TWO POINTS DISTORTION ESTIMATES FOR CONVEX UNIVALENT FUNCTIONS

Mari Okada and Hiroshi Yanagihara

Abstract. We study the class $\mathcal{C} \mathcal{V}(\Omega)$ of analytic functions f in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ satisfying

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \in \Omega, \quad z \in \mathbb{D}
$$

where Ω is a convex and proper subdomain of \mathbb{C} with $1 \in \Omega$. Let ϕ_{Ω} be the unique conformal mapping of \mathbb{D} onto Ω with $\phi_{\Omega}(0)=1$ and $\phi_{\Omega}^{\prime}(0)>0$ and

$$
k_{\Omega}(z)=\int_{0}^{z} \exp \left(\int_{0}^{t} \zeta^{-1}\left(\phi_{\Omega}(\zeta)-1\right) d \zeta\right) d t
$$

Let $z_{0}, z_{1} \in \mathbb{D}$ with $z_{0} \neq z_{1}$. As the first result in this paper we show that the region of variability $\left\{\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right): f \in \mathcal{C} \mathcal{V}(\Omega)\right\}$ coincides with the set $\left\{\log k_{\Omega}^{\prime}\left(z_{1} z\right)-\log k_{\Omega}^{\prime}\left(z_{0} z\right):|z| \leq 1\right\}$. The second result deals with the case when Ω is the right half plane $\mathbb{H}=\{w \in \mathbb{C}: \operatorname{Re} w>0\}$. In this case $\mathcal{C} \mathcal{V}(\Omega)$ is identical with the usual normalized class of convex univalent functions on \mathbb{D}. And we derive the sharp upper bound for $\left|\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)\right|, f \in \mathcal{C} \mathcal{V}(\mathbb{H})$. The third result concerns how far two functions in $\mathcal{C} \mathcal{V}(\Omega)$ are from each other. Furthermore we determine all extremal functions explicitly.

1. Introduction

Let \mathbb{C} be the complex plane, $\mathbb{D}(c, r)=\{z \in \mathbb{C}:|z-c|<r\}$ and $\overline{\mathbb{D}}(c, r)=$ $\{z \in \mathbb{C}:|z-c| \leq r\}$ with $c \in \mathbb{C}$ and $r>0$. In particular we denote the unit disk $\mathbb{D}(0,1)$ by \mathbb{D}. Let \mathcal{A} be the linear space of analytic functions in the unit disk \mathbb{D}, endowed with the topology of uniform convergence on every compact subset of \mathbb{D}. Set $\mathcal{A}_{0}=\left\{f \in \mathcal{A}: f(0)=f^{\prime}(0)-1=0\right\}$ and denote by S the subclass of \mathcal{A}_{0} consisting of all univalent functions as usual. Then S is a compact subset of the metrizable space \mathcal{A}. See [1, Chap. 9] for details.

Unless otherwise stated explicitly, throughout the discussion let Ω be a simply connected domain in \mathbb{C} with $1 \in \Omega \neq \mathbb{C}$ and ϕ_{Ω} the unique conformal

Received May 4, 2017; Revised September 14, 2017; Accepted November 3, 2017.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. univalent, convex functions, modulus of continuity, region of variability.
mapping of \mathbb{D} onto Ω with $\phi_{\Omega}(0)=1$ and $\phi_{\Omega}^{\prime}(0)>0$. Ma and Minda [3] considered the classes $S^{*}(\Omega)$ and $\mathcal{C V}(\Omega)$

$$
\begin{aligned}
& S^{*}(\Omega)=\left\{f \in \mathcal{A}_{0}: \frac{z f^{\prime}(z)}{f(z)} \in \Omega \text { on } \mathbb{D}\right\} \\
& \mathcal{C} \mathcal{V}(\Omega)=\left\{f \in \mathcal{A}_{0}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \in \Omega \text { on } \mathbb{D}\right\},
\end{aligned}
$$

with some mild conditions, e.g. Ω is starlike with respect to 1 and the symmetry with respect to the real axis \mathbb{R}, i.e., $\bar{\Omega}=\Omega$. It is easy to see that for $f \in \mathcal{A}_{0}$, $f \in \mathcal{C} \mathcal{V}(\Omega)$ if and only if $z f^{\prime} \in S^{*}(\Omega)$. Note that, with the special choice of $\Omega=\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Re} w>0\}$, these two classes consist of starlike and convex functions in the standard sense, and are denoted simply by S^{*} and $\mathcal{C} \mathcal{V}$, respectively.

