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TWO POINTS DISTORTION ESTIMATES FOR CONVEX

UNIVALENT FUNCTIONS

Mari Okada and Hiroshi Yanagihara

Abstract. We study the class CV(Ω) of analytic functions f in the unit
disk D = {z ∈ C : |z| < 1} of the form f(z) = z +

∑∞
n=2 anz

n satisfying

1 +
zf ′′(z)

f ′(z)
∈ Ω, z ∈ D,

where Ω is a convex and proper subdomain of C with 1 ∈ Ω. Let φΩ be
the unique conformal mapping of D onto Ω with φΩ(0) = 1 and φ′Ω(0) > 0

and

kΩ(z) =

∫ z

0
exp

(∫ t

0
ζ−1(φΩ(ζ)− 1) dζ

)
dt.

Let z0, z1 ∈ D with z0 6= z1. As the first result in this paper we show that

the region of variability {log f ′(z1) − log f ′(z0) : f ∈ CV(Ω)} coincides

with the set {log k′Ω(z1z)− log k′Ω(z0z) : |z| ≤ 1}. The second result deals
with the case when Ω is the right half plane H = {w ∈ C : Re w > 0}.
In this case CV(Ω) is identical with the usual normalized class of convex

univalent functions on D. And we derive the sharp upper bound for
| log f ′(z1) − log f ′(z0)|, f ∈ CV(H). The third result concerns how far

two functions in CV(Ω) are from each other. Furthermore we determine

all extremal functions explicitly.

1. Introduction

Let C be the complex plane, D(c, r) = {z ∈ C : |z − c| < r} and D(c, r) =
{z ∈ C : |z − c| ≤ r} with c ∈ C and r > 0. In particular we denote the unit
disk D(0, 1) by D. Let A be the linear space of analytic functions in the unit
disk D, endowed with the topology of uniform convergence on every compact
subset of D. Set A0 = {f ∈ A : f(0) = f ′(0) − 1 = 0} and denote by S
the subclass of A0 consisting of all univalent functions as usual. Then S is a
compact subset of the metrizable space A. See [1, Chap. 9] for details.

Unless otherwise stated explicitly, throughout the discussion let Ω be a sim-
ply connected domain in C with 1 ∈ Ω 6= C and φΩ the unique conformal
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mapping of D onto Ω with φΩ(0) = 1 and φ′Ω(0) > 0. Ma and Minda [3]
considered the classes S∗(Ω) and CV(Ω)

S∗(Ω) =

{
f ∈ A0 :

zf ′(z)

f(z)
∈ Ω on D

}
,

CV(Ω) =

{
f ∈ A0 : 1 +

zf ′′(z)

f ′(z)
∈ Ω on D

}
,

with some mild conditions, e.g. Ω is starlike with respect to 1 and the symmetry
with respect to the real axis R, i.e., Ω = Ω. It is easy to see that for f ∈ A0,
f ∈ CV(Ω) if and only if zf ′ ∈ S∗(Ω). Note that, with the special choice
of Ω = H := {w ∈ C : Re w > 0}, these two classes consist of starlike and
convex functions in the standard sense, and are denoted simply by S∗ and CV,
respectively.

If 0 < α ≤ 1 and Ω = {w ∈ C : |Arg w| < 2−1πα}, then φΩ(z) = {(1 +
z)/(1 − z)}α, and hence, in this choice CV(Ω) reduces to the class of strongly
convex functions of order α. Furthermore for Ω = Hβ := {w ∈ C : Rew > β}
with 0 ≤ β < 1 the class CV(Hβ) coincides with the class of convex functions
of order β. Also CV({Rew > k|w − 1|}) with 0 ≤ k < ∞ called the class of
k-uniformly convex functions, which was introduced in [2]. Various subclasses
of CV can be expressed in this way. For details we refer to [3] and [4]. We notice
that it may be possible that H ⊂ Ω, and in this case we have CV ⊂ CV(Ω).

