerning sets of atoms and
sets of height-one prime ideals (by using Lemma 4.3). It is clear that Z is
factorial (since every height-one prime ideal of Z is principal). Moreover, we
have u3Q[X ]∩ Z = u3Q[X ]∩H ∩Z = U{3,6,8,9,10}H ∩Z = U{3,6}Z = Z \ Z×,
since every non-unit of Z is a multiple of u3 or u6. If Z \ Z× is divisorial,
then Z is a discrete valuation monoid, and hence it has only one atom up to
associates, a contradiction. Therefore, Z \ Z× is not divisorial.

It remains to show all statements about divisor-class groups. It follows from
Theorem 4.1 that Cv(H) ∼= Z4. We only show that Cv(W ) ∼= Z/2Z. The other
assertions follow in analogy. Let (Pi)

9
i=1 be the sequence of height-one prime

ideals of H in the above order (i.e., P1 = U{1,3,5,6,8,9}H , P2 = U{1,3,5,7,8,9}H ,
and so on). We determine the v-product decompositions of principal ideals of
H generated by atoms. Set f = u3u4u5. The definition of ef can be found
in Section 3. It is straightforward to prove that ef (u4) = ef (u6) = ef (u7) =
ef (u9) = 6. We infer by Proposition 3.9 that u1H = (P1P2P3)v, u2H =
(P4P5P6)v, u4H = (P3P5P8)v, u6H = (P1P4P5P7P8)v, u7H = (P2P5P6P8P9)v,
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and u9H = (P1P2P5P7P
2
8P9)v. Therefore, u3H = u1u6

u4
H = (P 2

1P2P4P7)v,

u5H = u1u7

u4
H = (P 2

1P
2
2P6P9)v, u8H = u1u9

u4
H = (P 2

1 P
2
2P7P8P9)v, and u10H =

u4u9

u1
H = (P 2

5P7P
3
8P9)v. Set Q1 = U{8,9}W , and Q2 = U{9,10}W . Then

{P ∈ X(H) | P ∩ W = Q1} = {P1, P2}, and {P ∈ X(H) | P ∩ W = Q2} =
{P5}. We have vP1((Q1)vH ) = min{vP1(u8H), vP1(u9H)} = 1, vP2((Q1)vH ) =
min{vP2(u8H), vP2(u9H)} = 1, and vP5((Q2)vH )=min{vP5(u9H), vP5(u10H)}
= 1. We infer by Proposition 4.5 that

vQ1(u8W ) = max{⌈
vP1(u8H)

vP1((Q1)vH )
⌉, ⌈

vP2(u8H)

vP2((Q1)vH )
⌉} = 2,

vQ2(u10W ) = 2, and vQ1(u9W ) = vQ2(u9W ) = 1. Consequently, u8W =
(Q2

1)vW , u9W = (Q1Q2)vW , and u10W = (Q2
2)vW . This implies that [Q1] =

[Q2], and thus [Q1] is an element of order 2 which generates Cv(W ). Therefore,
Cv(W ) ∼= Z/2Z. �

The last example it is straightforward to prove that

• T satisfies the equivalent conditions in Proposition 3.2, and yet Cv(T )
is infinite.

• Cv(W ) is finite, and yet W is not factorial.

Observe that U{3,6,8,9,10}H∩Z = U{3,6}Z in the last example. We know that
H is a Krull monoid, U{3,6,8,9,10}H is a height-one prime ideal of H (and hence
it is divisorial), Z is a monadic submonoid of H , and yet U{3,6,8,9,10}H ∩ Z is
not a divisorial ideal of Z.

Recall that if G is an additive abelian group, and G0 ⊆ G, then the Dav-
enport constant of G0 (denoted by D(G0)) is defined to be the supremum of
all lengths of nonempty minimal zero-sum sequences of G0 (see [5, Definition
3.4.1]).