If $0<\alpha \leq 1$ and $\Omega=\left\{w \in \mathbb{C}:|\operatorname{Arg} w|<2^{-1} \pi \alpha\right\}$, then $\phi_{\Omega}(z)=\{(1+$ $z) /(1-z)\}^{\alpha}$, and hence, in this choice $\mathcal{C} \mathcal{V}(\Omega)$ reduces to the class of strongly convex functions of order α. Furthermore for $\Omega=\mathbb{H}_{\beta}:=\{w \in \mathbb{C}: \operatorname{Re} w>\beta\}$ with $0 \leq \beta<1$ the class $\mathcal{C} \mathcal{V}\left(\mathbb{H}_{\beta}\right)$ coincides with the class of convex functions of order β. Also $\mathcal{C} \mathcal{V}(\{\operatorname{Re} w>k|w-1|\})$ with $0 \leq k<\infty$ called the class of k-uniformly convex functions, which was introduced in [2]. Various subclasses of $\mathcal{C} \mathcal{V}$ can be expressed in this way. For details we refer to [3] and [4]. We notice that it may be possible that $\mathbb{H} \subset \Omega$, and in this case we have $\mathcal{C} \mathcal{V} \subset \mathcal{C} \mathcal{V}(\Omega)$.

Since Ω is simply connected and $\Omega \neq \mathbb{C}, \mathbb{C} \backslash \Omega$ has an unbounded component. Therefore $f \in \mathcal{C} \mathcal{V}(\Omega)$ forces that $f^{\prime}(z) \neq 0$ in \mathbb{D} and the single valued branch $\log f^{\prime}(z)$ with $\log f^{\prime}(0)=0$ exists on \mathbb{D}. Let $z_{0}, z_{1} \in \mathbb{D}$ with $z_{0} \neq z_{1}$. One of the aims of the present article is to study the variability regions

$$
\begin{equation*}
V_{\Omega}\left(z_{0}, z_{1}\right)=\left\{\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right): f \in \mathcal{C} \mathcal{V}(\Omega)\right\} \tag{1.1}
\end{equation*}
$$

for various classes $\mathcal{C} \mathcal{V}(\Omega)$ in a unified manner. Let

$$
\begin{equation*}
k_{\Omega}(z)=\int_{0}^{z} \exp \left(\int_{0}^{t} \frac{\phi_{\Omega}(\zeta)-1}{\zeta} d \zeta\right) d t, \quad z \in \mathbb{D} . \tag{1.2}
\end{equation*}
$$

Then $k_{\Omega} \in \mathcal{C} \mathcal{V}(\Omega)$ and k_{Ω} plays the role of the extremal function.
Theorem 1.1. If Ω is convex, then

$$
\begin{equation*}
V_{\Omega}\left(z_{0}, z_{1}\right)=\left\{\log k_{\Omega}^{\prime}\left(z_{1} z\right)-\log k_{\Omega}^{\prime}\left(z_{0} z\right): z \in \overline{\mathbb{D}}\right\} . \tag{1.3}
\end{equation*}
$$

Furthermore the set in the right hand side of the equation is a convex closed Jordan domain enclosed by the simple closed curve given by

$$
\partial \mathbb{D} \ni \varepsilon \mapsto \log k_{\Omega}^{\prime}\left(z_{1} \varepsilon\right)-\log k_{\Omega}^{\prime}\left(z_{0} \varepsilon\right),
$$

and $\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)=\log k_{\Omega}^{\prime}\left(z_{1} \varepsilon\right)-\log k_{\Omega}^{\prime}\left(z_{0} \varepsilon\right)$ holds for some $f \in \mathcal{C} \mathcal{V}(\Omega)$ and $\varepsilon \in \partial \mathbb{D}$ if and only if $f(z)=\bar{\varepsilon} k_{\Omega}(\varepsilon z)$ in \mathbb{D}.

When $\Omega=\mathbb{H}_{\beta}$, the functions $\phi_{\mathbb{H}_{\beta}}, k_{\mathbb{H}_{\beta}}$ and the set $V_{\mathbb{H}_{\beta}}\left(z_{0}, z_{1}\right)$ will be written simply as ϕ_{β}, k_{β} and $V_{\beta}\left(z_{0}, z_{1}\right)$, respectively. Then we have

$$
\begin{align*}
\phi_{\beta}(z) & =\frac{1+(1-2 \beta) z}{1-z}, \tag{1.4}\\
\log k_{\beta}^{\prime}(z) & =2(1-\beta) \log \frac{1}{1-z}, \tag{1.5}\\
k_{\beta}(z) & = \begin{cases}\frac{1}{2 \beta-1}\left\{1-(1-z)^{2 \beta-1}\right\}, & \beta \neq \frac{1}{2} \\
\log \frac{1}{1-z}, & \beta=\frac{1}{2} .\end{cases} \tag{1.6}
\end{align*}
$$

As a simple application of Theorem 1.1 we have the following simple estimate.

