CHARACTERIZATIONS FOR THE FOCK-TYPE SPACES

Hong Rae Cho, Jeong Min Ha, and Kyesook Nam

Abstract. We obtain Lipschitz type characterization and double integral characterization for Fock-type spaces with the norm

$$
\|f\|_{F_{m, \alpha, t}^{p}}^{p}=\int_{\mathbb{C}^{n}}\left|f(z) e^{-\alpha|z|^{m}}\right|^{p} \frac{d V(z)}{(1+|z|)^{t}},
$$

where $\alpha>0, t \in \mathbb{R}$, and $m \in \mathbb{N}$. The results of this paper are the extensions of the classical weighted Fock space $F_{2, \alpha, t}^{p}$.

1. Introduction

For a fixed positive integer n, let $H\left(\mathbb{C}^{n}\right)$ be the space of all entire functions on the complex n-space \mathbb{C}^{n}. For $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$ in \mathbb{C}^{n}, we write

$$
z \cdot w=z_{1} \bar{w}_{1}+\cdots+z_{n} \bar{w}_{n}, \quad|z|=\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}} .
$$

For $\alpha>0, t \in \mathbb{R}$, and $m \in \mathbb{N}$, we define $d G_{m, \alpha, t}$ the t-weighted (m, α) Gaussian measure on \mathbb{C}^{n} by

$$
d G_{m, \alpha, t}(z)=C_{m, \alpha, t} e^{-\alpha|z|^{m}} \frac{d V(z)}{(1+|z|)^{t}},
$$

where $d V$ is the volume measure on \mathbb{C}^{n} and $C_{m, \alpha, t}$ is the positive constant to be the normalized volume measure. For $0<p<\infty$, we consider the Fock-type space $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ consisting of all $f \in H\left(\mathbb{C}^{n}\right)$, the class of all entire functions on \mathbb{C}^{n}, where the norm is defined by

$$
\|f\|_{F_{m, \alpha, t}^{p}}^{p}=C_{m, \alpha, t} \int_{\mathbb{C}^{n}}\left|f(z) e^{-\alpha|z|^{m}}\right|^{p} \frac{d V(z)}{(1+|z|)^{t}} .
$$

Then $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)=L^{p}\left(d G_{m, \alpha p, t}\right) \cap H\left(\mathbb{C}^{n}\right)$. When $m=2, F_{2, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ is the classical weighted Fock space.

Received June 4, 2018; Accepted August 13, 2018.
2010 Mathematics Subject Classification. 32A37, 30H20.
Key words and phrases. Fock-type space, Lipschitz condition, double integral condition. The first author was supported by NRF of Korea (NRF-2016R1D1A1B03933740) and the third author was supported by NRF of Korea (NRF-2013R1A1A2057890).

In this paper, we characterize the Fock-type space $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$. One of the main results is Lipschitz type characterization for $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ stated in Theorem 1.1 as follows.

Theorem 1.1. Let $\alpha>0,0<p<\infty, s \geq 0, m \in \mathbb{N}$ and $t \in \mathbb{R}$. Then the following statements are equivalent for entire functions f on \mathbb{C}^{n} :
(a) $f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$.
(b) There exists a nonnegative continuous function $g \in L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)$ such that

$$
\frac{|f(z)-f(w)|}{|z-w|} \leq\left(1+|z|^{m-1}+|w|^{m-1}\right)^{1+s}(g(z)+g(w))
$$

for each $z, w \in \mathbb{C}^{n}$ with $z \neq w$.
For $f \in H\left(\mathbb{C}^{n}\right)$, we define

$$
L f(z, w)=f(z)-f(w)
$$

Let m be an even positive integer and $s \in \mathbb{R}$. As a local type, we define

$$
L_{r}^{s} f(z, w)=[f(z)-f(w)] e^{s(\bar{z} \cdot w)^{\frac{m}{2}}} \chi_{E_{r}(z)}(w)
$$

where $\chi_{E_{r}(z)}$ denotes the characteristic function in the Euclidean ball $E_{r}(z)=$ $\left\{w \in \mathbb{C}^{n}:|w-z|<\frac{r}{1+|z|^{m-1}}\right\}$ for $r>0$. Hence, the other main result is the double integral characterization for $F_{m, \alpha, t}^{p}$ as follows.

Theorem 1.2. Let $\alpha>0,0<p<\infty$, and $t \in \mathbb{R}$. Let m be an even positive integer. For $s \geq 0$, let $\beta=\frac{s+\alpha}{2}$. Then the following statements are equivalent for entire functions f on \mathbb{C}^{n} :
(a) $f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$.
(b) $L f \in L^{p}\left(G_{m, \alpha p, t} \times G_{m, \alpha p, t}\right)$.
(c) $L_{r}^{s} f \in L^{p}\left(G_{m, \beta p, \delta} \times G_{m, \beta p, \delta}\right)$, where $\delta=\frac{t}{2}-n(m-1)$.