Since Ω is simply connected and Ω 6= C, C\Ω has an unbounded component.
Therefore f ∈ CV(Ω) forces that f ′(z) 6= 0 in D and the single valued branch
log f ′(z) with log f ′(0) = 0 exists on D. Let z0, z1 ∈ D with z0 6= z1. One of
the aims of the present article is to study the variability regions

(1.1) VΩ(z0, z1) = {log f ′(z1)− log f ′(z0) : f ∈ CV(Ω)}

for various classes CV(Ω) in a unified manner. Let

(1.2) kΩ(z) =

∫ z

0

exp

(∫ t

0

φΩ(ζ)− 1

ζ
dζ

)
dt, z ∈ D.

Then kΩ ∈ CV(Ω) and kΩ plays the role of the extremal function.

Theorem 1.1. If Ω is convex, then

(1.3) VΩ(z0, z1) = {log k′Ω(z1z)− log k′Ω(z0z) : z ∈ D}.

Furthermore the set in the right hand side of the equation is a convex closed
Jordan domain enclosed by the simple closed curve given by

∂D 3 ε 7→ log k′Ω(z1ε)− log k′Ω(z0ε),

and log f ′(z1)− log f ′(z0) = log k′Ω(z1ε)− log k′Ω(z0ε) holds for some f ∈ CV(Ω)
and ε ∈ ∂D if and only if f(z) = εkΩ(εz) in D.
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When Ω = Hβ , the functions φHβ , kHβ and the set VHβ (z0, z1) will be written
simply as φβ , kβ and Vβ(z0, z1), respectively. Then we have

φβ(z) =
1 + (1− 2β)z

1− z
,(1.4)

log k′β(z) = 2(1− β) log
1

1− z
,(1.5)

kβ(z) =

{
1

2β−1{1− (1− z)2β−1}, β 6= 1
2 ,

log 1
1−z , β = 1

2 .
(1.6)

As a simple application of Theorem 1.1 we have the following simple esti-
mate.

Proposition 1.2. Let f ∈ CV(Hβ) with 0 < β ≤ 1. For z0, z1 ∈ D with z0 6= z1

we have

(1.7) | log f ′(z1)− log f ′(z0)| ≤ 2(1− β)
|z1 − z0|

1−max{|z0|, |z1|}
.

The inequality (1.7) is not sharp. Applying Theorem 1.1 more precisely we
can determine

max
f∈CV(Hβ)

|log f ′(z1)− log f ′(z0)| , max
f,g∈CV(Hβ)

|log f ′(z1)− log g′(z1)| .

Theorem 1.3. For z0, z1 ∈ D with |z0| ≤ |z1| and z0 6= z1 let

(1.8) c =
1− z0z1

1− |z1|2
, ρ =

|z1 − z0|
1− |z1|2

and ϕ0 = Arg c. Then the equation

(1.9)
|c| sin θ√

ρ2 − |c|2 sin2 θ
log

(
|c| cos θ +

√
ρ2 − |c|2 sin2 θ

)
− θ = ϕ0

has the unique solution θ0 ∈
(
− sin−1 ρ

|c| , sin−1 ρ
|c|

)
, and

max
f∈CV(Hβ)

|log f ′(z1)− log f ′(z0)|

= 2(1− β)

∣∣∣∣log

(
|c| cos θ0 +

√
ρ2 − |c|2 sin2 θ0

)
+ i(θ0 + ϕ0)

∣∣∣∣
and the maximum is attained if and only if f(z) = ε0kβ(ε0z), where ε0 ∈ ∂D
is given by

(1.10)

(
|c| cos θ0 +

√
ρ2 − |c|2 sin2 θ0

)
ei(θ0+ϕ0) =

1− ε0z0

1− ε0z1
.