Proposition 1.2. Let $f \in \mathcal{C} \mathcal{V}\left(\mathbb{H}_{\beta}\right)$ with $0<\beta \leq 1$. For $z_{0}, z_{1} \in \mathbb{D}$ with $z_{0} \neq z_{1}$ we have

$$
\begin{equation*}
\left|\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)\right| \leq 2(1-\beta) \frac{\left|z_{1}-z_{0}\right|}{1-\max \left\{\left|z_{0}\right|,\left|z_{1}\right|\right\}} \tag{1.7}
\end{equation*}
$$

The inequality (1.7) is not sharp. Applying Theorem 1.1 more precisely we can determine

$$
\max _{f \in \mathcal{C}\left(\mathbb{H}_{\beta}\right)}\left|\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)\right|, \quad \max _{f, g \in \mathcal{C} \mathcal{V}\left(\mathbb{H}_{\beta}\right)}\left|\log f^{\prime}\left(z_{1}\right)-\log g^{\prime}\left(z_{1}\right)\right| .
$$

Theorem 1.3. For $z_{0}, z_{1} \in \mathbb{D}$ with $\left|z_{0}\right| \leq\left|z_{1}\right|$ and $z_{0} \neq z_{1}$ let

$$
\begin{equation*}
c=\frac{1-z_{0} \overline{z_{1}}}{1-\left|z_{1}\right|^{2}}, \quad \rho=\frac{\left|z_{1}-z_{0}\right|}{1-\left|z_{1}\right|^{2}} \tag{1.8}
\end{equation*}
$$

and $\varphi_{0}=\operatorname{Arg} c$. Then the equation

$$
\begin{equation*}
\frac{|c| \sin \theta}{\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}} \log \left(|c| \cos \theta+\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}\right)-\theta=\varphi_{0} \tag{1.9}
\end{equation*}
$$

has the unique solution $\theta_{0} \in\left(-\sin ^{-1} \frac{\rho}{|c|}, \sin ^{-1} \frac{\rho}{|c|}\right)$, and

$$
\begin{aligned}
& \max _{f \in \mathcal{C} \mathcal{V}\left(\mathbb{H}_{\beta}\right)}\left|\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)\right| \\
= & 2(1-\beta)\left|\log \left(|c| \cos \theta_{0}+\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta_{0}}\right)+i\left(\theta_{0}+\varphi_{0}\right)\right|
\end{aligned}
$$

and the maximum is attained if and only if $f(z)=\overline{\varepsilon_{0}} k_{\beta}\left(\varepsilon_{0} z\right)$, where $\varepsilon_{0} \in \partial \mathbb{D}$ is given by

$$
\begin{equation*}
\left(|c| \cos \theta_{0}+\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta_{0}}\right) e^{i\left(\theta_{0}+\varphi_{0}\right)}=\frac{1-\varepsilon_{0} z_{0}}{1-\varepsilon_{0} z_{1}} . \tag{1.10}
\end{equation*}
$$

Particularly when $z_{0} / z_{1} \geq 0$ or $z_{0} / z_{1}<0$, we have $\varphi_{0}=\theta_{0}=0$ and the maximum coincides with $2(1-\beta) \log \frac{1-\left|z_{0}\right|}{1-\left|z_{1}\right|}$ or $2(1-\beta) \log \frac{1+\left|z_{0}\right|}{1-\left|z_{1}\right|}$, respectively.

The following theorem shows that how far two functions in $\mathcal{C V}\left(\mathbb{H}_{\beta}\right)$ are from each other.

Theorem 1.4. For $z_{1} \in \mathbb{D} \backslash\{0\}$ we have

$$
\max _{f, g \in \mathcal{C V}\left(\mathbb{H}_{\beta}\right)}\left|\log f^{\prime}\left(z_{1}\right)-\log g^{\prime}\left(z_{1}\right)\right|=2(1-\beta) \log \frac{1+\left|z_{1}\right|}{1-\left|z_{1}\right|}
$$

and the maximum is attained if and only if

$$
f(z)=-\frac{z_{1}}{\left|z_{1}\right|} k_{\beta}\left(-\frac{\overline{z_{1}}}{\left|z_{1}\right|}\right) \quad \text { and } \quad g(z)=\frac{z_{1}}{\left|z_{1}\right|} k_{\beta}\left(\frac{\overline{z_{1}}}{\left|z_{1}\right|}\right)
$$

or permutation of them.

2. Determination of $V_{\Omega}\left(z_{0}, z_{1}\right)$

Assume Ω is convex and let $z_{0}, z_{1} \in \mathbb{D}$ with $z_{0} \neq z_{1}$ be fixed. For $f \in \mathcal{C} \mathcal{V}(\Omega)$ let

$$
p_{f}(z)=1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}, \quad z \in \mathbb{D} .
$$

Lemma 2.1. The set $V_{\Omega}\left(z_{0}, z_{1}\right)$ is a compact and convex subset of \mathbb{C} and has 0 as an interior point. Particularly $\partial V_{\Omega}\left(z_{0}, z_{1}\right)$ is a simple closed curve and $V_{\Omega}\left(z_{0}, z_{1}\right)$ is the closed Jordan domain enclosed by $\partial V_{\Omega}\left(z_{0}, z_{1}\right)$, i.e., $V_{\Omega}\left(z_{0}, z_{1}\right)$ is the union of $\partial V_{\Omega}\left(z_{0}, z_{1}\right)$ and the domain surrounded by $\partial V_{\Omega}\left(z_{0}, z_{1}\right)$.

