• Title/Summary/Keyword: INL/DNL

Search Result 133, Processing Time 0.024 seconds

Design of The 10bit 80MHz CMOS D/A Converter with Switching Noise Reduction Method (스위칭 잡음 감소기법을 이용한 10비트 80MHz CMOS D/A 변환기 설계)

  • Hwang, Jung-Jin;Seon, Jong-Kug;Park, Li-Min;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • This paper describes a 10 bit 80MHz CMOS D/A converter for wireless communication system. The proposed circuit in the paper is implemented with a $0.18{\mu}m$ CMOS n-well 1-poly 6-metal process. The architecture of the circuit consists of the 4bit LSB with binary decoder, and both the 3bit ULSB and the 3bit MSB with the thermometer decoder. The measurement results demonstrates SFDR of 60.42dBc at sampling frequency 80MHz, input frequency 1MHz and ENOB of 8.75bit. INL and DNL have been measured to be ${\pm}$0.38LSB and ${\pm}$0.32LSB and glitch energy is measured to be 4.6$pV{\cdot}s$. Total power dissipation is 48mW at 80MHz(maximum sampling frequency) with a single power supply of 1.8V.

Design of an 8-bit 230MSPS Analog Flat Panel Interface for TFT-LCD Driver (TFT-LCD 드라이버를 위한 8-bit 230MSPS Analog Flat Panel InterFACE의 설계)

  • Yun, Seong-Uk;Im, Hyeon-Sik;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • In this paper, an Analog Flat Panel interface(AFPI) which supports for UXGa(Ultar extended Graphics Array)-Compatible TFT LCD Driver is designed. The Proposed AFPI is composed of 8-b ADC, Automatic Gain Control(AGC), Low-Jitter PLL. In order to obtain a high speed and low power consumption, an efficient architecture of 8-bit ADC is proposed, whose FR(Folding Rate) is 8, NFB(Number of Folding Block) is 2, and IR (Interpolating Rate) is 16. We can get high SNDR by adopting distributed track and hold circuits. Also a programmable AGC which is possible to control gain and clamp, and a low-jitter PLL are proposed. The chip has been fabricated with 0.25${\mu}{\textrm}{m}$ 1-poly S-metal n-well CMOS technology. The effective chip area is 3.6mm $\times$ 3.2mm and it dissipates about 602㎽ at 2.5V power supply. The INL and DNL are within $\pm$ 1LSB. The measured SNDR is about 43㏈, when the input frequency is 10MHz at 200MHz clock frequency.

A 10-bit 10-MS/s 0.18-㎛ CMOS Asynchronous SAR ADC with split-capacitor based differential DAC (분할-커패시터 기반의 차동 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 0.18-㎛ CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.414-422
    • /
    • 2013
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) using a split-capacitor-based differential digital-to-analog converter (DAC). SAR logic and comparator are asynchronously operated to increase the sampling frequency. The time-domain comparator with an offset calibration technique is used to achieve a high resolution. The proposed 10-bit 10-MS/s asynchronous SAR ADC with the area of $140{\times}420{\mu}m^2$ is fabricated using a 0.18-${\mu}m$ CMOS process. Its power consumption is 1.19 mW at 1.8 V supply. The measured SNDR is 49.95 dB for the analog input frequency of 101 kHz. The DNL and INL are +0.57/-0.67 and +1.73/-1.58, respectively.

Design of an 1.8V 6-bit 100MS/s 5mW CMOS A/D Converter with Low Power Folding-Interpolation Techniques (저 전력 Folding-Interpolation기법을 적용한 1.8V 6-bit 100MS/s 5mW CMOS A/D 변환기의 설계)

  • Moon Jun-Ho;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.19-26
    • /
    • 2006
  • In this paper, CMOS analog-to-digital converter (ADC) with a 6-bit 100MSPS at 1.8V is described. The architecture of the proposed ADC is based on a folding type ADC using resistive interpolation technique for low power consumption. Further, the number of folding blocks (NFB) is decreased by half of them compared to the conventional ones. A moebius-band averaging technique is adopted at the proposed ADC to improve performance. With the clock speed of 100MSPS, the ADC achieves an effective resolution bandwidth (ERBW) of 50MHz, while consuming only 4.5mW of power. The measured result of figure-of-merit (FoM) is 0.93pJ/convstep. The INL and DNL are within ${\pm}0.5 LSB$, respectively. The active chip occupies an area of $0.28mm^2$ in 0.18um CMOS technology.

Analog-to-Digital Converter using Pipelined Comparator Array (파이프라인드식 비교기 배열을 이용한 아날로그 디지털 변환기)

  • Son, Ju-Ho;Jo, Seong-Ik;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.37-42
    • /
    • 2000
  • In this paper, The high-speed, low-Power analog-to-digital conversion structure is proposed using the pipelined comparator away for high-speed conversion rate and the successive- approximation structure for low-power consumption. This structure is the successive-approximation structure using pipelined comparator array to change the reference voltage during the holding time. An 8-bit 10MS/s analog-to-digital converter is designed using 0.8${\mu}{\textrm}{m}$ CMOS technology. The INL/DNL errors are $\pm$0.5/$\pm$1, respectively. The SNR is 41㏈ at a sampling rate of 10MHz with 100KHz sine input signal. The Power consumption is 4.14㎽ at 10MS/s.