In Theorem 1.2, (a) and (b) are equivalent when $m \in \mathbb{N}$. On the other hand, (a) and (c) are equivalent when m is an even positive integer. An even positive integer m is necessary in order that the function $L_{r}^{s} f(z, w)$ is holomrphic with respect to w.

Lipschitz type characterization for weighted Bergman spaces with standard weights on the unit disc in the complex plane \mathbb{C} in terms of the Euclidean, hyperbolic, and pseudo-hyperbolic metrics was introduced by Hasi Wulan and Kehe Zhu [5]. Moreover, they generalized these results to the unit ball in \mathbb{C}^{n}. As an application, they proved the boundedness of the symmetric lifting operator in [4]. Moreover, double integral characterizations for weighted Bergman spaces in the unit ball in \mathbb{C}^{n} were proved in [3] and [4]. Our results were motivated by Lipschitz type characterization and double integral characterization for the weighted Fock spaces $F_{2, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ in [1]. It's well known that $F_{2, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ is closed
in $L^{p}\left(G_{2, \alpha p, t}\right)$. In particular, $F_{2, \alpha, t}^{2}\left(\mathbb{C}^{n}\right)$ is a Hilbert space and the reproducing kernel K_{z} at $z \in \mathbb{C}^{n}$ for $F_{2,1 / 2,0}^{2}\left(\mathbb{C}^{n}\right)$ is given by

$$
K_{z}(w)=e^{\bar{z} \cdot w}
$$

See [6]. In [1], the reproducing kernel K_{z} was used to get a norm estimate for $F_{2, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$. In this paper, we have the same norm estimate for the Fock-type space $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ without using K_{z}.

For nonnegative quantities X and Y, the notation $X \lesssim Y$ means that there exists a positive constant C such that $X \leq C Y$. The constant C is independent of the relevant variables. Furthermore, the notation $X \approx Y$ means that $X \lesssim Y$ and $Y \lesssim X$. In this case, we say that X and Y are equivalent.

2. Preliminaries

In this section, we suppose $m \in \mathbb{N}$.
For $r>0, E_{r}(z)$ is defined by

$$
\begin{equation*}
E_{r}(z)=\left\{w \in \mathbb{C}^{n}:|w-z|<\frac{r}{1+|z|^{m-1}}\right\} \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Let $m \in \mathbb{N}$ and $r>0$. For any $w \in E_{r}(z)$, there exists a positive constant $C=C(m, r)$ such that

$$
\begin{equation*}
C^{-1} \leq \frac{e^{|w|^{m}}}{e^{|z|^{m}}} \leq C \tag{2.2}
\end{equation*}
$$

Moreover, there exists a positive constant $C=C(m, r)$ such that

$$
\begin{equation*}
C^{-1} \leq \frac{1+|w|^{m-1}}{1+|z|^{m-1}} \leq C \tag{2.3}
\end{equation*}
$$

Proof. Note that the asserted inequalities are clear when $m=1$. So, let $m \geq 2$. For $w \in E_{r}(z)$, we have

$$
|w|<\frac{r}{1+|z|^{m-1}}+|z|
$$

so that

$$
\begin{align*}
|w|^{m} & <|z|^{m}+\sum_{k=1}^{m}\binom{m}{k} r^{k} \frac{|z|^{m-k}}{\left(1+|z|^{m-1}\right)^{k}} \\
& <|z|^{m}+(1+r)^{m} \tag{2.4}
\end{align*}
$$

Similarly, we get

$$
\begin{equation*}
1+|w|^{m-1}<\left(1+|z|^{m-1}\right)(1+r)^{m-1} \tag{2.5}
\end{equation*}
$$

which implies

$$
\frac{r}{1+|z|^{m-1}}<\frac{r(1+r)^{m-1}}{1+|w|^{m-1}}
$$

Thus, we have

$$
\begin{equation*}
E_{r}(z) \subset E_{2 r(1+r)^{m-1}}(w), \quad w \in E_{r}(z) \tag{2.6}
\end{equation*}
$$

Consequently, (2.4) and (2.6) give us (2.2). Moreover, (2.5) and (2.6) imply (2.3). The proof is complete.