Proof. It is easy to see that $\mathcal{C} \mathcal{V}(\Omega)$ is a compact subset of the metric space \mathcal{A}. Since $V_{\Omega}\left(z_{0}, z_{1}\right)$ is the image of $\mathcal{C} \mathcal{V}(\Omega)$ with respect to the continuous functional $\mathcal{C} \mathcal{V}(\Omega) \ni f \mapsto \log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)$, it is a compact subset of \mathbb{C}.

For $f_{0}, f_{1} \in \mathcal{C} \mathcal{V}(\Omega)$ and $t \in(0,1)$ let

$$
p_{t}(z)=(1-t) p_{f_{1}}(z)+t_{f_{0}}(z), \quad f_{t}(z)=\int_{0}^{z} \exp \left(\int_{0}^{\zeta} \frac{p_{t}(\xi)-1}{\xi} d \xi\right) d \zeta
$$

Then $f_{t} \in \mathcal{C} \mathcal{V}(\Omega)$ and
$\log f_{t}^{\prime}\left(z_{1}\right)-\log f_{t}^{\prime}\left(z_{0}\right)=(1-t)\left\{\log f_{1}^{\prime}\left(z_{1}\right)-\log f_{1}^{\prime}\left(z_{0}\right)\right\}+t\left\{\log f_{0}^{\prime}\left(z_{1}\right)-\log f_{0}^{\prime}\left(z_{0}\right)\right\}$.
From this it easily follows that $V_{\Omega}\left(z_{0}, z_{1}\right)$ is convex.
For $\varepsilon \in \overline{\mathbb{D}}$ and $z \in \mathbb{D}$ let

$$
F_{\varepsilon}(z)= \begin{cases}\frac{1}{\varepsilon} k_{\Omega}(\varepsilon z), & \varepsilon \neq 0, \\ z, & \varepsilon=0 .\end{cases}
$$

Then $p_{F_{\varepsilon}}(z)=\phi_{\Omega}(\varepsilon z)$ and hence $F_{\varepsilon} \in \mathcal{C} \mathcal{V}(\Omega)$ for all $\varepsilon \in \overline{\mathbb{D}}$. Let

$$
q(\varepsilon)=\log F_{\varepsilon}^{\prime}\left(z_{1}\right)-\log F_{\varepsilon}^{\prime}\left(z_{0}\right)=\log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right) .
$$

Then $q(\varepsilon) \in V_{\Omega}\left(z_{0}, z_{1}\right)$ and we have

$$
q^{\prime}(0)=\frac{k_{\Omega}^{\prime \prime}(0)}{k_{\Omega}^{\prime}(0)}\left(z_{1}-z_{0}\right)=\phi_{\Omega}^{\prime}(0)\left(z_{1}-z_{0}\right) \neq 0
$$

Therefore q is nonconstant analytic in \mathbb{D} and $0(=q(0))$ is an interior point of $q(\mathbb{D})$. Since $q(\mathbb{D}) \subset V_{\Omega}\left(z_{0}, z_{1}\right), 0$ is an interior point of $V_{\Omega}\left(z_{0}, z_{1}\right)$.

Since the latter statement of the lemma is a simple consequence of the former one, proof is left to the reader.

Proof of Theorem 1.1. For $r \in(0,1)$, ϕ_{Ω} maps $\mathbb{D}(0, r)$ conformally onto the convex domain $\phi_{\Omega}(\mathbb{D}(0, r))$. Also the boundary $\partial \phi_{\Omega}(\mathbb{D}(0, r))$ is the image of the convex closed curve given by $(-\pi, \pi] \ni \theta \mapsto \phi_{\Omega}\left(r e^{i \theta}\right)$. By the Schwarz lemma we have $\left.\mid \phi_{\Omega}^{-1}\left(p_{f}(z)\right)\right)\left|\leq|z|\right.$. This implies $p_{f}(\zeta) \in \overline{\phi_{\Omega}(\mathbb{D}(0, r))}=\phi_{\Omega}(\overline{\mathbb{D}}(0, r))$ for $\zeta \in \overline{\mathbb{D}}(0, r)$. Thus for $\zeta \in \overline{\mathbb{D}}(0, r), p_{f}(\zeta)$ belongs to the left half plane of the tangential line at $\phi_{\Omega}\left(r e^{i \theta}\right)$ with the tangential vector $i r e^{i \theta} \phi_{\Omega}^{\prime}\left(r e^{i \theta}\right)$. Hence

$$
\operatorname{Re}\left\{\frac{\phi_{\Omega}\left(r e^{i \theta}\right)-p_{f}(\zeta)}{r e^{i \theta} \phi_{\Omega}^{\prime}\left(r e^{i \theta}\right)}\right\} \geq 0
$$