  • PDF

Design of a 3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC (3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC의 설계)

  • Na, Yu-Sam;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.198-204
    • /
    • 2001
  • In this paper, a 3V 8-bit 200MSPS CMOS folding / interpolation A/D Converter is proposed. It employs an efficient architecture whose FR(Folding Rate) is 8, NFB(Number of Folding Block) is 4, and IR (Interpolating Rate) is 8. For the purpose of improved SNDR by to be low input frequency, distributed track and hold circuits are included. In order to obtain a high speed and low power operation, further, a novel dynamic latch and digital encoder based on a novel delay error correction are proposed. The chip has been fabricated with a 0.35${\mu}{\textrm}{m}$ 2-poly 3-metal n-well CMOS technology. The effective chip area is 1070${\mu}{\textrm}{m}$$\times$650${\mu}{\textrm}{m}$ and it dissipates about 230mW at 3.3V power supply. The INL is within $\pm$1LSB and DNL is within $\pm$1LSB, respectively. The SNDR is about 43㏈, when the input frequency is 10MHz at 200MHz clock frequency.

  • PDF

A Design of 250-MSamples/s 8-Bit Folding Analog to Digital Converter using Transistor Differential Pair Folding Technique (트랜지스터 차동쌍 폴딩 기법을 적용한 250-MSamples/s 8-비트 폴딩 아날로그-디지털 변환기의 설계)

  • 이돈섭;곽계달
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.35-42
    • /
    • 2004
  • A CMOS folding ADC with transistor differential pair folding circuit for low power consumption and high speed operation is presented in this paper. This paper explains the theory of transistor differential pair folding technique and many advantages compared with conventional folding and interpolation circuits. A ADC based on transistor differential pair folding circuit uses 16 fine comparators and 32 interpolation resistors. So it is possible to achieve low power consumption, high speed operation and small chip size. Design technology is based on fully standard 0.25${\mu}{\textrm}{m}$ double poly 2 metal n-well CMOS process. A power consumption is 45mW at 2.5V applied voltage and 250MHz sampling frequency. The INL and DNL are within $\pm$0.15LSB and $\pm$0.15LSB respectively. The SNDR is approximately 50dB at 10MHz input frequency.

A 9-b 2MS/s Cyclic Folding ADC for Battery Management Systems (배터리 관리 시스템을 위한 9-b 2MS/s 사이클릭 폴딩 ADC)

  • Kwon, Min-A;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • A 9b MS/s CMOS cyclic folding A/D converter (ADC) for intelligent battery sensor and battery management systems is proposed. The proposed ADC structure is based on a cyclic architecture to reduce chip area and power consumption. To obtain a high speed ADC performance, further, we use a folding-interpolating structure. The prototype ADC implemented with a 0.35um 2P4M n-well CMOS process shows a measured INL and DNL of maximum 1.5LSB and 1.0LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 48dB and 60dB, respectively, and the power consumption is about 110mW at 2MS/s and 3.3V. The occupied active die area is $10mm^2$.

A 3 V 12b 100 MS/s CMOS DAC for High-Speed Communication System Applications (고속통신 시스템 응용을 위한 3 V 12b 100 MS/s CMOS D/A 변환기)

  • 배현희;이명진;신은석;이승훈;김영록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.685-691
    • /
    • 2003
  • This work describes a 3 V 12b 100 MS/s CMOS digital-to-analog converter (DAC) for high-speed communication system applications. The proposed DAC is composed of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs, considering linearity, power consumption, chip area, and glitch energy. The low-glitch switch driving circuit is employed to improve the linearity and the dynamic performance. Current sources of the DAC are laid out separately from the current-cell switch matrix core. The prototype DAC is implemented in a 0.35 urn n-well single-poly quad-metal CMOS technology. The measured DNL and INL of the prototype DAC are within $\pm$0.75 LSB and $\pm$1.73 LSB, respectively, and the spurious-free dynamic range (SFDR) is 64 dB at 100 MS/s with a 10 MHz input sinewave. The DAC dissipates 91 mW at 3 V and occupies the active die area of 2.2 mm ${\times}$ 2.0 mm.

Design of a 2.5V 10-bit 300MSPS CMOS D/A Converter (2.5V 10-bit 300MSPS 고성능 CMOS D/A 변환기의 설계)

  • Kwon, Dae-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.57-65
    • /
    • 2002
  • In this paper, a 2.5V 10-bit 300MSPS CMOS D/A Converter is described. The architecture of the D/A Converter is based on a current steering 8+2 segmented type, which reduces non-linearity error and other secondary effects. In order to achieve a high performance D/A Converter, a novel current cell with a low spurious deglitchnig circuit and a novel inverse thermomeer decoder are proposed. To verify the performance, it is integrated with $0.25{\mu}m$ CMOS 1-poly 5-metal technology. The effective chip area is $1.56mm^2$ and power consumption is about 84mW at 2.5V power supply. The simulation and experimental results show that the glitch energy is 0.9pVsec at fs=100MHz, 15pVsec at fs=300MHz in worst case, respectively. Further, both of INL and DNL are within ${\pm}$1.5LSB, and the SFDR is about 45dB when sampling, frequency, is 300MHz and output frequency is 1MHz.