ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL

Gye Tak Yang* and Ki Seong Chor ${ }^{* *}$

Abstract

Let μ be a finite positive Borel measure on the unit ball $B \subset \mathbb{C}^{n}$ and ν be the Euclidean volume measure such that $\nu(B)=$ 1. For the unit sphere $S=\{z:|z|=1\}, \sigma$ is the rotation-invariant measure on S such that $\sigma(S)=1$. Let $\mathcal{P}[f]$ be the invariant Poisson integral of f. We will show that there is a constant $M>0$ such that $\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \leq M \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z)$ for all $f \in L^{p}(\sigma)$ if and only if $\|\mu\|_{r}=\sup _{z \in B} \frac{\mu(E(z, r))}{\nu(E(z, r))}<\infty$.

1. Introduction

Throughout this paper, $\mathbb{C}^{n}(n \geq 1)$ will be the Cartesian product of n copies of \mathbb{C} (set of complex numbers). For $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in \mathbb{C}^{n}, the inner product is defined by $\langle z, w\rangle=$ $\sum_{j=1}^{n} z_{j} \overline{w_{j}}$ and the norm by $|z|^{2}=\langle z, z\rangle$. For $w \in \mathbb{C}^{n}, r>0$, let $B(w, r)=\left\{z \in \mathbb{C}^{n}:|z-w|<r\right\}$. For simplicity, the unit ball $B(0,1)$ will be denoted by B. The boundary of B is the unit sphere $S=\{z:|z|=1\}$.

Let σ be the rotation-invariant measure on S such that $\sigma(S)=1$. For $1 \leq p \leq \infty, L^{p}(\sigma)$ denote the Lebesgue space of S induced by σ.

For μ a finite positive Borel measure on B and g measurable, we write

$$
\|g\|_{\mu}^{p}=\int_{B}|g(z)|^{p} d \mu(z)
$$

Let ν be the usual Euclidean volume measure on \mathbb{C}^{n} such that $\nu(B)=1$. For $\mu=\nu$, we suppress the subscript $\left(\|g\|_{\nu}=\|g\|\right)$.

Suppose $1 \leq p<+\infty$. In this paper, we say that μ is a $L^{p}(B, d \nu)$ measure if and only if there is a constant $M>0$ such that

[^0]$$
\int_{B}|f(z)|^{p} d \mu(z) \leq M \int_{B}|f(z)|^{p} d \nu(z)
$$
for all $f \in L^{p}(B, d \nu)$. In this paper, we will investigate conditions under which μ is a $L^{p}(B, d \nu)$-measure.

The Kernel

$$
\mathcal{P}(z, \zeta)=\left(\frac{1-|z|^{2}}{|1-\langle z, \zeta\rangle|^{2}}\right)^{n} \quad(z \in B, \zeta \in S)
$$

is called the invariant Poisson kernel in B. The invariant Poisson integral $\mathcal{P}[f]$ of a function $f \in L^{1}(\sigma)$ is defined, for $z \in B$, by

$$
\mathcal{P}[f](z)=\int_{S} \mathcal{P}(z, \zeta) f(\zeta) d \sigma(\zeta)
$$

In section 2 , we will show that if μ is a $L^{p}(B, d \nu)$-measure, then there is a constant $M>0$ such that $\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \leq M \int_{S}|f(\zeta)|^{p} d \sigma(\zeta)$ for all $f \in L^{p}(\sigma)$.

The Bergman metric $\beta(\cdot, \cdot)$ gives the usual topology on B (See $[9$, p52]). Moreover, the closed metric balls $E(z, r)=\{w: \beta(z, w) \leq r\}$ are compact(See [9, p56]). For any fixed $r>0$, we define

$$
\|\mu\|_{r}=\sup _{z \in B} \frac{\mu(E(z, r))}{\nu(E(z, r))}
$$

The Bergman Kernel is the function K defined on $B \times B$ (or, if preferred, on all of $\mathbb{C}^{n} \times \mathbb{C}^{n}$ except where $\langle z, w\rangle=1$) by

$$
K(z, w)=(1-\langle z, w\rangle)^{-n-1} .
$$

Let $L_{a}^{p}(B, d \nu)$ be the subspace of $L^{p}(B, d \nu)$ consisting of analytic functions. It is easily shown that every $f \in L_{a}^{1}(B, d \nu)$ satisfies