Let $\varepsilon \in \partial \mathbb{D}(0, r)$. Applying the above inequality to $\phi_{\Omega}(\varepsilon \cdot)$ instead of ϕ_{Ω} and letting $\zeta=r e^{i \theta}=z$ we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\phi_{\Omega}(\varepsilon z)-p_{f}(z)}{\varepsilon z \phi_{\Omega}^{\prime}(\varepsilon z)}\right\} \geq 0, \quad z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

with equality at some $z_{0} \in \mathbb{D}$ if and only if $p_{f}(z) \equiv \phi_{\Omega}(\varepsilon z)$.
Since Ω is convex, the line segment connecting $\phi_{\Omega}\left(\varepsilon z_{0}\right)$ and $\phi_{\Omega}\left(\varepsilon z_{1}\right)$ entirely lies in Ω. Let Γ be the path defined by

$$
z(t)=\bar{\varepsilon} \phi_{\Omega}^{-1}\left((1-t) \phi_{\Omega}\left(\varepsilon z_{0}\right)+t \phi_{\Omega}\left(\varepsilon z_{1}\right)\right), \quad 0 \leq t \leq 1
$$

Then Γ is a C^{1}-path in \mathbb{D} joining z_{0} and z_{1} and satisfying $\phi_{\Omega}(\varepsilon z(t))=(1-$ $t) \phi_{\Omega}\left(\varepsilon z_{0}\right)+t \phi_{\Omega}\left(\varepsilon z_{1}\right)$. By differentiation we have

$$
\begin{equation*}
\varepsilon \phi_{\Omega}^{\prime}(\varepsilon z(t)) z^{\prime}(t)=\phi_{\Omega}\left(\varepsilon z_{1}\right)-\phi_{\Omega}\left(\varepsilon z_{0}\right) \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2) we have successively

$$
\begin{aligned}
0 & \leq \int_{0}^{1} \operatorname{Re}\left\{\frac{\phi_{\Omega}(\varepsilon z(t))-p_{f}(z(t))}{\varepsilon z(t) \phi_{\Omega}^{\prime}(\varepsilon z(t))}\right\} d t \\
& =\operatorname{Re}\left\{\int_{0}^{1} \frac{\frac{\phi_{\Omega}(\varepsilon z(t))-p_{f}(z(t))}{z(t)} z^{\prime}(t)}{\varepsilon \phi_{\Omega}^{\prime}(\varepsilon z(t)) z^{\prime}(t)} d t\right\} \\
& =\operatorname{Re}\left\{\int_{0}^{1} \frac{\frac{\phi_{\Omega}(\varepsilon z(t))-p_{f}(z(t))}{z(t)} z^{\prime}(t)}{\phi_{\Omega}\left(\varepsilon z_{1}\right)-\phi_{\Omega}\left(\varepsilon z_{0}\right)} d t\right\} \\
& =\operatorname{Re}\left\{\frac{\int_{\Gamma} \frac{\phi_{\Omega}(\varepsilon z)-p_{f}(z)}{z} d z}{\phi_{\Omega}\left(\varepsilon z_{1}\right)-\phi_{\Omega}\left(\varepsilon z_{0}\right)}\right\} \\
& =\operatorname{Re}\left\{\frac{\int_{\Gamma} \frac{\phi_{\Omega}(\varepsilon z)-1}{z} d z-\int_{\Gamma} \frac{p_{f}(z)-1}{z} d z}{\phi_{\Omega}\left(\varepsilon z_{1}\right)-\phi_{\Omega}\left(\varepsilon z_{0}\right)}\right\}
\end{aligned}
$$

$$
=\operatorname{Re}\left\{\frac{\log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right)-\left(\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)\right)}{\phi_{\Omega}\left(\varepsilon z_{1}\right)-\phi_{\Omega}\left(\varepsilon z_{0}\right)}\right\} .
$$

Letting $w_{0}=\log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right)$ and $c=\phi_{\Omega}\left(\varepsilon z_{1}\right)-\phi_{\Omega}\left(\varepsilon z_{0}\right)$ it easily follows that $\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)$ always belongs to the half plane $\mathcal{H}=\{w \in$ $\left.\left.\mathbb{C}: \operatorname{Re}\left\{\left(w_{0}-w\right) / c\right)\right\} \geq 0\right\}$. Thus we have $V_{\Omega}\left(z_{0}, z_{1}\right) \subset \mathcal{H}$. From this $w_{0}=$ $\log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right) \in V_{\Omega}\left(z_{0}, z_{1}\right) \cap \partial \mathcal{H}$. Therefore we obtain $\log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-$ $\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right) \in \partial V_{\Omega}\left(z_{0}, z_{1}\right)$ for any $\varepsilon \in \partial \mathbb{D}$.