Lemma 6.2. Let R be a factorial domain, K a field of quotients of R, X
an indeterminate over K, p ∈ A(R), n ∈ N≥2, and f ∈ (A(R[X ]) \ R)n a

sequence of pairwise non-associated elements of R[X ] such that d(
∏n

i=1 f
ri
i ) =

pmin{ri|i∈[1,n]} for all r ∈ Nn
0 . Set H = [[

∏n
i=1 fi]]. Then {uH | u ∈ A(H)} =

{pH,
∏n

i=1 fi
p

H} ∪ {fiH | i ∈ [1, n]}, X(H) = {pH ∪ fiH, fiH ∪
∏n

j=1 fj

p
H | i ∈

[1, n]}, Cv(H) ∼= Zn−1, all proper divisor-closed submonoids of H are factorial,

for every P ∈ X(H) there is some Q ∈ X(H) such that (PQ)v is a principal

ideal of H and D({[P ] | P ∈ X(H)}) ≥ n.

Proof. Set ei = (δi,j)
n
j=1 for each i ∈ [1, n]. Observe that {m ∈ Nn

0 | m

is f -irreducible} = {ei | i ∈ [1, n]} ∪ {
∑n

i=1 ei}. Therefore, Proposition 3.5

implies that {uH | u ∈ A(H)} = {pH,
∏n

i=1 fi
p

H} ∪ {fiH | i ∈ [1, n]}. Note

that R = {p} is a system of representatives of A(H) ∩ R and S = {fi | i ∈

[1, n]} ∪ {
∏

n
i=1 fi
p

} is a system of representatives of A(H) \ R. It follows by

Remark 4.6, Lemma 4.8.2, and Remark 4.9 that {P ∈ X(H) | P ∩ R 6= ∅} =
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{P ∈ X(H) | p ∈ P} = {pH ∪fiH | i ∈ [1, n]}. Moreover, we have {P ∈ X(H) |

P ∩ R = ∅} = {fiK[X ] ∩ H | i ∈ [1, n]} = {fiH ∪
∏n

j=1 fj

p
H | i ∈ [1, n]} by

Corollary 3.8. Consequently, Cv(H) ∼= Zn−1 by Theorem 4.1. For i ∈ [1, n],

set Si = H \ (pH ∪ fiH) and Ti = H \ (fiH ∪
∏n

j=1 fj

p
H). Let i ∈ [1, n]. By

Lemma 4.2, Si and Ti are divisor-closed submonoids of H and every proper
divisor-closed submonoid of H is a divisor-closed submonoid of Sj or Tj for

some j ∈ [1, n]. Note that X(Si) = {fkSi,
∏

n
j=1 fj

p
Si | k ∈ [1, n] \ {i}} and

X(Ti) = {pTi, fkTi | k ∈ [1, n] \ {i}} by Lemma 4.3. This implies that Si and
Ti are factorial (since all of their height-one prime ideals are principal), and
hence every proper divisor-closed submonoid of H is factorial.

It is an easy consequence of Proposition 3.9 that fiH = ((pH ∪ fiH)(fiH ∪∏n
j=1 fj

p
H))v for every i ∈ [1, n]. Let P ∈ X(H). Clearly, there are some

i ∈ [1, n] and Q ∈ X(H) such that {P,Q} = {pH ∪ fiH, fiH ∪
∏

n
j=1 fj

p
H}. It

follows that (PQ)v is a principal ideal of H .
Note that pH = (

∏n
i=1 pH∪fiH)v (since pH is a radical ideal of H). Since p

is an atom ofH , it follows that no nonempty proper v-subproduct of (
∏n

i=1 pH∪
fiH)v is principal. Therefore, D({[P ] | P ∈ X(H)}) ≥ n. �

Next we recall a simple irreducibility criterion similar to Eisenstein’s cri-
terion. We include a proof for the sake of completeness. If R is a factorial
domain, X is an indeterminate over R, and f ∈ R[X ] with deg(f) = n ∈ N0,
then let (fi)

n
i=0 ∈ Rn+1 be the unique sequence such that f =

∑n

i=0 fiX
i.

Lemma 6.3. Let R be a factorial domain, X an indeterminate over R, p ∈
A(R), and f ∈ R[X ] \R primitive such that n = deg(f), p ∤R f0, p

2 ∤R fn, and
p |R fi for all i ∈ [1, n]. Then f ∈ A(R[X ]).