$$
f(z)=\int_{B} \frac{f(w)}{(1-\langle z, w\rangle)^{n+1}} d \nu(w)
$$

for every $z \in B($ See $[8$, Theorem 2]).
The normalized (in $\left.L_{a}^{2}(B, d \nu)\right)$ reproducing kernel is denoted by $k_{z}(\cdot)=$ $K(z, z)^{-1 / 2} K(\cdot, z)$. For $r>0$, there are constants $M(r)$ and $n(r)$ so that

$$
\infty>M(r) \geq\left|k_{z}(w)\right|^{2} \nu(E(z, r)) \geq n(r)>0
$$

for all $z, w \in B$ with $\beta(z, w) \leq r$ (See [1, Lemma 8]).
Using this result, in section 2 , we will show that if there is a constant $M>0$ such that

$$
\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \leq M \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z)
$$

for all $f \in L^{p}(\sigma)(1 \leq p<\infty)$, then

$$
\|\mu\|_{r}=\sup _{z \in B} \frac{\mu(E(z, r))}{\nu(E(z, r))}<\infty
$$

Let $a \in B$ and let P_{a} be the orthogonal projection of \mathbb{C}^{n} onto the subspace generated by a, which is given by $P_{0}=0$, and

$$
P_{a} z=\frac{<z, a\rangle}{<a, a\rangle} a, \quad \text { if } \quad a \neq 0
$$

Let $Q_{a}=I-P_{a}$. Define φ_{a} on B by

$$
\varphi_{a}(z)=\frac{a-P_{a} z-\sqrt{1-|a|^{2}} Q_{a} z}{1-<z, a>}
$$

It is easily shown that the mapping φ_{a} belongs to $\operatorname{Aut}(B)$ where $A u t(B)$ is the group of all biholomorphic mappings of B onto itself(See [12, Theorem 2.2.2]).

An upper semi-continuous function $f: B \rightarrow[-\infty, \infty)$, with $f \neq 0$, is \mathcal{M}-subharmonic on B if

$$
f(a) \leq \int_{S} f\left(\varphi_{a}(r t)\right) d \sigma(t)
$$

for all $a \in B$ and all r sufficiently small. A continuous function f for which equality holds in above formula is said to \mathcal{M}-harmonic on B. It is well known that $\mathcal{P}[f]$ is \mathcal{M}-harmonic on B for $f \in L^{p}(\sigma), 1 \leq p \leq \infty$ (See $[13,5.1])$. In section 3 , we will show that if $\|\mu\|_{r}<\infty$, then

$$
\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \leq M \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z)
$$

for every $f \in L^{p}(\sigma)$.

2. $L^{p}(B, d \nu)$-measure

Let $A(B)$ be the class of all $f: B \rightarrow \mathbb{C}$ that are continuous on the closed ball \bar{B} and that are holomorphic in its interior B. Equipped with the supremum norm $\|f\|_{\infty}, A(B)$ is a Banach Algebra.

Theorem 2.1. If $f \in A(B)$, then $f(z)=\mathcal{P}[f](z)$ for all $z \in B$.

Proof. See [13, Corollary 5.2].
Theorem 2.2. If $0 \leq r<1, \zeta \in S$ and $\eta \in S$, then

$$
\mathcal{P}(r \eta, \zeta)=\mathcal{P}(r \zeta, \eta)
$$

Also,

$$
\int_{S} \mathcal{P}(r \eta, \zeta) d \sigma(\zeta)=1=\int_{S} \mathcal{P}(r \zeta, \eta) d \sigma(\eta)
$$

Proof. See [13, Lemma 5.3].
Theorem 2.3. The measures ν and σ are related by the formula

$$
\int_{C^{n}} f d \nu=2 n \int_{0}^{\infty} r^{2 n-1} \int_{S} f(r \zeta) d \sigma(\zeta) d r
$$

In particular,

$$
\int_{B} f d \nu=2 n \int_{0}^{1} r^{2 n-1} \int_{S} f(r \zeta) d \sigma(\zeta) d r
$$