We denote a multi-index $M=\left(m_{1}, \ldots, m_{n}\right)$ which is an n-tuple of nonnegative integers and use the following notation $|M|=m_{1}+\cdots+m_{n}, M!=$ $m_{1}!\cdots m_{n}$! and $\partial^{M}=\partial_{1}^{m_{1}} \cdots \partial_{n}^{m_{n}}$ where ∂_{j} denotes partial differentiation with respect to the j-th component.
Lemma 2.2. Let $r>0, m \in \mathbb{N}$ and $\alpha, t \in \mathbb{R}$. Given a multi-index M, there is a positive constant $C=C(\alpha, m, r, t, M)$ such that

$$
\frac{\left|\partial^{M} g(z)\right|^{p} e^{-\alpha|z|^{m}}}{\left(1+|z|^{m-1}\right)^{p|M|+2 n+\frac{t}{m-1}}} \leq C \int_{E_{r}(z)}|g(w)|^{p} \frac{e^{-\alpha|w|^{m}}}{(1+|w|)^{t}} d V(w), \quad z \in \mathbb{C}^{n}
$$

for $0<p<\infty$ and $g \in H\left(\mathbb{C}^{n}\right)$.
Proof. Let $0<p<\infty$ and $g \in H\left(\mathbb{C}^{n}\right)$. Let $z \in \mathbb{C}^{n}$. By subharmonicity we have

$$
\begin{aligned}
|g(z)|^{p} & \leq \frac{1}{V\left[E_{r}(z)\right]} \int_{E_{r}(z)}|g(w)|^{p} d V(w) \\
& =\frac{\left(1+|z|^{m-1}\right)^{2 n}}{\omega_{n} r^{2 n}} \int_{E_{r}(z)}|g(w)|^{p} d V(w)
\end{aligned}
$$

where ω_{n} is the volume of the unit ball of \mathbb{C}^{n}. And hence the Cauchy Estimates over the ball $E_{\frac{r}{2}}(z)$ implies that

$$
\left|\partial^{M} g(z)\right|^{p} \leq C\left(1+|z|^{m-1}\right)^{p|M|+2 n} \int_{E_{r}(z)}|g(w)|^{p} d V(w)
$$

for some $C=C(m, r, M)>0$. Moreover, for $z \in \mathbb{C}^{n}$, we know

$$
1+|z|^{m-1} \approx(1+|z|)^{m-1}
$$

So, using (2.2) and (2.3), we complete the proof.
For a function $f \in H\left(\mathbb{C}^{n}\right)$, we define the radial derivative $\mathcal{R} f$ of f at z by

$$
\mathcal{R} f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z)
$$

The complex gradient of f at z is defined by

$$
|\nabla f(z)|=\left[\sum_{j=1}^{n}\left|\frac{\partial f}{\partial z_{j}}(z)\right|^{2}\right]^{1 / 2}
$$

For a radial function $\phi(r)$, we deduce Proposition 2.5 from Definition 2.3.

Definition 2.3 ([2]). Assume $\phi:[0, \infty) \rightarrow \mathbb{R}^{+}$is twice continuously differentiable and there exists $\rho>0$ such that $\phi^{\prime}(r) \neq 0$ for $r \geq \rho$. We say that ϕ is in the class \mathcal{W}_{p} if it satisfies the following conditions:

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{r e^{-p \phi(r)}}{\phi^{\prime}(r)}=0, \\
& \limsup _{r \rightarrow \infty} \frac{1}{r}\left(\frac{r}{\phi^{\prime}(r)}\right)^{\prime}<\frac{p}{n} \\
& \liminf _{r \rightarrow \infty} \frac{1}{r}\left(\frac{r}{\phi^{\prime}(r)}\right)^{\prime}>-\infty .
\end{aligned}
$$

Lemma 2.4 ([2]). Let $0<p<\infty$ and $\phi \in \mathcal{W}_{p}$. Then for $f \in H\left(\mathbb{C}^{n}\right)$,

$$
\begin{equation*}
\int_{\mathbb{C}^{n}}|f(z)|^{p} e^{-p \phi(|z|)} d V(z) \approx|f(0)|^{p}+\int_{\mathbb{C}^{n}} \frac{|\mathcal{R} f(z)|^{p}}{\left(1+|z| \phi^{\prime}(|z|)\right)^{p}} e^{-p \phi(|z|)} d V(z) \tag{2.7}
\end{equation*}
$$

Note that constants functions are contained in $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ so we have $f \in$ $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$ if and only if $f-f(0) \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$. Furthermore Lemma 2.4 implies that $F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$-norm of $f-f(0)$ is equivalent to the norm of the product of its radial derivative and $\frac{1}{1+|z|^{m}}$ in the n-dimensional complex space. We know that this factor $\frac{1}{1+|z|^{m}}$ is the supplementary amount to control the growth of the radial derivative. See the following.