We deal with uniqueness. Suppose that $\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)=\log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-$ $\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right)$ holds for some $f \in \mathcal{C} \mathcal{V}(\Omega)$ and $\varepsilon \in \partial \mathbb{D}$. Then from the uniqueness part of (2.1) it follows that $\phi_{\Omega}(\varepsilon z)=p_{f}(z)$ on the image of Γ. By the identity theorem for analytic functions we obtain that $\phi_{\Omega}(\varepsilon z)=p_{f}(z)$ in \mathbb{D}. Therefore, $\bar{\varepsilon} k_{\Omega}(\varepsilon z)=f(z)$ in \mathbb{D} by normalization.

Now we show that the closed curve given by $\partial \mathbb{D} \ni \varepsilon \mapsto \log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-$ $\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right)$ is simple. Assume that $\log k_{\Omega}^{\prime}\left(\varepsilon_{1} z_{1}\right)-\log k_{\Omega}^{\prime}\left(\varepsilon_{1} z_{0}\right)=\log k_{\Omega}^{\prime}\left(\varepsilon_{0} z_{1}\right)-$ $\log k_{\Omega}^{\prime}\left(\varepsilon_{1} z_{0}\right)$. Then from the uniqueness part of the theorem which is shown above we have $\overline{\varepsilon_{1}} k_{\Omega}\left(\varepsilon_{1} z\right)=\overline{\varepsilon_{0}} k_{\Omega}\left(\varepsilon_{0} z\right)$ in \mathbb{D}. Since $k_{\Omega}(z)=z+2^{-1} k_{\Omega}^{\prime \prime}(0) z^{2}+\cdots$ with $k_{\Omega}^{\prime \prime}(0)=\phi_{\Omega}^{\prime}(0)>0$, this implies $\varepsilon_{1}=\varepsilon_{0}$.

We have shown that the closed curve given by $\partial \mathbb{D} \ni \varepsilon \mapsto \log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-$ $\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right)$ is simple and its image is contained in $\partial V_{\Omega}\left(z_{0}, z_{1}\right)$. By Lemma 2.1 $\partial V_{\Omega}\left(z_{0}, z_{1}\right)$ is also a image of simple closed curve. Note that a simple closed curve cannot contain any simple closed curve other than itself, the mapping $\partial \mathbb{D} \ni \varepsilon \mapsto \log k_{\Omega}^{\prime}\left(\varepsilon z_{1}\right)-\log k_{\Omega}^{\prime}\left(\varepsilon z_{0}\right)$ is a parametrization of the boundary curve $\partial V_{\Omega}\left(z_{0}, z_{1}\right)$.

3. The case that $\Omega=\mathbb{H}_{\beta}$

Proof of Proposition 1.2. When $\Omega=\mathbb{H}_{\beta}$, by Theorem 1.1 and (1.5), for $f \in$ $\mathcal{C} \mathcal{V}\left(\mathbb{H}_{\beta}\right)$ there exists $z \in \overline{\mathbb{D}}$ with $\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)=2(1-\beta) \log \frac{1-z_{0} z}{1-z_{1} z}$. Since $\log \frac{1}{1-w}=\sum_{k=1}^{\infty} \frac{w^{k}}{k}$, we have

$$
\begin{aligned}
\left|\frac{\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)}{z_{1}-z_{0}}\right| & =2(1-\beta)\left|\sum_{k=1}^{\infty} \frac{z_{1}^{k-1}+z_{1}^{k-2} z_{0}+\cdots+z_{0}^{k-1}}{k} z^{k-1}\right| \\
& \leq 2(1-\beta) \sum_{k=1}^{\infty}\left(\max \left\{\left|z_{1}\right|,\left|z_{0}\right|\right\}\right)^{k-1}|z|^{k-1} \\
& =\frac{2(1-\beta)}{1-\max \left\{\left|z_{1}\right|,\left|z_{0}\right|\right\}|z|} \\
& \leq \frac{2(1-\beta)}{1-\max \left\{\left|z_{1}\right|,\left|z_{0}\right|\right\}}
\end{aligned}
$$

Proof of Theorem 1.3. Similarly we have

$$
V_{\beta}\left(z_{0}, z_{1}\right)=\left\{\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right): f \in \mathcal{C} \mathcal{V}\left(\mathbb{H}_{\beta}\right)\right\}
$$

$$
=\left\{2(1-\beta) \log \frac{1-z_{0} z}{1-z_{1} z}: z \in \overline{\mathbb{D}}\right\}
$$