Particularly when z0/z1 ≥ 0 or z0/z1 < 0, we have ϕ0 = θ0 = 0 and the

maximum coincides with 2(1− β) log 1−|z0|
1−|z1| or 2(1− β) log 1+|z0|

1−|z1| , respectively.
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The following theorem shows that how far two functions in CV(Hβ) are from
each other.

Theorem 1.4. For z1 ∈ D\{0} we have

max
f,g∈CV(Hβ)

|log f ′(z1)− log g′(z1)| = 2(1− β) log
1 + |z1|
1− |z1|

and the maximum is attained if and only if

f(z) = − z1

|z1|
kβ

(
− z1

|z1|

)
and g(z) =

z1

|z1|
kβ

(
z1

|z1|

)
or permutation of them.

2. Determination of VΩ(z0, z1)

Assume Ω is convex and let z0, z1 ∈ D with z0 6= z1 be fixed. For f ∈ CV(Ω)
let

pf (z) = 1 + z
f ′′(z)

f ′(z)
, z ∈ D.

Lemma 2.1. The set VΩ(z0, z1) is a compact and convex subset of C and has
0 as an interior point. Particularly ∂VΩ(z0, z1) is a simple closed curve and
VΩ(z0, z1) is the closed Jordan domain enclosed by ∂VΩ(z0, z1), i.e., VΩ(z0, z1)
is the union of ∂VΩ(z0, z1) and the domain surrounded by ∂VΩ(z0, z1).

Proof. It is easy to see that CV(Ω) is a compact subset of the metric space A.
Since VΩ(z0, z1) is the image of CV(Ω) with respect to the continuous functional
CV(Ω) 3 f 7→ log f ′(z1)− log f ′(z0), it is a compact subset of C.

For f0, f1 ∈ CV(Ω) and t ∈ (0, 1) let

pt(z) = (1− t)pf1
(z) + tpf0

(z), ft(z) =

∫ z

0

exp

(∫ ζ

0

pt(ξ)− 1

ξ
dξ

)
dζ.

Then ft ∈ CV(Ω) and

log f ′t(z1)−log f ′t(z0) = (1−t){log f ′1(z1)−log f ′1(z0)}+t{log f ′0(z1)−log f ′0(z0)}.

From this it easily follows that VΩ(z0, z1) is convex.
For ε ∈ D and z ∈ D let

Fε(z) =

{
1
εkΩ(εz), ε 6= 0,
z, ε = 0.

Then pFε(z) = φΩ(εz) and hence Fε ∈ CV(Ω) for all ε ∈ D. Let

q(ε) = logF ′ε(z1)− logF ′ε(z0) = log k′Ω(εz1)− log k′Ω(εz0).

Then q(ε) ∈ VΩ(z0, z1) and we have

q′(0) =
k′′Ω(0)

k′Ω(0)
(z1 − z0) = φ′Ω(0)(z1 − z0) 6= 0.
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Therefore q is nonconstant analytic in D and 0(= q(0)) is an interior point of
q(D). Since q(D) ⊂ VΩ(z0, z1), 0 is an interior point of VΩ(z0, z1).

Since the latter statement of the lemma is a simple consequence of the former
one, proof is left to the reader. �

Proof of Theorem 1.1. For r ∈ (0, 1), φΩ maps D(0, r) conformally onto the
convex domain φΩ(D(0, r)). Also the boundary ∂φΩ(D(0, r)) is the image of the
convex closed curve given by (−π, π] 3 θ 7→ φΩ(reiθ). By the Schwarz lemma

we have |φ−1
Ω (pf (z)))| ≤ |z|. This implies pf (ζ) ∈ φΩ(D(0, r)) = φΩ(D(0, r))

for ζ ∈ D(0, r). Thus for ζ ∈ D(0, r), pf (ζ) belongs to the left half plane of the
tangential line at φΩ(reiθ) with the tangential vector ireiθφ′Ω(reiθ). Hence

Re

{
φΩ(reiθ)− pf (ζ)

reiθφ′Ω(reiθ)

}
≥ 0.