Proposition 2.5. Let $\alpha>0,0<p<\infty, m \in \mathbb{N}$, and $t \in \mathbb{R}$. Then the following norms

$$
\|f-f(0)\|_{F_{m, \alpha, t}}, \quad\left\|\frac{\mathcal{R} f(z)}{1+|z|^{m}}\right\|_{L^{p}\left(G_{m, \alpha p, t}\right)}, \quad\left\|\frac{\nabla f(z)}{1+|z|^{m-1}}\right\|_{L^{p}\left(G_{m, \alpha p, t}\right)}
$$

are comparable to one another for $f \in H\left(\mathbb{C}^{n}\right)$.
Proof. Let $\phi(|z|)=\alpha|z|^{m}+\frac{t}{p} \ln (1+|z|)$ for $z \in \mathbb{C}^{n}$. Then ϕ is in the class \mathcal{W}_{p} when $m \in \mathbb{N}$ and $t \in \mathbb{R}$. Also, by simple calculation, there exists a constant $C=C(\alpha, m, r, t)>0$ such that

$$
C^{-1} \leq \frac{1+|z|^{m}}{1+|z| \phi^{\prime}(|z|)} \leq C
$$

Thus, applying Lemma 2.4 to $f-f(0)$, we obtain

$$
\int_{\mathbb{C}^{n}}|f(z)-f(0)|^{p} e^{-\alpha p|z|^{m}} \frac{d V(z)}{(1+|z|)^{t}} \approx \int_{\mathbb{C}^{n}} \frac{|\mathcal{R} f(z)|^{p}}{\left(1+|z|^{m}\right)^{p}} e^{-\alpha p|z|^{m}} \frac{d V(z)}{(1+|z|)^{t}}
$$

Also, due to $|\mathcal{R} f(z)| \leq|z||\nabla f(z)|$, this estimate implies

$$
\|f-f(0)\|_{F_{m, \alpha, t}} \lesssim\left\|\frac{\nabla f(z)}{1+|z|^{m-1}}\right\|_{L^{p}\left(G_{m, \alpha p, t}\right)}
$$

Now, it remains to show

$$
\left\|\frac{\nabla f(z)}{1+|z|^{m-1}}\right\|_{L^{p}\left(G_{m, \alpha p, t}\right)} \lesssim\|f-f(0)\|_{F_{m, \alpha, t}}
$$

It follows from Lemma 2.2 that

$$
\frac{|\nabla f(z)|^{p}}{\left(1+|z|^{m-1}\right)^{p}} \lesssim\left(1+|z|^{m-1}\right)^{2 n} \int_{E_{r}(z)}|f(w)-f(0)|^{p} d V(w) .
$$

Let $r>0$ and $r_{1}:=2 r(1+r)^{m-1}$. Integrating both sides of the above against $d G_{m, \alpha p, t}$, we have from (2.6), (2.2) and (2.3)

$$
\begin{aligned}
& \left\|\frac{\nabla f(z)}{1+|z|^{m-1}}\right\|_{L^{p}\left(G_{m, \alpha p, t}\right)}^{p} \\
\lesssim & \int_{\mathbb{C}^{n}} \int_{E_{r}(z)}|f(w)-f(0)|^{p} d V(w) d G_{m, \alpha p, t-2 n(m-1)}(z) \\
\lesssim & \int_{\mathbb{C}^{n}} \int_{E_{r_{1}}(w)}|f(w)-f(0)|^{p} d G_{m, \alpha p, t-2 n(m-1)}(z) d V(w) \\
\approx & \|f-f(0)\|_{F_{m, \alpha, t}}^{p}
\end{aligned}
$$

as desired.

3. Lipschitz type characterization

In this section, we prove our first result Theorem 1.1. For $r>0$, we set

$$
\Omega_{r}:=\left\{(z, w):|w-z|\left(1+|z|^{m-1}+|w|^{m-1}\right)<r\right\} .
$$

Theorem 3.1. Let $\alpha>0,0<p<\infty, s \geq 0, m \in \mathbb{N}$, and $t \in \mathbb{R}$. Then the following statements are equivalent for entire functions f on \mathbb{C}^{n} :
(a) $f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$.
(b) There exists a nonnegative continuous function $g \in L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)$ such that

$$
\frac{|f(z)-f(w)|}{|z-w|} \leq\left(1+|z|^{m-1}+|w|^{m-1}\right)^{1+s}(g(z)+g(w))
$$

$$
\text { for each } z, w \in \mathbb{C}^{n} \text { with } z \neq w
$$

Proof. First, we assume that (b) holds. Fixing z and taking the limits $w \rightarrow z$ along the directions parallel to the coordinate axes,

$$
\left|\partial_{j} f(z)\right| \lesssim\left(1+|z|^{m-1}\right)^{1+s} g(z)
$$

for each j. Thus, we have

$$
\frac{|\nabla f(z)|}{1+|z|^{m-1}} \lesssim\left(1+|z|^{m-1}\right)^{s} g(z), \quad z \in \mathbb{C}^{n}
$$

and thus

$$
\int_{\mathbb{C}^{n}} \frac{|\nabla f(z)|^{p}}{\left(1+|z|^{m-1}\right)^{p}} e^{-\alpha p|z|^{m}} \frac{d V(z)}{(1+|z|)^{t}} \lesssim \int_{\mathbb{C}^{n}}|g(z)|^{p} e^{-\alpha p|z|^{m}} \frac{d V(z)}{(1+|z|)^{t-s p(m-1)}}
$$