The image of $\overline{\mathbb{D}}$ under the linear fractional transformation $z \mapsto \frac{1-z_{0} z}{1-z_{1} z}$ coincides with $\overline{\mathbb{D}}(c, \rho)$, where c and ρ are defined by (1.8). Notice that $|c|<\rho$. Let $\varphi_{0}=\operatorname{Arg} c \in(-\pi, \pi]$. Then for $r e^{i\left(\theta+\varphi_{0}\right)} \in \partial \mathbb{D}(c, \rho)$, by the law of cosines we have $r=|c| \cos \theta \pm \sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta},|\theta| \leq \sin ^{-1} \frac{\rho}{|c|}$. Then the boundary $\partial V_{\beta}\left(z_{0}, z_{1}\right)=2(1-\beta) \log \partial \mathbb{D}(c, \rho)$ consists of two simple arcs J_{1} and J_{2} which have parametric representations

$$
J_{\ell}: u+i v=u_{\ell}(\theta)+i \Theta(\theta), \quad \ell=1,2, \quad|\theta| \leq \sin ^{-1} \frac{\rho}{|c|}
$$

where

$$
\begin{aligned}
& u_{1}(\theta)=2(1-\beta) \log \left\{|c| \cos \theta-\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}\right\} \\
& u_{2}(\theta)=2(1-\beta) \log \left\{|c| \cos \theta+\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}\right\} \\
& \Theta(\theta)=2(1-\beta)\left(\theta+\varphi_{0}\right), \quad \varphi_{0}=\operatorname{Arg} c
\end{aligned}
$$

Since $\frac{1}{2}\left\{u_{1}(\theta)+u_{2}(\theta)\right\}=(1-\beta) \log \left\{|c|^{2}-\rho^{2}\right\}, \partial V_{\beta}\left(z_{0}, z_{1}\right)$ is symmetric with respect to the vertical line $L: u=(1-\beta) \log \left\{|c|^{2}-\rho^{2}\right\}$ and the horizontal line $v=2(1-\beta) \varphi_{0}$. By

$$
|c-1|=\frac{\left|\overline{z_{1}}\left(z_{1}-z_{0}\right)\right|}{1-\left|z_{1}\right|^{2}}<\frac{\left|z_{1}-z_{0}\right|}{1-\left|z_{1}\right|^{2}}=\rho
$$

we also note that the origin is an interior point of $V_{\beta}\left(z_{0}, z_{1}\right)$.
Since $V_{\beta}\left(z_{0}, z_{1}\right)$ is compact, there exists $w_{0} \in \partial V_{\beta}\left(z_{0}, z_{1}\right)$ with $\left|w_{0}\right|=$ $\max _{f \in \mathcal{C V}\left(\mathbb{H}_{\beta}\right)}\left|\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)\right|$. From $\left|z_{1}\right| \geq\left|z_{0}\right|$ it follows that $|c|^{2}-\rho^{2} \geq$ 1 and hence the origin lies in the left hand side of the symmetric axis L. Therefore there exists θ_{0} with $\left|\theta_{0}\right| \leq \sin ^{-1} \frac{\rho}{|C|}$ such that $w_{0}=u_{2}\left(\theta_{0}\right)+i \Theta\left(\theta_{0}\right)$ and that the normal line at w_{0} passes through the origin.
Claim. There exists uniquely the normal line to the arc J_{2}, which passes through the origin.

We temporarily assume the claim. Then the unique normal line can be expressed as

$$
\left\{\begin{array}{l}
u=u_{2}\left(\theta_{0}\right)-\frac{d \Theta}{d \theta}\left(\theta_{0}\right) t=2(1-\beta)\left\{\log \left(|c| \cos \theta_{0}+\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta_{0}}\right)-t\right\} \\
v=\Theta\left(\theta_{0}\right)+\frac{d u_{2}}{d \theta}\left(\theta_{0}\right) t=2(1-\beta)\left\{\theta_{0}+\varphi_{0}-\frac{|c| \sin \theta_{0}}{\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta_{0}}} t\right\}
\end{array}\right.
$$

$t \in \mathbb{R}$. Since the line passes through the origin, we obtain

$$
\theta_{0}+\varphi_{0}-\frac{|c| \sin \theta_{0}}{\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta_{0}}} \log \left(|c| \cos \theta_{0}+\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta_{0}}\right)=0
$$

which is equivalent to (1.9).
By the uniqueness part of Theorem 1.1 the extremal function which attains $\max _{f \in \mathcal{C V}\left(\mathbb{H}_{\beta}\right)}\left|\log f^{\prime}\left(z_{1}\right)-\log f^{\prime}\left(z_{0}\right)\right|$ is given by $f(z)=\overline{\varepsilon_{0}} k_{\beta}\left(\varepsilon_{0} z\right)$, where ε_{0} satisfies

$$
w_{0}=u_{2}\left(\theta_{0}\right)+i \Theta\left(\theta_{0}\right)=2(1-\beta) \log \frac{1-\varepsilon_{0} z_{0}}{1-\varepsilon_{0} z_{1}},
$$

which is equivalent to (1.10).
Proof of Claim. Let $h(\theta)$ be the v-coordinate of the intersection of the normal line at $\left(u_{2}(\theta), \Theta(\theta)\right)$ and the symmetric axis L. Then

$$
\frac{h(\theta)}{2(1-\beta)}=\theta+\varphi_{0}-\frac{|c| \sin \theta}{2 \sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}} \log \left(\frac{|c| \cos \theta+\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}}{|c| \cos \theta-\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}}\right) .
$$