Let ε ∈ ∂D(0, r). Applying the above inequality to φΩ(ε·) instead of φΩ and
letting ζ = reiθ = z we have

(2.1) Re

{
φΩ(εz)− pf (z)

εzφ′Ω(εz)

}
≥ 0, z ∈ D

with equality at some z0 ∈ D if and only if pf (z) ≡ φΩ(εz).
Since Ω is convex, the line segment connecting φΩ(εz0) and φΩ(εz1) entirely

lies in Ω. Let Γ be the path defined by

z(t) = εφ−1
Ω ((1− t)φΩ(εz0) + tφΩ(εz1)), 0 ≤ t ≤ 1.

Then Γ is a C1-path in D joining z0 and z1 and satisfying φΩ(εz(t)) = (1 −
t)φΩ(εz0) + tφΩ(εz1). By differentiation we have

(2.2) εφ′Ω(εz(t))z′(t) = φΩ(εz1)− φΩ(εz0).

By (2.1) and (2.2) we have successively

0 ≤
∫ 1

0

Re

{
φΩ(εz(t))− pf (z(t))

εz(t)φ′Ω(εz(t))

}
dt

= Re


∫ 1

0

φΩ(εz(t))−pf (z(t))
z(t) z′(t)

εφ′Ω(εz(t))z′(t)
dt


= Re


∫ 1

0

φΩ(εz(t))−pf (z(t))
z(t) z′(t)

φΩ(εz1)− φΩ(εz0)
dt


= Re

{ ∫
Γ
φΩ(εz)−pf (z)

z dz

φΩ(εz1)− φΩ(εz0)

}

= Re

{∫
Γ
φΩ(εz)−1

z dz −
∫

Γ
pf (z)−1

z dz

φΩ(εz1)− φΩ(εz0)

}
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= Re

{
log k′Ω(εz1)− log k′Ω(εz0)− (log f ′(z1)− log f ′(z0))

φΩ(εz1)− φΩ(εz0)

}
.

Letting w0 = log k′Ω(εz1) − log k′Ω(εz0) and c = φΩ(εz1) − φΩ(εz0) it easily
follows that log f ′(z1) − log f ′(z0) always belongs to the half plane H = {w ∈
C : Re {(w0 − w)/c)} ≥ 0}. Thus we have VΩ(z0, z1) ⊂ H. From this w0 =
log k′Ω(εz1)− log k′Ω(εz0) ∈ VΩ(z0, z1)∩ ∂H. Therefore we obtain log k′Ω(εz1)−
log k′Ω(εz0) ∈ ∂VΩ(z0, z1) for any ε ∈ ∂D.

We deal with uniqueness. Suppose that log f ′(z1)−log f ′(z0) = log k′Ω(εz1)−
log k′Ω(εz0) holds for some f ∈ CV(Ω) and ε ∈ ∂D. Then from the uniqueness
part of (2.1) it follows that φΩ(εz) = pf (z) on the image of Γ. By the identity
theorem for analytic functions we obtain that φΩ(εz) = pf (z) in D. Therefore,
εkΩ(εz) = f(z) in D by normalization.

Now we show that the closed curve given by ∂D 3 ε 7→ log k′Ω(εz1) −
log k′Ω(εz0) is simple. Assume that log k′Ω(ε1z1)− log k′Ω(ε1z0) = log k′Ω(ε0z1)−
log k′Ω(ε1z0). Then from the uniqueness part of the theorem which is shown
above we have ε1kΩ(ε1z) = ε0kΩ(ε0z) in D. Since kΩ(z) = z+2−1k′′Ω(0)z2 + · · ·
with k′′Ω(0) = φ′Ω(0) > 0, this implies ε1 = ε0.