Since $g(z) \in L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)$, by Proposition 2.5, we conclude

$$
f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)
$$

Second, we assume that (a) holds. Fix any $r>0$. We consider $(z, w) \in \Omega_{r}$. Then $w \in E_{r}(z)$ and

$$
1+|z|^{m-1}+|w|^{m-1} \approx 1+|z|^{m-1}
$$

By the fundamental theorem of calculus, we get

$$
|f(z)-f(w)| \leq|z-w| \int_{0}^{1}|\nabla f(\rho z+(1-\rho) w)| d \rho
$$

Since $\rho z+(1-\rho) w$ in $E_{r}(z)$, it follows

$$
\begin{equation*}
|f(z)-f(w)| \leq|z-w| \sup _{\zeta \in E_{r}(z)}|\nabla f(\zeta)| . \tag{3.1}
\end{equation*}
$$

Furthermore, we note

$$
\begin{align*}
|\nabla f(\zeta)| & \approx\left(1+|z|^{m-1}\right)^{1+s} \frac{|\nabla f(\zeta)|}{\left(1+|\zeta|^{m-1}\right)^{1+s}} \\
& \approx\left(1+|z|^{m-1}+|w|^{m-1}\right)^{1+s} \frac{|\nabla f(\zeta)|}{\left(1+|\zeta|^{m-1}\right)^{1+s}} \tag{3.2}
\end{align*}
$$

for $\zeta \in E_{r}(z)$. Let

$$
h_{s}(z):=\sup _{\zeta \in E_{r}(z)} \frac{|\nabla f(\zeta)|}{\left(1+|\zeta|^{m-1}\right)^{1+s}} .
$$

Then we have by (3.1) and (3.2)

$$
|f(z)-f(w)| \lesssim|z-w|\left(1+|z|^{m-1}+|w|^{m-1}\right)^{1+s}\left(h_{s}(z)+h_{s}(w)\right)
$$

for $(z, w) \in \Omega_{r}$.
Next, we consider $(z, w) \notin \Omega_{r}$. Then $|w-z|\left(1+|z|^{m-1}+|w|^{m-1}\right) \geq r$. Therefore, for $s \geq 0$, we obtain

$$
\begin{aligned}
& |f(z)-f(w)| \\
\leq & \frac{|z-w|\left(1+|z|^{m-1}+|w|^{m-1}\right)}{r}(|f(z)|+|f(w)|) \\
\leq & \frac{|z-w|\left(1+|z|^{m-1}+|w|^{m-1}\right)^{1+s}}{r}\left(\frac{|f(z)|}{\left(1+|z|^{m-1}\right)^{s}}+\frac{|f(w)|}{\left(1+|w|^{m-1}\right)^{s}}\right) .
\end{aligned}
$$

Hence, by setting $g(z):=h_{s}(z)+\frac{|f(z)|}{r\left(1+|z|^{m-1}\right)^{s}}$ for $z \in \mathbb{C}^{n}$, we have

$$
|f(z)-f(w)| \lesssim|z-w|\left(1+|z|^{m-1}+|w|^{m-1}\right)^{1+s}(g(z)+g(w))
$$

for each $z, w \in \mathbb{C}^{n}$ with $z \neq w$. Note that the constant suppressed above depends only on m, r and s. Also, the function $g(z)$ is continuous on \mathbb{C}^{n}. It remains for us to show the function $g(z)$ belongs to $L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)$. It is clear that $\frac{|f(z)|}{r\left(1+|z|^{m-1}\right)^{s}}$ is in $L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)$ for $f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$.

Now, we claim h_{s} is in $L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)$. Let $\zeta \in E_{r}(z)$. Then $E_{r_{0}}(\zeta) \subset$ $E_{r_{1}}(z)$ by (2.6) where $r_{0}=2 r(1+r)^{m-1}$ and $r_{1}=2 r_{0}\left(1+r_{0}\right)^{m-1}$. By Lemma 2.2 and (2.3), we get

$$
\begin{aligned}
\frac{|\nabla f(\zeta)|^{p}}{\left(1+|\zeta|^{m-1}\right)^{(1+s) p}} & \lesssim\left(1+|\zeta|^{m-1}\right)^{2 n-s p} \int_{E_{r_{0}}(\zeta)}|f(w)|^{p} d V(w) \\
& \lesssim\left(1+|z|^{m-1}\right)^{2 n-s p} \int_{E_{r_{1}}(z)}|f(w)|^{p} d V(w)
\end{aligned}
$$