By an elementary calculation

$$
\frac{h^{\prime}(\theta)}{2(1-\beta)}=\frac{\rho^{2}}{\rho^{2}-|c|^{2} \sin ^{2} \theta}-\frac{|c| \rho^{2} \cos \theta}{2\left(\rho^{2}-|c|^{2} \sin ^{2} \theta\right)^{3 / 2}} \log \left(\frac{1+\frac{\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}}{|c| \cos \theta}}{1-\frac{\sqrt{\rho^{2}-|c|^{2} \sin ^{2} \theta}}{|c| \cos \theta}}\right) .
$$

Notice that $\frac{1}{2} \log \frac{1+x}{1-x}=x+\sum_{k=1}^{\infty} \frac{1}{2 k+1} x^{2 k+1}>x$ for $0<x<1$. It is easy to see that $h^{\prime}(\theta)<0$ for $|\theta|<\sin ^{-1} \frac{\rho}{|c|}$. Thus $h(\theta)$ is strictly decreasing in θ. From a geometric consideration we infer that any two normal lines to the curve J_{2} intersect in the right hand side of the symmetric axis L. Therefore a normal line passing through 0 is unique.

Proof of Theorem 1.4. The maximum in question is obviously the diameter of the variability region $V_{\beta}\left(0, z_{1}\right)=\left\{2(1-\beta) \log \frac{1}{1-z_{1} z}:|z| \leq 1\right\}$, i.e.,

$$
\max _{f, g \in \mathcal{C} \mathcal{V}\left(\mathbb{H}_{\beta}\right)}\left|\log f^{\prime}\left(z_{1}\right)-\log g^{\prime}\left(z_{1}\right)\right|=\max _{w, \tilde{w} \in V_{\beta}\left(0, z_{1}\right)}|w-\tilde{w}| .
$$

We may assume that $z_{1}=r \in(0,1)$. Let $a=\frac{1-\sqrt{1-r^{2}}}{r}$. Then we have $0<a<1,1-a r=\sqrt{1-r^{2}}$ and $r-a=a \sqrt{1-r^{2}}$. Consider the function

$$
F(z)=\log \frac{1}{1-r \frac{z+a}{1+a z}}-\frac{1}{2} \log \frac{1}{1-r^{2}}, \quad z \in \overline{\mathbb{D}} .
$$

Then $V_{\beta}(0, r)=\left\{2(1-\beta)\left(F(z)+\frac{1}{2} \log \frac{1}{1-r^{2}}\right): z \in \overline{\mathbb{D}}\right\}$ and we have by an elementary calculation

$$
F(z)=\log \frac{1+a z}{1-a z}=2 \sum_{n=0}^{\infty} \frac{a^{2 n+1}}{2 n+1} z^{2 n+1}
$$

Since $F(z)$ is an odd function of z and has a Taylor expansion of non-negative coefficients, we have

$$
|F(z)| \leq F(|z|), \quad z \in \overline{\mathbb{D}}
$$

with equality if and only if $z \in \overline{\mathbb{D}} \cap \mathbb{R}$. In particular, the diameter of $F(\overline{\mathbb{D}})$ is given only by $F(1)-F(-1)=2 F(1)=\log \frac{1+r}{1-r}$ as is expected. It is easy to determine the extremal functions explicitly. We omit details.
Acknowledgment. We thank the referees for their careful reading of our manuscript and their constructive comments. In particular the referees suggested us to introduce the auxiliary function $F(z)$ in the proof of Theorem 1.4, which enabled us to improve and shorten the proof.

References

[1] P. Duren, Univalent Functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.
[2] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336.
[3] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
[4] H. Yanagihara, Variability regions for families of convex functions, Comput. Methods Funct. Theory 10 (2010), no. 1, 291-302.

Mari Okada
Department of Applied Science
Faculty of Engineering
Yamaguchi University
Tokiwadai, Ube 755-8611, Japan
Email address: okada@yamaguchi-u.ac.jp
Hiroshi Yanagihara
Department of Applied Science
Faculty of Engineering
Yamaguchi University
Tokiwadai, Ube 755-8611, Japan
Email address: hiroshi@yamaguchi-u.ac.jp

