• 제목/요약/키워드: Gate resistance

검색결과 355건 처리시간 0.027초

WSi2/CVD-Si/SiO2 구조의 게이트 전극 특성 (Characteristics of Gate Electrode for WSi2/CVD-Si/SiO2)

  • 박진성;정동진;이우성;이예승;문환구;김영남;손민영;이현규;강성철
    • 한국세라믹학회지
    • /
    • 제30권1호
    • /
    • pp.55-61
    • /
    • 1993
  • In the WSi2/CVD-Si/SiO2 polycide structure, electrode resistance and its property were studied as a function of deposition temperature and thickness of CVD-Si, diffusion condition of POCl3, and WSi2 being deposited or not. Resistivity of poly-Si is decreased with increment of thickness in the case of POCl3 diffusion of low sheet resistance, but it is increased in the case of high sheet resistance. The resistivity of amorphous-Si is generally lower than that of poly-Si. Initial sheet resistance of poly-Si/WSi2 gate electrode is affected by the thickness and resistance of poly-Si layer, but final resistance after anneal, 900$^{\circ}C$/30min/N2, is only determined by WSi2 layer. Flourine diffuses into SiO2, but tungsten does not. In spite of out-diffusion of phosphorus into WSi2 layer, the sheet resistance is not changed.

  • PDF

FinFET for Terabit Era

  • Choi, Yang-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권1호
    • /
    • pp.1-11
    • /
    • 2004
  • A FinFET, a novel double-gate device structure is capable of scaling well into the nanoelectronics regime. High-performance CMOS FinFETs , fully depleted silicon-on-insulator (FDSOI) devices have been demonstrated down to 15 nm gate length and are relatively simple to fabricate, which can be scaled to gate length below 10 nm. In this paper, some of the key elements of these technologies are described including sub-lithographic pattering technology, raised source/drain for low series resistance, gate work-function engineering for threshold voltage adjustment as well as metal gate technology, channel roughness on carrier mobility, crystal orientation effect, reliability issues, process variation effects, and device scaling limit.

Extended Trench Gate Superjunction Lateral Power MOSFET for Ultra-Low Specific on-Resistance and High Breakdown Voltage

  • Cho, Doohyung;Kim, Kwangsoo
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.829-834
    • /
    • 2014
  • In this paper, a lateral power metal-oxide-semiconductor field-effect transistor with ultra-low specific on-resistance is proposed to be applied to a high-voltage (up to 200 V) integrated chip. The proposed structure has two characteristics. Firstly, a high level of drift doping concentration can be kept because a tilt-implanted p-drift layer assists in the full depletion of the n-drift region. Secondly, charge imbalance is avoided by an extended trench gate, which suppresses the trench corner effect occurring in the n-drift region and helps achieve a high breakdown voltage (BV). Compared to a conventional trench gate, the simulation result shows a 37.5% decrease in $R_{on.sp}$ and a 16% improvement in BV.

Analog CMOS Performance Degradation due to Edge Direct Tunneling (EDT) Current in sub-l00nm Technology

  • Navakanta Bhat;Thakur, Chandrabhan-Singh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권3호
    • /
    • pp.139-144
    • /
    • 2003
  • We report the results of extensive mixed mode simulations and theoretical analysis to quantify the contribution of the edge direct tunneling (EDT) current on the total gate leakage current of 80nm NMOSFET with SiO2 gate dielectric. It is shown that EDT has a profound impact on basic analog circuit building blocks such as sample-hold (S/H) circuit and the current mirror circuit. A transistor design methodology with zero gate-source/drain overlap is proposed to mitigate the EDT effect. This results in lower voltage droop in S/H application and better current matching in current mirror application. It is demonstrated that decreasing the overlap length also improves the basic analog circuit performance metrics of the transistor. The transistor with zero gate-source/drain overlap, results in better transconductance, input resistance, output resistance, intrinsic gain and unity gain transition frequency.

자기 정열과 수소 어닐링 기술을 이용한 고밀도 트랜치 게이트 전력 DMOSFET의 전기적 특성 분석 (Analysis of Electrical Characteristics of High-Density Trench Gate Power DMOSFET Utilizing Self-Align and Hydrogen Annealing Techniques)

  • 박훈수;김종대;김상기;이영기
    • 한국전기전자재료학회논문지
    • /
    • 제16권10호
    • /
    • pp.853-858
    • /
    • 2003
  • In this study, a new simplified technology for fabricating high density trench gate DMOSFETs using only three mask layers and TEOS/nitride spacer is proposed. Due to the reduced masking steps and self-aligned process, this technique can afford to fabricate DMOSFETs with high cell density up to 100 Mcell/inch$^2$ and cost-effective production. The resulting unit cell pitch was 2.3∼2.4${\mu}$m. The fabricated device exhibited a excellent specific on-resistance characteristic of 0.36m$\Omega$. cm$^2$ with a breakdown voltage of 42V. Moreover, time to breakdown of gate oxide was remarkably increased by the hydrogen annealing after trench etching.