Taking the supremum over $\zeta \in E_{r}(z)$, we have

$$
\left|h_{s}(z)\right|^{p} \lesssim\left(1+|z|^{m-1}\right)^{2 n-s p} \int_{E_{r_{1}}(z)}|f(w)|^{p} d V(w)
$$

for all $z \in \mathbb{C}^{n}$. Let $r_{2}=2 r_{1}\left(1+r_{1}\right)^{m-1}$. By integrating both sides of the above against the measure $d G_{m, \alpha p, t-s p(m-1)}(z)$, it follows

$$
\begin{aligned}
& \left\|h_{s}\right\|_{L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)}^{p} \\
\lesssim & \int_{\mathbb{C}^{n}}\left(1+|z|^{m-1}\right)^{2 n} \int_{E_{r_{1}}(z)}|f(w)|^{p} d V(w) d G_{m, \alpha p, t}(z) \\
= & \int_{\mathbb{C}^{n}} \int_{\mathbb{C}^{n}}\left(1+|z|^{m-1}\right)^{2 n}|f(w)|^{p} \chi_{E_{r_{1}}(z)}(w) d G_{m, \alpha p, t}(z) d V(w) \\
< & \int_{\mathbb{C}^{n}} \int_{\mathbb{C}^{n}}\left(1+|z|^{m-1}\right)^{2 n}|f(w)|^{p} \chi_{E_{r_{2}}(w)}(z) d G_{m, \alpha p, t}(z) d V(w) \\
= & \int_{\mathbb{C}^{n}}|f(w)|^{p} \int_{E_{r_{2}}(w)}\left(1+|z|^{m-1}\right)^{2 n} d G_{m, \alpha p, t}(z) d V(w),
\end{aligned}
$$

where χ denotes the characteristic function in its subscripted set. For $z \in$ $E_{r_{2}}(w)$, we know (2.2) and (2.3). Hence, it follows that

$$
\begin{aligned}
& \left\|h_{s}\right\|_{L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)}^{p} \\
\lesssim & \int_{\mathbb{C}^{n}}|f(w)|^{p}\left(1+|w|^{m-1}\right)^{2 n} \int_{E_{r_{2}}(w)} d V(z) d G_{m, \alpha p, t}(w) \\
\lesssim & \int_{\mathbb{C}^{n}}|f(w)|^{p}\left(1+|w|^{m-1}\right)^{2 n} \frac{\omega_{n} r_{2}^{2 n}}{\left(1+|w|^{m-1}\right)^{2 n}} d G_{m, \alpha p, t}(w) \\
\lesssim & \|f\|_{F_{m, \alpha, t}^{p}}^{p} .
\end{aligned}
$$

This finishes the proof.
From the proof of Theorem 3.1, we have the following local version of Theorem 3.1 for arbitrary s real.

Theorem 3.2. Let $\alpha>0,0<p<\infty, r>0, m \in \mathbb{N}$, and $s, t \in \mathbb{R}$. Then the following statements are equivalent for entire functions f on \mathbb{C}^{n} :
(a) $f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$.
(b) There exists a nonnegative continuous function $g \in L^{p}\left(G_{m, \alpha p, t-s p(m-1)}\right)$ such that

$$
\begin{aligned}
& \quad \frac{|f(z)-f(w)|}{|z-w|} \leq\left(1+|z|^{m-1}+|w|^{m-1}\right)^{1+s}(g(z)+g(w)) \\
& \text { for }(z, w) \in \Omega_{r} \text { with } z \neq w \text {. }
\end{aligned}
$$

4. Double integral characterization

In this section, we prove the main Theorem 1.2. By the same proof of Proposition 3.1 in [1], we have the following.
Theorem 4.1. Let $0<p<\infty$ and $\phi \in \mathcal{W}_{p}$. Then the estimate

$$
\begin{aligned}
& \int_{\mathbb{C}^{n}}|f(z)-f(0)|^{p} e^{-p \phi(|z|)} d V(z) \\
\approx & \int_{\mathbb{C}^{n}} \int_{\mathbb{C}^{n}}|L f(z, w)|^{p} e^{-p \phi(|z|)} d V(z) e^{-p \phi(|w|)} d V(w)
\end{aligned}
$$

holds for $f \in H\left(\mathbb{C}^{n}\right)$.
Letting $\phi(|z|)=\alpha|z|^{m}+\frac{t}{p} \ln (1+|z|)$ for $z \in \mathbb{C}^{n}$, Theorem 4.1 gives us the following characterization.

Theorem 4.2. Let $\alpha>0,0<p<\infty, m \in \mathbb{N}$, and $t \in \mathbb{R}$. Then the following statements are equivalent for entire functions f on \mathbb{C}^{n} :
(a) $f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$.
(b) $L f \in L^{p}\left(G_{m, \alpha p, t} \times G_{m, \alpha p, t}\right)$.