We have shown that the closed curve given by ∂D 3 ε 7→ log k′Ω(εz1) −
log k′Ω(εz0) is simple and its image is contained in ∂VΩ(z0, z1). By Lemma 2.1
∂VΩ(z0, z1) is also a image of simple closed curve. Note that a simple closed
curve cannot contain any simple closed curve other than itself, the mapping
∂D 3 ε 7→ log k′Ω(εz1)− log k′Ω(εz0) is a parametrization of the boundary curve
∂VΩ(z0, z1). �

3. The case that Ω = Hβ

Proof of Proposition 1.2. When Ω = Hβ , by Theorem 1.1 and (1.5), for f ∈
CV(Hβ) there exists z ∈ D with log f ′(z1) − log f ′(z0) = 2(1 − β) log 1−z0z

1−z1z .

Since log 1
1−w =

∑∞
k=1

wk

k , we have∣∣∣∣ log f ′(z1)− log f ′(z0)

z1 − z0

∣∣∣∣ = 2(1− β)

∣∣∣∣∣
∞∑
k=1

zk−1
1 + zk−2

1 z0 + · · ·+ zk−1
0

k
zk−1

∣∣∣∣∣
≤ 2(1− β)

∞∑
k=1

(max{|z1|, |z0|})k−1 |z|k−1

=
2(1− β)

1−max{|z1|, |z0|}|z|

≤ 2(1− β)

1−max{|z1|, |z0|}
.

�

Proof of Theorem 1.3. Similarly we have

Vβ(z0, z1) = {log f ′(z1)− log f ′(z0) : f ∈ CV(Hβ)}



TWO POINTS DISTORTION ESTIMATES 963

=

{
2(1− β) log

1− z0z

1− z1z
: z ∈ D

}
.

The image of D under the linear fractional transformation z 7→ 1−z0z
1−z1z coincides

with D(c, ρ), where c and ρ are defined by (1.8). Notice that |c| < ρ. Let
ϕ0 = Arg c ∈ (−π, π]. Then for rei(θ+ϕ0) ∈ ∂D(c, ρ), by the law of cosines

we have r = |c| cos θ ±
√
ρ2 − |c|2 sin2 θ, |θ| ≤ sin−1 ρ

|c| . Then the boundary

∂Vβ(z0, z1) = 2(1− β) log ∂D(c, ρ) consists of two simple arcs J1 and J2 which
have parametric representations

J` : u+ iv = u`(θ) + iΘ(θ), ` = 1, 2, |θ| ≤ sin−1 ρ

|c|
,

where

u1(θ) = 2(1− β) log

{
|c| cos θ −

√
ρ2 − |c|2 sin2 θ

}
,

u2(θ) = 2(1− β) log

{
|c| cos θ +

√
ρ2 − |c|2 sin2 θ

}
,

Θ(θ) = 2(1− β)(θ + ϕ0), ϕ0 = Arg c.

Since 1
2{u1(θ) + u2(θ)} = (1 − β) log{|c|2 − ρ2}, ∂Vβ(z0, z1) is symmetric

with respect to the vertical line L : u = (1−β) log{|c|2−ρ2} and the horizontal
line v = 2(1− β)ϕ0. By

|c− 1| = |z1(z1 − z0)|
1− |z1|2

<
|z1 − z0|
1− |z1|2

= ρ,

we also note that the origin is an interior point of Vβ(z0, z1).
Since Vβ(z0, z1) is compact, there exists w0 ∈ ∂Vβ(z0, z1) with |w0| =

maxf∈CV(Hβ) | log f ′(z1)− log f ′(z0)|. From |z1| ≥ |z0| it follows that |c|2−ρ2 ≥
1 and hence the origin lies in the left hand side of the symmetric axis L. There-
fore there exists θ0 with |θ0| ≤ sin−1 ρ

|C| such that w0 = u2(θ0) + iΘ(θ0) and

that the normal line at w0 passes through the origin.

Claim. There exists uniquely the normal line to the arc J2, which passes
through the origin.