Proof. Clearly, f ∈ R[X ]• \R[X ]×. Let g, h ∈ R[X ] be such that f = gh. Let
l = deg(g), and m = deg(h). Without restriction we can assume that l ≤ m.
Observe that p |R glhm, p2 ∤R glhm, and m ≥ 1. We need to show that g ∈ R×.

Case 1. p |R gl and p ∤R hm: We prove that p |R gl−i for all i ∈ [0, l]
by induction on i. Let i ∈ [0, l] be such that p |R gl−j for each j ∈ [0, i −

1]. It follows that p |R fl+m−i =
∑i

j=0 gl−jhm+j−i, and hence p |R gl−ihm.

Consequently, p |R gl−i. We infer that p |R[X] g |R[X] f , and thus p |R f0, a
contradiction.

Case 2. p ∤R gl and p |R hm: We prove that l = 0. Assume to the contrary
that l > 0. We show by induction on i that p |R hm−i for all i ∈ [0,m].
Let i ∈ [0,m] be such that p |R hm−j for every j ∈ [0, i − 1]. Note that

p |R fl+m−i =
∑min{i,l}

j=0 gl−jhm+j−i, and thus p |R glhm−i. We infer that

p |R hm−i. Consequently, p |R[X] h |R[X] f , and hence p |R f0, a contradiction.

It follows that l = 0, and thus g ∈ R. Since f is primitive we have g ∈ R×. �
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In the beginning of this section we have provided examples of monadic sub-
monoids of Int(Z) whose divisor-class group is a torsion group or torsion-free,
but not trivial. Next we provide an example of a monadic submonoid of Int(Z)
whose divisor-class group is neither torsion-free nor a torsion group.

Example 6.4. Let X be an indeterminate over Q. Set p1 = 7, p2 = 13,

p3 = 19, p4 = 31, p5 = 37, p6 = 43, p7 = 67, a =
∏7

i=1 pi, f = (aX + 1)(aX +

2)(aX + 3), g =
∏7

i=1(6Xf + pi), and H = [[ (aX+1)(aX+2)2(aX+3)g
12 ]]. Then

Cv(H) ∼= Z/2Z× Z6.

Proof. It is straightforward to show that d((aX + 1)k(aX + 2)l(aX + 3)m) =
2min{2k+m,l,k+2m}3min{k,l,m} for all k, l,m ∈ N0. As in Example 6.1 we ob-

tain that Cv([[
(aX+1)(aX+2)2(aX+3)

12 ]]) ∼= Z/2Z. Moreover, one can show that

d(
∏7

i=1(6Xf + pi)
bi) = p

min{bi|i∈[1,7]}
1 for all b ∈ N7

0. It follows by Lemma 6.3
that 6Xf +pi ∈ A(Z[X ]) for every i ∈ [1, 7]. Therefore, it follows from Lemma
6.2 that Cv([[g]]) ∼= Z6. It is clear that GCDZ[X](f, g) = GCDZ[X](f, a) =

GCDZ[X](6, a) = Z[X ]×. Along the same lines we infer that GCDZ(f(x), g(x))

= GCDZ(f(x), a) = GCDZ(6, a) = Z× for each x ∈ Z. Observe that aX +
1, aX +2, aX +3 ∈ A(Z[X ]). Consequently, it is obvious that for all p ∈ A(Z)
and h ∈ A(Z[X ]) with (p |Z f(0) and h |Z[X] g) or (p |Z g(0) and h |Z[X] f) it fol-

lows that p |Z[X] h−h(0). Since (aX+1)(aX+2)2(aX+3)
12 ∈ [[f ]], we infer by Propo-

sition 5.4 and Lemma 5.5 that Cv(H) ∼= Cv([[
(aX+1)(aX+2)2(aX+3)

12 ]])×Cv([[g]]) ∼=
Z/2Z× Z6. �

Now we present a result which enables us to construct examples of monadic
submonoids of Int(Z) whose divisor-class group is torsion-free with prescribed
rank.