Proof. See [12, Proposition 1.4.3].
Lemma 2.4. If μ is a $L^{p}(B, d \nu)$-measure where $1 \leq p<\infty$, then there is a constant $M>0$ such that

$$
\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \leq M \int_{S}|f(\zeta)|^{p} d \sigma(\zeta)
$$

for all $f \in L^{p}(\sigma)$.
Proof. By Hölder inequality and Theorem 2.2,

$$
\begin{aligned}
|\mathcal{P}[f](z)|^{p} & =\left|\int_{S} f(\zeta) \mathcal{P}(z, \zeta) d \sigma(\zeta)\right|^{p} \\
& \leq \int_{S}|f(\zeta)|^{p} \mathcal{P}(z, \zeta) d \sigma(\zeta) \int_{S} \mathcal{P}(z, \zeta) d \sigma(\zeta) \\
& =\int_{S}|f(\zeta)|^{p} \mathcal{P}(z, \zeta) d \sigma(\zeta)
\end{aligned}
$$

By Theorem 2.3,

$$
\begin{aligned}
& \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z) \\
& =2 n \int_{0}^{1} r^{2 n-1} \int_{S}|\mathcal{P}[f](r \eta)|^{p} d \sigma(\eta) d r
\end{aligned}
$$

Above two results imply that

$$
\begin{aligned}
& \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z) \\
& \leq 2 n \int_{0}^{1} r^{2 n-1} \int_{S}\left[\int_{S}|f(\zeta)|^{p} \mathcal{P}(r \eta, \zeta) d \sigma(\zeta)\right] d \sigma(\eta) d r \\
& =2 n \int_{0}^{1} r^{2 n-1} \int_{S}|f(\zeta)|^{p} \int_{S} \mathcal{P}(r \eta, \zeta) d \sigma(\eta) d \sigma(\zeta) d r \\
& =2 n \int_{0}^{1} r^{2 n-1} \int_{S}|f(\zeta)|^{p} d \sigma(\zeta) d r \\
& =\int_{S}|f(\zeta)|^{p} d \sigma(\zeta)
\end{aligned}
$$

where the third equality follows from Theorem 2.2.
Since μ is a $L^{p}(B, d \nu)$-measure, there exists a constant M such that

$$
\begin{aligned}
& \int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \\
& \leq M \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z) \\
& \leq M \int_{S}|f(\zeta)|^{p} d \sigma(\zeta)
\end{aligned}
$$

THEOREM 2.5. (a) $f \in C(S)$ and F is defined on \bar{B} so that $F=f$ on S and $F=\mathcal{P}[f]$ in B, then $F \in C(\bar{B})$ and $\|F\|_{\infty}=\|f\|_{\infty}$.
(b) If $1 \leq p \leq \infty, f \in L^{p}(\sigma), F=\mathcal{P}[f]$ and

$$
F_{r}(\zeta)=F(r \zeta)(0 \leq r<1, \zeta \in S)
$$

then $\left\|F_{r}\right\|_{p} \leq\|f\|_{p}$. If also $1 \leq p<\infty$, then

$$
\lim _{r \rightarrow 1}\left\|F_{r}-f\right\|_{p}=0
$$

Proof. See [13, Theorem 5.5 and Proposition 5.6].
Lemma 2.6. For $r>0$, there are constants $M(r)$ and $n(r)$ so that

$$
\infty>M(r) \geq\left|k_{z}(w)\right|^{2} \nu(E(z, r)) \geq n(r)>0
$$

for all $z, w \in B$ with $\beta(z, w) \leq r$.
Proof. See [1, Lemma 8].

Theorem 2.7. If there is a constant $M>0$ such that

$$
\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \leq M \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z)
$$

for all $f \in L^{p}(\sigma)(1 \leq p<\infty)$, then

$$
\|\mu\|_{r}=\sup _{z \in B} \frac{\mu(E(z, r))}{\nu(E(z, r))}<\infty
$$

Proof. For the following function f such that

$$
\begin{aligned}
& f(\zeta)=\left(\frac{\left(1-|w|^{2}\right)^{n+1}}{(1-\langle\zeta, w\rangle)^{2(n+1)}}\right)^{1 / p} \\
& \mathcal{P}[f](z)= \int_{S} \mathcal{P}(z, \zeta)\left(\frac{\left(1-|w|^{2}\right)^{n+1}}{(1-\langle\zeta, w\rangle)^{2(n+1)}}\right)^{1 / p} d \sigma(\zeta) \\
&=\left(\frac{\left(1-|w|^{2}\right)^{n+1}}{(1-\langle z, w\rangle)^{2(n+1)}}\right)^{1 / p}
\end{aligned}
$$