We temporarily assume the claim. Then the unique normal line can be
expressed as
u = u2(θ0)− dΘ

dθ
(θ0)t = 2(1− β)

{
log

(
|c| cos θ0 +

√
ρ2 − |c|2 sin2 θ0

)
− t
}
,

v = Θ(θ0)+
du2

dθ
(θ0)t = 2(1− β)

θ0 + ϕ0 −
|c| sin θ0√

ρ2 − |c|2 sin2 θ0

t
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t ∈ R. Since the line passes through the origin, we obtain

θ0 + ϕ0 −
|c| sin θ0√

ρ2 − |c|2 sin2 θ0

log

(
|c| cos θ0 +

√
ρ2 − |c|2 sin2 θ0

)
= 0,

which is equivalent to (1.9).
By the uniqueness part of Theorem 1.1 the extremal function which attains

maxf∈CV(Hβ) | log f ′(z1) − log f ′(z0)| is given by f(z) = ε0kβ(ε0z), where ε0

satisfies

w0 = u2(θ0) + iΘ(θ0) = 2(1− β) log
1− ε0z0

1− ε0z1
,

which is equivalent to (1.10). �

Proof of Claim. Let h(θ) be the v-coordinate of the intersection of the normal
line at (u2(θ),Θ(θ)) and the symmetric axis L. Then

h(θ)

2(1− β)
= θ + ϕ0 −

|c| sin θ

2
√
ρ2 − |c|2 sin2 θ

log

 |c| cos θ +
√
ρ2 − |c|2 sin2 θ

|c| cos θ −
√
ρ2 − |c|2 sin2 θ

 .

By an elementary calculation

h′(θ)

2(1− β)
=

ρ2

ρ2 − |c|2 sin2 θ
− |c|ρ2 cos θ

2(ρ2 − |c|2 sin2 θ)3/2
log

1 +

√
ρ2−|c|2 sin2 θ

|c| cos θ

1−
√
ρ2−|c|2 sin2 θ

|c| cos θ

 .

Notice that 1
2 log 1+x

1−x = x +
∑∞
k=1

1
2k+1x

2k+1 > x for 0 < x < 1. It is easy

to see that h′(θ) < 0 for |θ| < sin−1 ρ
|c| . Thus h(θ) is strictly decreasing in θ.

From a geometric consideration we infer that any two normal lines to the curve
J2 intersect in the right hand side of the symmetric axis L. Therefore a normal
line passing through 0 is unique. �

Proof of Theorem 1.4. The maximum in question is obviously the diameter of
the variability region Vβ(0, z1) = {2(1− β) log 1

1−z1z : |z| ≤ 1}, i.e.,

max
f,g∈CV(Hβ)

| log f ′(z1)− log g′(z1)| = max
w,w̃∈Vβ(0,z1)

|w − w̃|.

We may assume that z1 = r ∈ (0, 1). Let a = 1−
√

1−r2

r . Then we have

0 < a < 1, 1− ar =
√

1− r2 and r − a = a
√

1− r2. Consider the function

F (z) = log
1

1− r z+a1+az

− 1

2
log

1

1− r2
, z ∈ D.

Then Vβ(0, r) = {2(1 − β)(F (z) + 1
2 log 1

1−r2 ) : z ∈ D} and we have by an
elementary calculation

F (z) = log
1 + az

1− az
= 2

∞∑
n=0

a2n+1

2n+ 1
z2n+1.
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Since F (z) is an odd function of z and has a Taylor expansion of non-negative
coefficients, we have

|F (z)| ≤ F (|z|), z ∈ D
with equality if and only if z ∈ D ∩ R. In particular, the diameter of F (D) is
given only by F (1) − F (−1) = 2F (1) = log 1+r

1−r as is expected. It is easy to
determine the extremal functions explicitly. We omit details.

Acknowledgment. We thank the referees for their careful reading of our
manuscript and their constructive comments. In particular the referees sug-
gested us to introduce the auxiliary function F (z) in the proof of Theorem 1.4,
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