DOI QR코드

DOI QR Code

A DOUBLE INTEGRAL CHARACTERIZATION OF A BERGMAN TYPE SPACE AND ITS MÖBIUS INVARIANT SUBSPACE

  • Yuan, Cheng (School of Applied Mathematics Guangdong University of Technology) ;
  • Zeng, Hong-Gang (School of Mathematics Tianjin University)
  • Received : 2019.01.14
  • Accepted : 2019.04.25
  • Published : 2019.11.30

Abstract

This paper shows that if $1<p<{\infty}$, ${\alpha}{\geq}-n-2$, ${\alpha}>-1-{\frac{p}{2}}$ and f is holomorphic on the unit ball ${\mathbb{B}}_n$, then $${\int_{{\mathbb{B}}_n}}{\mid}Rf(z){\mid}^p(1-{\mid}z{\mid}^2)^{p+{\alpha}}dv_{\alpha}(z)<{\infty}$$ if and only if $${\int_{{\mathbb{B}}_n}}{\int_{{\mathbb{B}}_n}}{\frac{{\mid}f(z)-F({\omega}){\mid}^p}{{\mid}1-(z,{\omega}){\mid}^{n+1+s+t-{\alpha}}}}(1-{\mid}{\omega}{\mid}^2)^s(1-{\mid}z{\mid}^2)^tdv(z)dv({\omega})<{\infty}$$ where s, t > -1 with $min(s,t)>{\alpha}$.

Keywords

References

  1. D. Blasi and J. Pau, A characterization of Besov-type spaces and applications to Hankeltype operators, Michigan Math. J. 56 (2008), no. 2, 401-417. https://doi.org/10.1307/mmj/1224783520
  2. P. Hu and W. Zhang, A new characterization of Dirichlet type spaces on the unit ball of $C^n$, J. Math. Anal. Appl. 259 (2001), no. 2, 453-461. https://doi.org/10.1006/jmaa.2000.7414
  3. S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterisation of Bergman spaces on the unit ball of $C^n$, Glasg. Math. J. 51 (2009), no. 2, 315-330. https://doi.org/10.1017/S0017089509004996
  4. S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of $C^$. II, Canad. Math. Bull. 55 (2012), no. 1, 146-152. https://doi.org/10.4153/CMB-2011-047-6
  5. J. M. Ortega and J. Fabrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111-137. https://doi.org/10.5802/aif.1509
  6. C. Ouyang, W. Yang, and R. Zhao, Mobius invariant $Q_p$ spaces associated with the Green's function on the unit ball of $C^n$, Pacific J. Math. 182 (1998), no. 1, 69-99. https://doi.org/10.2140/pjm.1998.182.69
  7. R. Rochberg and Z. J. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math. 37 (1993), no. 1, 101-122. http://projecteuclid.org/euclid.ijm/1255987252 https://doi.org/10.1215/ijm/1255987252
  8. J. Xiao, Geometric $Q_{p}$ Functions, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006.
  9. R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of $C^n$, Mem. Soc. Math. Fr. (N.S.) No. 115 (2008), vi+103 pp. (2009).
  10. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.