by Theorem 2.1. This implies that

$$
\begin{aligned}
& \int_{B} \frac{\left(1-|w|^{2}\right)^{n+1}}{|1-\langle z, w\rangle|^{2(n+1)}} d \mu(z) \\
& =\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \\
& \leq M \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z) \\
& =M \int_{B} \frac{\left(1-|w|^{2}\right)^{n+1}}{|1-\langle z, w\rangle|^{2(n+1)}} d \nu(z)
\end{aligned}
$$

Since $k_{w}(z)=\frac{\left(1-|w|^{2}\right)^{\frac{n+1}{2}}}{(1-\langle z, w\rangle)^{(n+1)}}$ is unit vector in $L_{a}^{2}(B, d \nu)$,

$$
\int_{B}\left|k_{w}(z)\right|^{2} d \mu(z)=\int_{B} \frac{\left(1-|w|^{2}\right)^{n+1}}{|1-\langle z, w\rangle|^{2(n+1)}} d \mu(z) \leq M
$$

By Lemma 2.6,

$$
\begin{aligned}
n(r) \frac{\mu(E(w, r))}{\nu(E(w, r))} & \leq \int_{E(w, r)} \frac{n(r)}{\nu(E(w, r))} d \mu(z) \\
& \leq \int_{E(w, r)}\left|k_{w}(z)\right|^{2} d \mu(z)
\end{aligned}
$$

This implies that

$$
\|\mu\|_{r}=\sup _{w \in B} \frac{\mu(E(w, r))}{\nu(E(w, r))}<\frac{1}{n(r)} M
$$

3. Notes on measure related with Poisson Integral

Theorem 3.1. Let ψ be a biholomorphic mapping of B onto itself and $a=\psi^{-1}(0)$. The determinant $J_{R} \psi$ of the real Jacobian matrix of ψ satisfies the following identity:

$$
J_{R} \psi(z)=|J \psi(z)|^{2}=\left(\frac{1-|a|^{2}}{|1-<z, a>|^{2}}\right)^{n+1}=\left(\frac{1-|\psi(z)|^{2}}{1-|z|^{2}}\right)^{n+1} .
$$

Proof. See [10, Theorem 2.2.6].
Theorem 3.2. For a, b in Ω with $\beta(a, b) \leq R$ and $r, s>0$, we have

$$
0<m(R, r, s) \leq \frac{\nu(E(a, r))}{\nu(E(b, s))} \leq M(R, r, s)<\infty
$$

Proof. See [1, Lemma 6].
Theorem 3.3. For fixed $r>0$, there is a sequence $\left\{w_{j}\right\}$ in B such that
(1) $\cup_{j=1}^{\infty} E\left(w_{j}, r\right)=B$,
(2) there is a positive integer N_{0} such that, for any z in B, z is contained in at most N_{0} of the sets $E\left(w_{k}, 2 r\right)$.

For the above sequence $\left\{w_{j}\right\}$ and any positive Borel measure m, we have

$$
\sum_{k=1}^{\infty} m\left(E\left(w_{k}, 2 r\right)\right) \leq N_{0} m(B) .
$$

Proof. See [2, Lemma 5 and Lemma 6].
Theorem 3.4. If $f \in L^{p}(\sigma), 1 \leq p \leq \infty$,

$$
\mathcal{P}[f] \circ \psi=\mathcal{P}[f \circ \psi]
$$

for every $\psi \in \operatorname{Aut}(B)$.
Proof. See [12, Theorem 3.3.8].

