References
- D. Blasi and J. Pau, A characterization of Besov-type spaces and applications to Hankeltype operators, Michigan Math. J. 56 (2008), no. 2, 401-417. https://doi.org/10.1307/mmj/1224783520
-
P. Hu and W. Zhang, A new characterization of Dirichlet type spaces on the unit ball of
$C^n$ , J. Math. Anal. Appl. 259 (2001), no. 2, 453-461. https://doi.org/10.1006/jmaa.2000.7414 -
S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterisation of Bergman spaces on the unit ball of
$C^n$ , Glasg. Math. J. 51 (2009), no. 2, 315-330. https://doi.org/10.1017/S0017089509004996 -
S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of
$C^$ . II, Canad. Math. Bull. 55 (2012), no. 1, 146-152. https://doi.org/10.4153/CMB-2011-047-6 - J. M. Ortega and J. Fabrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111-137. https://doi.org/10.5802/aif.1509
-
C. Ouyang, W. Yang, and R. Zhao, Mobius invariant
$Q_p$ spaces associated with the Green's function on the unit ball of$C^n$ , Pacific J. Math. 182 (1998), no. 1, 69-99. https://doi.org/10.2140/pjm.1998.182.69 - R. Rochberg and Z. J. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math. 37 (1993), no. 1, 101-122. http://projecteuclid.org/euclid.ijm/1255987252 https://doi.org/10.1215/ijm/1255987252
-
J. Xiao, Geometric
$Q_{p}$ Functions, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006. -
R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of
$C^n$ , Mem. Soc. Math. Fr. (N.S.) No. 115 (2008), vi+103 pp. (2009). - K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.