Proposition 6.5. Let R be a factorial domain, X an indeterminate over R,

P a system of representatives of A(R), n ∈ N, a ∈ Rn, and p ∈ Pn such

that for all i ∈ [1, n], p1 |R ai − 1, ai + pkR ∈ (R/pkR)× for all k ∈ [2, n],
and if i > 1, then n = |{pj + p1R | j ∈ [1, n]}| = |R/p1R| < |R/piR|. Set

H = [[
∏n

i=1(aiX − pi)]]. Then Cv(H) ∼= Zn−1, for every P ∈ X(H) there is

some Q ∈ X(H) such that (PQ)v is a principal ideal of H, and D({[P ] | P ∈
X(H)}) ≥ n.

Proof. By Lemma 6.2 it is sufficient to show that d(
∏n

i=1(aiX − pi)
ri) =

p
min{ri|i∈[1,n]}
1 for all r ∈ Nn

0 . Let r ∈ Nn
0 and q ∈ P . We need to show

that min{
∑n

i=1 rivq(aix− pi) | x ∈ R} = δq,p1 min{ri | i ∈ [1, n]}.
Case 1. q 6= pi for all i ∈ [1, n]: Observe that

∑n

i=1 rivq(aiq − pi) = 0.
Therefore, min{

∑n

i=1 rivq(aix− pi) | x ∈ R} = 0.
Case 2. q = pj for some j ∈ [2, n]: Since n < |R/qR|, there is some y ∈ R

such that q ∤R y−pk for all k ∈ [1, n]. Let k ∈ [1, n]. Since ak+qR ∈ (R/qR)×,
there is some z ∈ R such that q |R akz − y. Consequently, q ∤R akz − pk. It



258 A. REINHART

follows that
∑n

i=1 rivq(aiz − pi) = 0. This implies that min{
∑n

i=1 rivq(aix −
pi) | x ∈ R} = 0.

Case 3. q = p1: Let y ∈ R. Since R/qR = {pi + qR | i ∈ [1, n]}, there
is some j ∈ [1, n] such that q |R y − pj . Since q |R aj − 1, we infer that
q |R ajy − pj . Therefore, min{ri | i ∈ [1, n]} ≤ rj ≤

∑n

i=1 rivq(aiy − pi), hence
min{ri | i ∈ [1, n]} ≤ min{

∑n

i=1 rivq(aix− pi) | x ∈ R}.
There is some k ∈ [1, n] such that min{ri | i ∈ [1, n]} = rk. We show that

vq(akz − pk) = 1 for some z ∈ R. Since q |R ak − 1, there is some y ∈ R
such that q |R aky − pk. If q2 ∤R aky − pk, then set z = y. Now suppose that
q2 |R aky − pk. Set z = q + y. Then vq(akz − pk) = 1.

Let j ∈ [1, n] \ {k}. Then q ∤R pj − pk. Since q |R ajz − z and q |R akz − z,
we infer that vq(ajz − pj) = 0. Consequently, min{

∑n

i=1 rivq(aix − pi) | x ∈
R} ≤

∑n

i=1 rivq(aiz − pi) = rk = min{ri | i ∈ [1, n]}. �

The following result is a useful application of Corollary 5.7.

Proposition 6.6. Let R be a factorial domain, X an indeterminate over R,

and P a system of representatives of A(R). Let k ∈ N, and (Pi)
k
i=1 a finite

sequence of finite and pairwise disjoint subsets of P such that for every i ∈ [1, k]
there is some p ∈ Pi for which |Pi| = |{r+pR | r ∈ Pi}| = |R/pR| < |R/qR| <
∞ for all q ∈ Pi \ {p}, and p |R

∏

a∈
⋃

k
j=1,j 6=i

Pj
a− 1. Set

g =

k
∏

j=1

(

∏

b∈Pj

((

∏

a∈
⋃

k
i=1,i6=j Pi

a
)

X − b
))

.

Then Cv([[g]]) ∼= Z
∑

k
i=1 |Pi|−k.