Theorem 3.5. For $f \in L^{p}(\sigma), 1 \leq p \leq \infty, \mathcal{P}[f]$ is \mathcal{M}-harmonic on B and

$$
\sup _{0<r<1} \int_{S}|\mathcal{P}[f](r \zeta)|^{p} d \sigma(\zeta) \leq \int_{S}|f(\zeta)|^{p} d \sigma(\zeta)
$$

Proof. See [13, 5.1].
Recall that $\varphi_{a}(z)=\frac{a-P_{a} z-\sqrt{1-|a|^{2}} Q_{a} z}{1-\langle z, a\rangle}$. It is easily shown that

$$
\varphi_{a}(0)=a, \varphi_{a}(a)=0 \quad \text { and } \quad \varphi_{a}\left(\varphi_{a}(z)\right)=z
$$

Furthermore, for all $z, w \in \bar{B}$, we have

$$
1-<\varphi_{a}(z), \varphi_{a}(w)>=\frac{\left(1-|a|^{2}\right)(1-<z, w>)}{(1-<z, a>)(1-<a, w>)}
$$

In particular, for $a \in B, z \in \bar{B}$,

$$
1-\left|\varphi_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-<z, a>|^{2}}
$$

(See [12, Theorem 2.2.2]).
Theorem 3.6. For $f \in L^{p}(\sigma), 1 \leq p \leq \infty$,

$$
|\mathcal{P}[f](w)|^{p} \leq \frac{C_{r}}{\nu(E(z, r))} \int_{E(w, r)}|\mathcal{P}[f](z)|^{p} d \nu(z)
$$

Proof. Since $\mathcal{P}[f]$ is \mathcal{M}-harmonic by Theorem 3.5,

$$
\mathcal{P}[f](a)=\int_{S} \mathcal{P}[f]\left(\varphi_{a}(r t)\right) d \sigma(t)
$$

By Hölder inequality,

$$
|\mathcal{P}[f](a)|^{p} \leq \int_{S}\left|\mathcal{P}[f]\left(\varphi_{a}(r t)\right)\right|^{p} d \sigma(t)
$$

Since

$$
\left|\mathcal{P}[f]\left(\varphi_{a}(a)\right)\right|^{p} \leq \int_{S}\left|\mathcal{P}[f]\left(\varphi_{a}\left(\varphi_{a}(r t)\right)\right)\right|^{p} d \sigma(t)
$$

by Theorem 3.4,

$$
|\mathcal{P}[f](0)|^{p} \leq \int_{S}|\mathcal{P}[f](r t)|^{p} d \sigma(t)
$$

By Theorem 2.3,

$$
\begin{aligned}
2 n \int_{0}^{\alpha} r^{2 n-1}|\mathcal{P}[f](0)|^{p} d r & \leq 2 n \int_{0}^{\alpha} r^{2 n-1} \int_{S}|\mathcal{P}[f](r t)|^{p} d \sigma(t) d r \\
& =\int_{B(0, \alpha)}|\mathcal{P}[f](z)|^{p} d \nu(z) .
\end{aligned}
$$

Since the Bergman metric induces the usual Euclidean topology on $B, E(0, r)$ contains Euclidean ball $B(0, \alpha)=\left\{z \in \mathbb{C}^{n}:|z|<\alpha\right\}$ for some r,

$$
|\mathcal{P}[f](0)|^{p} \leq \frac{1}{\alpha^{2 n}} \int_{E(0, r)}|\mathcal{P}[f](z)|^{p} d \nu(z) .
$$

Replacing f by $f \circ \varphi_{w}$, we have

$$
\left|\mathcal{P}\left[f \circ \varphi_{w}\right](0)\right|^{p} \leq \frac{1}{\alpha^{2 n}} \int_{E(0, r)}\left|\mathcal{P}\left[f \circ \varphi_{w}\right](z)\right|^{p} d \nu(z) .
$$

By Theorem 3.4,

$$
|\mathcal{P}[f](w)|^{p} \leq \frac{1}{\alpha^{2 n}} \int_{E(0, r)}\left|\mathcal{P}[f] \circ \varphi_{w}(z)\right|^{p} d \nu(z) .
$$