Moreover, the norms

$$
\|f-f(0)\|_{F_{m, \alpha, t}^{p}} \quad \text { and } \quad\|L f\|_{L^{p}\left(G_{m, \alpha p, t} \times G_{m, \alpha p, t}\right)}
$$

are comparable to each other.
Lemma 4.3. Let $0<p<\infty$ and $s \geq 0$. Let m be an even positive integer. For $w \in E_{r}(z)$, there exists a positive constant C such that $\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} \lesssim e^{s p|z|^{m}}$.

Proof. We prove that

$$
\begin{aligned}
\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p}=e^{s p R e\left[(\bar{z} \cdot w)^{\frac{m}{2}}\right]} & \leq e^{s p|z|^{\frac{m}{2}}|w|^{\frac{m}{2}}} \\
& \leq e^{\frac{s p\left(|z|^{m}+|w|^{m}\right)}{2}} \\
& \lesssim e^{s p|z|^{m}}
\end{aligned}
$$

by the Cauchy-Schwarz inequality, arithmetic-geometric mean inequality and (2.2) in Lemma 2.1 for $w \in E_{r}(z)$ in turn.

Theorem 4.4. Let $\alpha, r>0,0<p<\infty$, and $t \in \mathbb{R}$. Let m be an even positive integer. For $s \geq 0$, let $\beta:=\frac{s+\alpha}{2}$. Then the following statements are equivalent for entire functions f on \mathbb{C}^{n} :
(a) $f \in F_{m, \alpha, t}^{p}\left(\mathbb{C}^{n}\right)$.
(b) $L_{r}^{s} f \in L^{p}\left(G_{m, \beta p, \delta} \times G_{m, \beta p, \delta}\right)$, where $\delta=\frac{t}{2}-n(m-1)$.

Moreover, the norms

$$
\|f-f(0)\|_{F_{m, \alpha, t}^{p}} \quad \text { and } \quad\left\|L_{r}^{s} f\right\|_{L^{p}\left(G_{m, \beta p, \delta} \times G_{m, \beta p, \delta}\right)}
$$

are comparable to each other.
Proof. We assume that (b) holds. Fix $f \in H\left(\mathbb{C}^{n}\right)$ and let $z \in \mathbb{C}^{n}$. Define a function

$$
g_{z}(w)=[f(w)-f(z)] e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}
$$

Then $g_{z} \in H\left(\mathbb{C}^{n}\right)$ and $\nabla g_{z}(z)=\nabla f(z) e^{s|z|^{m}}$. By applying Lemma 2.2, (2.2) and (2.3), we get

$$
\begin{aligned}
& \left(\frac{|\nabla f(z)| e^{s|z|^{m}}}{1+|z|^{m-1}}\right)^{p} \\
\lesssim & \left(1+|z|^{m-1}\right)^{2 n} \int_{E_{r}(z)}|f(w)-f(z)|^{p}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} d V(w) \\
\approx & e^{\frac{(s+\alpha) p}{2}|z|^{m}}\left(1+|z|^{m-1}\right)^{n} \\
& \times \int_{E_{r}(z)}|f(w)-f(z)|^{p}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} e^{-\frac{(s+\alpha) p}{2}|w|^{m}}\left(1+|w|^{m-1}\right)^{n} d V(w) .
\end{aligned}
$$

By integrating both sides of the above against $d G_{m,(s+\alpha) p, t}(z)$ and applying (2.3) for $w \in E_{r}(z)$, we have

$$
\begin{aligned}
& \int_{\mathbb{C}^{n}}\left(\frac{|\nabla f(z)|}{1+|z|^{m-1}}\right)^{p} d G_{m, \alpha p, t}(z) \\
\lesssim & \int_{\mathbb{C}^{n}} \int_{E_{r}(z)}|f(w)-f(z)|^{p}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} d G_{m, \beta p,-n(m-1)}(w) d G_{m, \beta p, t-n(m-1)}(z) \\
\approx & \left\|L_{r}^{s} f\right\|_{L^{p}\left(G_{m, \beta p, \delta} \times G_{m, \beta p, \delta}\right)} .
\end{aligned}
$$

Thus, by Proposition 2.5, we obtain

$$
\|f-f(0)\|_{F_{m, \alpha, t}^{p}} \lesssim\left\|L_{r}^{s} f\right\|_{L^{p}\left(G_{m, \beta p, \delta} \times G_{m, \beta p, \delta}\right)} .
$$

The constant suppressed above is independent of f. We complete that (b) implies (a).