Proof. For j ∈ [1, k] set fj =
∏

b∈Pj
((
∏

a∈
⋃

k
i=1,i6=j

Pi
a)X − b). It is sufficient

to show by induction on j that Cv([[
∏j

i=1 fi]])
∼= Z

∑j
i=1 |Pi|−j for every j ∈

[1, k]. It follows immediately from Proposition 6.5 that Cv([[fj ]]) ∼= Z|Pj |−1 for

every j ∈ [1, k]. Let j ∈ [2, k]. Set f =
∏j−1

i=1 fi and g′ = fj. Note that
GCDR[X](f, g

′) = R[X ]×. We show that GCDR(f(0), g
′(0)) = R× and for all

p ∈ A(R) and h ∈ A(R[X ]) such that (p |R f(0) and h |R[X] g
′) or (p |R g′(0)

and h |R[X] f) we have p |R[X] h − h(0). Observe that f(0) ≃R

∏

b∈
⋃j−1

i=1 Pi
b

and g′(0) ≃R

∏

b∈Pj
b. Since

⋃j−1
i=1 Pi and Pj are disjoint, it follows that

GCDR(f(0), g
′(0)) = R×. Let p ∈ A(R) and h ∈ A(R[X ]).

Case 1. p |R f(0) and h |R[X] g
′: Of course, p ≃R b for some b ∈

⋃k

i=1,i6=j Pi

and h ≃R[X] (
∏

a∈
⋃

k
i=1,i6=j

Pi
a)X − c for some c ∈ Pj . Therefore, p ≃R[X]

b |R[X] (
∏

a∈
⋃

k
i=1,i6=j Pi

a)X ≃R[X] h− h(0).

Case 2. p |R g′(0) and h |R[X] f : It is clear that p ≃R b for some b ∈ Pj

and h ≃R[X] (
∏

a∈
⋃

k
i=1,i6=l

Pi
a)X − c for some l ∈ [1, j − 1] and some c ∈ Pl.

Consequently, p ≃R[X] b |R[X] (
∏

a∈
⋃

k
i=1,i6=l

Pi
a)X ≃R[X] h− h(0).
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We infer by Corollary 5.7 that

Cv([[fg
′]]) ∼= Cv([[f ]])× Cv([[g

′]]) ∼= Z
∑j−1

i=1 |Pi|−j+1 × Z|Pj |−1 ∼= Z
∑j

i=1 |Pi|−j . �

Example 6.7. Let g = (95095X + 2)(95095X + 3)(6X + 5)(6X + 7)(6X +
11)(6X + 13)(6X + 19) ∈ Z[X ]. Then Cv([[g]]) ∼= Z5.

Proof. This follows from Proposition 6.6 with k = 2, P1 = {2, 3}, and P2 =
{5, 7, 11, 13, 19}. �

There are many important invariants which can describe the structure of
factorizations. Two of them that are commonly used are the elasticity ρ(H)
and the tame degree t(H) of a monoid H . For the definitions of the elasticity
and the tame degree we refer to [5, Definitions 1.4.1 and 1.6.4]. In what follows
we want to provide a class of rings of integer-valued polynomials over factorial
domains where both of these invariants are infinite. Note that if H is an
atomic monoid and T ⊆ H is a divisor-closed submonoid, then ρ(T ) ≤ ρ(H),
and t(T ) ≤ t(H).

Theorem 6.8. Let R be a factorial domain, X an indeterminate over R, and

P a system of representatives of A(R). Let (Pi)i∈N be a sequence of finite

subsets of P such that for every i ∈ N there is some p ∈ Pi for which i <
|Pi| = |{r + pR | r ∈ Pi}| = |R/pR| < |R/qR| < ∞ for all q ∈ Pi \ {p}. Then

ρ(Int(R)) = t(Int(R)) = ∞.

Proof. For i ∈ N set Hi = [[
∏

a∈Pi
(X − a)]]. By Proposition 6.5 we infer that

{[P ] | P ∈ X(Hi)} = {[P−1] | P ∈ X(Hi)} and D({[P ] | P ∈ X(Hi)}) > i for all
i ∈ N. It follows from [5, Theorem 3.4.10] that ρ(Int(R)) ≥ ρ(Hi) ≥ D({[P ] |
P ∈ X(Hi)})/2 > i/2, and t(Int(R)) ≥ t(Hi) ≥ D({[P ] | P ∈ X(Hi)}) > i for
every i ∈ N. This implies that ρ(Int(R)) = t(Int(R)) = ∞. �
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