This implies that

$$
\begin{aligned}
|\mathcal{P}[f](w)|^{p} & \leq \frac{1}{\alpha^{2 n}} \int_{E(0, r)}\left|\mathcal{P}[f] \circ \varphi_{w}(z)\right|^{p} d \nu(z) \\
& \leq \frac{1}{\alpha^{2 n}} \int_{E(w, r)}|\mathcal{P}[f](z)|^{p}\left|k_{w}(z)\right|^{2} d \nu(z) \\
& \leq \frac{M(r)}{\alpha^{2 n} \nu(E(w, r))} \int_{E(w, r)}|\mathcal{P}[f](z)|^{p} d \nu(z)
\end{aligned}
$$

by Theorem 3.1 and Lemma 2.6.
Theorem 3.7. If $\|\mu\|_{r}<\infty$, then

$$
\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) \leq M \int_{B}|\mathcal{P}[f](z)|^{p} d \nu(z)
$$

where $1 \leq p \leq \infty$.
Proof. By Theorem 3.3,

$$
\begin{aligned}
\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z) & \leq \sum_{n=1}^{\infty} \int_{E\left(w_{n}, r\right)}|\mathcal{P}[f](z)|^{p} d \mu(z) \\
& \leq \sum_{n=1}^{\infty} \mu\left(E\left(w_{n}, r\right)\right) \sup \left\{|\mathcal{P}[f](z)|^{p}: z \in E\left(w_{n}, r\right)\right\} .
\end{aligned}
$$

By Theorem 3.6,

$$
\begin{aligned}
|\mathcal{P}[f](z)|^{p} & \leq \frac{C_{r}}{\nu(E(z, r))} \int_{E(z, r)}|\mathcal{P}[f](w)|^{p} d \nu(w) \\
& \leq \frac{C_{r}}{\nu(E(z, r))} \int_{E\left(w_{n}, 2 r\right)}|\mathcal{P}[f](w)|^{p} d \nu(w)
\end{aligned}
$$

for $z \in E\left(w_{n}, r\right)$. By Theorem 3.2,

$$
\frac{1}{\nu(E(z, r))} \leq \frac{M}{\nu\left(E\left(w_{n}, r\right)\right)}
$$

for some constant M. This implies that

$$
\sup \left\{|\mathcal{P}[f](z)|^{p}: z \in E\left(w_{n}, r\right)\right\} \leq \frac{C_{r} M}{\nu\left(E\left(w_{n}, r\right)\right)} \int_{E\left(w_{n}, 2 r\right)}|\mathcal{P}[f](w)|^{p} d \nu(w)
$$

Since

$$
\begin{gathered}
\|\mu\|_{r}=\sup _{w \in B} \frac{\mu(E(w, r))}{\nu(E(w, r))}<\infty, \\
\int_{B}|\mathcal{P}[f](z)|^{p} d \mu(z)
\end{gathered}
$$

by Theorem 3.3.

References

[1] C.A. Berger, L.A. Coburn and K.H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbols calculus, Amer. J. Math. 110 (1988), 921-953.
[2] D. Bekolle, C.A. Berger, L.A. Coburn and K.H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350.
[3] K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces \mathfrak{B}_{q}, J. Korean Math. Soc. 39 (2002), no.2, 277-287.
[4] K.S. Choi, little Hankel operators on Weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479.
[5] K. S. Choi, Notes On the Bergman Projection type operators in C^{n}, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74.
[6] K. S. Choi, Notes on Carleson Measures on bounded symmetric domain, Commun. Korean Math. Soc. 22 (2007), no.1, 65-74.
[7] P. L. Druen, Theory of H^{p} spaces, Academic Press, New York, 1970.
[8] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^{n}, J. Korean Math. Soc. 35 (1998), no.2, 171-189.
[9] L. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York/London, 1978.
[10] S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth \& Brooks/Cole Math. Series, Pacific Grove, CA.
[11] D.H. Luecking, A Technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660.
[12] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer Verlag, New York, 1980.
[13] M. Stoll, Invariant potential theory in the unit ball of \mathbb{C}^{n}, London mathematical Society Lecture note series 199, 1994.
*
Department of Information Security Konyang University
Nonsan 320-711, Republic of Korea
E-mail: gtyang@konyang.ac.kr
**
Department of Information Security
Konyang University
Nonsan 320-711, Republic of Korea
E-mail: ksc@konyang.ac.kr

[^0]: Received January 19, 2009; Accepted February 13, 2009.
 2000 Mathematics Subject Classification: Primary 30H05; Secondary 28B15.
 Key words and phrases: Bergman metric, Poisson integral and \mathcal{M}-harmonic.
 Correspondence should be addressed to Ki Seong Choi, ksc@konyang.ac.kr.