Now, we assume that (a) holds. Let $r_{0}=2 r(1+r)^{m-1}$.

$$
\begin{aligned}
& \left\|L_{r}^{s} f\right\|_{L^{p}\left(G_{m, \beta p, \delta} \times G_{m, \beta}, \delta\right)} \\
= & \int_{\mathbb{C}^{n}} \int_{\mathbb{C}^{n}}|f(w)-f(z)|^{p}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} \chi_{E_{r}(z)}(w) d G_{m, \beta p, \delta}(w) d G_{m, \beta p, \delta}(z) \\
\lesssim & \int_{\mathbb{C}^{n}} \int_{\mathbb{C}^{n}}|f(z)-f(0)|^{p}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} \chi_{E_{r_{0}}(z)}(w) d G_{m, \beta p, \delta}(w) d G_{m, \beta p, \delta}(z) \\
& +\int_{\mathbb{C}^{n}} \int_{\mathbb{C}^{n}}|f(w)-f(0)|^{p}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} \chi_{E_{r_{0}}(w)}(z) d G_{m, \beta p, \delta}(z) d G_{m, \beta p, \delta}(w)
\end{aligned}
$$

$$
\lesssim \int_{\mathbb{C}^{n}}|f(z)-f(0)|^{p} \int_{E_{r_{0}}(z)}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} d G_{m, \beta p, \delta}(w) d G_{m, \beta p, \delta}(z)
$$

For the first inequality, we used $E_{r}(z) \subset E_{r_{0}}(z), E_{r}(z) \subset E_{r_{0}}(w)$ for $w \in E_{r}(z)$ and Fubini's theorem. And for $w \in E_{r_{0}}(z)$, we have from (2.3)

$$
\begin{aligned}
& \left\|L_{r}^{s} f\right\|_{L^{p}\left(G_{m, \beta p, \delta} \times G_{m, \beta p, \delta}\right)} \\
\lesssim & \int_{\mathbb{C}^{n}}|f(z)-f(0)|^{p}\left(1+|z|^{m-1}\right)^{n} \\
& \times \int_{E_{r_{0}}(z)}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} d G_{m, \beta p,-n(m-1)}(w) d G_{m, \beta p, t}(z) \\
= & \int_{\mathbb{C}^{n}}|f(z)-f(0)|^{p} I_{r}(z) d G_{m, \alpha p, t}(z),
\end{aligned}
$$

where $I_{r}(z):=e^{\frac{(-s+\alpha) p}{2}|z|^{m}}\left(1+|z|^{m-1}\right)^{n} \int_{E_{r_{0}}(z)}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} d G_{m, \beta p,-n(m-1)}(w)$.
Now, we claim that $I_{r}(z) \lesssim 1$.
For $w \in E_{r_{0}}(z)$, we have Lemma 4.3, (2.2) and (2.3). It follows that

$$
\begin{aligned}
\int_{E_{r_{0}}(z)}\left|e^{s(\bar{z} \cdot w)^{\frac{m}{2}}}\right|^{p} d G_{m, \beta p,-n(m-1)}(w) & \lesssim \int_{E_{r_{0}}(z)} e^{s p|z|^{m}} d G_{m, \beta p,-n(m-1)}(w) \\
& \lesssim e^{\frac{(s-\alpha) p}{2}|z|^{m}}\left(1+|z|^{m-1}\right)^{n} V\left[E_{r_{0}}(z)\right]
\end{aligned}
$$

Since $V\left[E_{r_{0}}(z)\right] \approx\left(1+|z|^{m-1}\right)^{-2 n}$, we have $I_{r}(z) \lesssim 1$. Hence we complete that (a) implies (b).

Acknowledgements. The authors would like to thank a reviewer for comments about restriction on positive integers for the index m. We would have some technical problems about binomial theorem if we have non-integer m. It seems to be possible that the research extends to Fock-type spaces with general weights, so the work will be our next research subject.

References

[1] B. R. Choe and K. Nam, New characterizations for the weighted fock spaces, Complex Anal. Oper. Theory, to appear.
[2] J. M. Ha, H. R. Cho, and H.-W. Lee, A norm equivalence for the mixed norm of Fock type, Complex Var. Elliptic Equ. 61 (2016), no. 12, 1644-1655.
[3] S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterisation of Bergman spaces on the unit ball of \mathbb{C}^{n}, Glasg. Math. J. 51 (2009), no. 2, 315-330.
[4] S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of $\mathbb{C}^{n} . I I$, Canad. Math. Bull. 55 (2012), no. 1, 146-152.
[5] H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull. 52 (2009), no. 4, 613-626.
[6] K. Zhu, Analysis on Fock Spaces, Grad. Texts in Math. 263, Springer, New York, 2012.

Hong Rae Сho
Department of Mathematics
Pusan National University
Pusan 46241, Korea
Email address: chohr@pusan.ac.kr
Jeong Min Ha
Department of Mathematics
Pusan National University
Pusan 46241, Korea
Email address: jm.ha@pusan.ac.kr
Kyesook Nam
Faculty of Liberal Education
Seoul National University
Seoul 08826, Korea
Email address: ksnam@snu.ac.kr