80 V급 저전력 반도체 소자의 관한 연구 (Design of 80 V Grade Low-power Semiconductor Device)

  • 심관필;안병섭;강예환;홍영성;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.190-193
    • /
    • 2013
  • Power MOSFET and Power IGBT is develop in power savings, high efficiency, small size, high reliability, fast switching, low noise. Power MOSFET can be used high-speed switching transistors devices. Power MOSFET is devices the voltage-driven approach switching devices are design to handle on large power, power supplies, converters. In this paper, design the 80V MOSFET Planar Gate type, and design the Trench Gate type for realization of low on-resistance. For both structures, by comparing and analyzing the results of the simulation and characterization.

열적으로 강인한 Molybdenium 게이트-PMOS Capacitor의 분석 (Analysis of PMOS Capacitor with Thermally Robust Molybdenium Gate)

  • 이정민;서현상;홍신남
    • 한국전기전자재료학회논문지
    • /
    • 제18권7호
    • /
    • pp.594-599
    • /
    • 2005
  • In this paper, we report the properties of Mo metal employed as PMOS gate electrode. Mo on $SiO_2$ was observed to be stable up to $900^{\circ}C$ by analyzing the Interface with XRD. C-V measurement was performed on the fabricated MOS capacitor with Mo Bate on $SiO_2$. The stability of EOT and work-function was verified by comparing the C-V curves measured before and after annealing at 600, 700, 800, and $900^{\circ}C$. C-V hysteresis curve was performed to identify the effect of fired charge. Gate-injection and substrate-injection of carrier were performed to study the characteristics of $Mo-SiO_2$ and $SiO_2-Si$ interface. Sheet resistance of Mo metal gate obtained from 4-point probe was less than $10\;\Omega\Box$ that was much lower than that of polysilicon.

터널링 전계효과 트랜지스터의 고주파 파라미터 추출과 분석 (Analyses for RF parameters of Tunneling FETs)

  • 강인만
    • 대한전자공학회논문지SD
    • /
    • 제49권4호
    • /
    • pp.1-6
    • /
    • 2012
  • 본 논문에서는 고주파에서 동작하는 터널링 전계효과 트랜지스터 (TFET)의 소신호 파라미터 추출과 이에 대한 분석을 다루고 있다. 시뮬레이션으로 구현된 TFET의 채널 길이는 50 nm에서 100 nm 사이에서 변화되었다. Conventional planar MOSFET 기반의 quasi-static 모델을 이용하여 TFET의 파라미터 추출이 이루어졌으며 다른 채널 길이를 갖는 TFET에 대한 소신호 파라미터의 값을 게이트 바이어스 변화에 따라서 추출하였다. 추출 결과로부터 effective gate resistance와 transconductance, source-drain conductance, gate capacitance 등 주요 파라미터의 채널 길이 변화에 따른 경향성이 conventional MOSFET과 상당히 다른 것을 확인하였다. 그리고 $f_T$는 MOSFET과 달리 게이트 길이 역수의 값에 정확히 반비례하는 특성을 보였으며 TFET의 고주파 특성 향상을 transconductance의 개선이 아닌 gate capacitance의 감소에 의하여 가능함을 알 수 있었다.

Double Gate MOSFET의 전기적 특성 분석 (Analysis of Electrical Characteristics for Double Gate MOSFET)

  • 김근호;김재홍;고석웅;정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.261-263
    • /
    • 2002
  • CMOS 소자들은 고속 동자 및 고집적을 위해 50nm이하로 작아지고 있다. 소자 scaling에서 중요한 것은 스케일 되지 않은 문턱 전압($V^{th}$ ), 고 전계, 기생 소스/드레인 저항과 임의의 dopant 분배에 의한 $V^{th}$ 변화율이다. 이런 일반적인 소자의 scaling down 문제들을 해결하기 위해 새로운 소자의 구조가 제안된다. 본 논문에서는 이런 문제들을 해결하기 위해 main-gate와 side-gates를 갖는 double-gate MOSFET에 대해 조사하였다.

  • PDF

Characterization of Ultrathin Gate Dielectrics for Nanoscale CMOS Applications

  • Yoon, Gi-Wan;Mai, Linh;Lee, Jae-Young
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.109-111
    • /
    • 2007
  • In this paper, MOS devices with ultrathin gate dielectrics (5.5 nm) are characterized and compared with those with conventional oxides particularly for nanoscale CMOS applications. Nitrogen concentrations and profiles in the nitride gate dielectrics were obtained that will play an important role in improving both hot-carrier lifetime and resistance to boron penetration. This approach seems very useful for future nanoscale CMOS device applications.