Browse > Article
http://dx.doi.org/10.4134/CKMS.c160158

SOME PROPERTIES OF THE BEREZIN TRANSFORM IN THE BIDISC  

Lee, Jaesung (Department of Mathematics Sogang University)
Publication Information
Communications of the Korean Mathematical Society / v.32, no.3, 2017 , pp. 779-787 More about this Journal
Abstract
Let m be the Lebesgue measure on ${\mathbb{C}}$ normalized to $m(D)=1,{\mu}$ be an invariant measure on D defined by $d_{\mu}(z)=(1-{\mid}z{\mid}^2)^{-2}dm(z)$. For $f{\in}L^1(D^n,m{\times}{\cdots}{\times}m)$, Bf the Berezin transform of f is defined by, $$(Bf)(z_1,{\ldots},z_n)={\displaystyle\smashmargin{2}{\int\nolimits_D}{\cdots}{\int\nolimits_D}}f({\varphi}_{z_1}(x_1),{\ldots},{\varphi}_{z_n}(x_n))dm(x_1){\cdots}dm(x_n)$$. We prove that if $f{\in}L^1(D^2,{\mu}{\times}{\mu})$ is radial and satisfies ${\int}{\int_{D^2}}fd{\mu}{\times}d{\mu}=0$, then for every bounded radial function ${\ell}$ on $D^2$ we have $$\lim_{n{\rightarrow}{\infty}}{\displaystyle\smashmargin{2}{\int\int\nolimits_{D^2}}}(B^nf)(z,w){\ell}(z,w)d{\mu}(z)d{\mu}(w)=0$$. Then, using the above property we prove n-harmonicity of bounded function which is invariant under the Berezin transform. And we show the same results for the weighted the Berezin transform in the polydisc.
Keywords
Berezin transform; bidisc; harmonic function;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380-397.   DOI
2 H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335-386.   DOI
3 H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces, Short Courses, Washington Univ., St. Louis, Mo., 1969-1970.
4 J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2008), no. 2, 1489-1493.   DOI
5 J. Lee, A Characterization of M-harmonicity, Bull. Korean Math. Soc. 47 (2010), no. 1, 113-119.   DOI
6 J. Lee, An invariant mean value property in the polydisc, Illinois J. Math. 42 (1998), no. 3, 406-419.