• Title/Summary/Keyword: Gate Overlap

Search Result 32, Processing Time 0.03 seconds

New SPICE Modeling for Bias-Dependent Gate-Drain Overlap Capacitance in RF MOSFETs (RF MOSFET의 바이어스 종속 게이트-드레인 오버렙 캐패시턴스의 새로운 SPICE 모델링)

  • Lee, Sangjun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • The inaccuracy of the bias-dependent gate-drain overlap capacitance $C_{gdo}$ simulation in original BSIM4 and BSIM4 macro model using a diode is analyzed in detail. It is found that the accuracy of the macro model is better than of the BSIM4. However, the macro model cannot be used in the linear region. In order to remove the inaccuracy of the conventional models, a new BSIM4 macro model with a physical bias-dependent $C_{gdo}$ equation is proposed and its accuracy is validated in the full bias range.

A Study on the Validity of C-V Method for Extracting the Effective Channel Length of MOSFET) (MOSFET의 Effective Channel Length를 추출하기 위한 C-V 방법의 타당성 연구)

  • 이성원;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.1-8
    • /
    • 2002
  • C- V method is a means to determine the effective channel length for miniaturized MOSFET's. This method achieves L$_{eff}$ by extracting a unique channel length independent extrinsic overlap length($\Delta$L) at a critical gate bias point. In this paper, we conducted an experiment on two different C-V methods. L$_{eff}$ extracted from experiment is compared with L$_{eff}$ simulated from a two-dimensional (2-D) device simulator, and the accuracy of C-V method for L$_{eff}$ extraction is analyzed.

Accuracy Analysis of Extraction Methods for Effective Channel Length in Deep-Submicron MOSFETs

  • Kim, Ju-Young;Choi, Min-Kwon;Lee, Seong-Hearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.130-133
    • /
    • 2011
  • A comparative study of two capacitance methods to measure the effective channel length in deep-submicron MOSFETs has been made in detail. Since the reduction of the overlap capacitance in the accumulation region is smaller than the addition of the inner fringe capacitance at zero gate voltage, the capacitance method removing the parasitic capacitance in the accumulation region extracts a more accurate effective channel length than the method removing that at zero gate voltage.

A Self-Aligned Metal Gate MOSFET Structure Utilizing The Oxidation Rate Variation on The Impurity Concentration (불순물 농도에 따른 산화막 성장률의 차이를 이용한 자기 정렬된 금속게이트 MOSFET 구조)

  • 고요환;최진호;김충기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.462-469
    • /
    • 1987
  • A metal gate MOSFET with source/drain regions self-aligned to gate region is proposed. The proposed MOS transistor is fabricated by utilizing the higher oxidation rate of source/drain regions with high doping concentration when compared with channel region with moderate doping. The thick oxide on the source/drain regions reduces the gate and drain(source) overlap capacitance down to that of a self-aligned polysilicon gate device while allowing the use of a metal gate with much lower resistivity than the more commonly used polycrystalline silicon. A ring oscillator composed of 15 inverter stages has been computer simulated using SPICE. The results of the simulation show good agreement with experimental measurement confirming the fast switching speed of propesed MOSFET.

  • PDF

A Study on the Structure of Polycrystalline Silicon Thin Film Transistor for Reducing Off-Current (OFF 전류의 감소를 위한 다결정 실리콘 박막 트랜지스터의 구조 연구)

  • Oh, Jeong-Min;Min, Byung-Hyuk;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1292-1294
    • /
    • 1993
  • This paper proposes a new structure of polycrystalline silicon(poly-Si) thin film transistor(TFT) having a thick gate-oxide below the gate edge. The new structure is fabricated by the gate re-oxidation in wet ambient. It is shown that the thick gate-oxide below the gate edge is effective in reducing the leakage current and the gate-drain overlap capacitance. We have simulated this device by using the SSUPREM4 process simulator and the SPISCES-2B device simulator. As a simulation result it is found that the new structure provides a low tentage current less than 0.2 pA and achieves a on/off ratio as high as $5{\times}10^7$.

  • PDF

Trench Power MOSFET using Separate Gate Technique for Reducing Gate Charge (Gate 전하를 감소시키기 위해 Separate Gate Technique을 이용한 Trench Power MOSFET)

  • Cho, Doohyung;Kim, Kwangsoo
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.283-289
    • /
    • 2012
  • In this paper, We proposed Separate Gate Technique(SGT) to improve the switching characteristics of Trench power MOSFET. Low gate-to-drain 전하 (Miller 전하 : Qgd) has to be achieved to improve the switching characteristics of Trench power MOSFET. A thin poly-silicon deposition is processed to form side wall which is used as gate and thus, it has thinner gate compared to the gate of conventional Trench MOSFET. The reduction of the overlapped area between the gate and the drain decreases the overlapped charge, and the performance of the proposed device is compared to the conventional Trench MOSFET using Silvaco T-CAD. Ciss(input capacitance : Cgs+Cgd), Coss(output capacitance : Cgd+Cds) and Crss(reverse recovery capacitance : Cgd) are reduced to 14.3%, 23% and 30% respectively. To confirm the reduction effect of capacitance, the characteristics of inverter circuit is comprised. Consequently, the reverse recovery time is reduced by 28%. The proposed device can be fabricated with convetional processes without any electrical property degradation compare to conventional device.

Mobility Enhancement in a Pentacene Thin-film Transistor by Shortening the Intermolecular Distance (분자 간 거리 감소에 의한 펜타센 박막트랜지스터의 전하 이동도 향상)

  • Jung, Tae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.500-505
    • /
    • 2012
  • In this study, the influence of the intermolecular distance on the charge mobility in a pentacene thin-film was investigated. In order to increase the mobility which depends on the ${\pi}$-overlap between molecules, the intermolecular distance was shortened by compressive force along the conduction channel. Pentacene thin-film was fabricated on flexible substrates bent outward at different radii to stretch the gate dielectric surface and then the substrates were unbent, producing the compressive force to the film. The result showed that the mobility increased proportionally to the strain applied during the pentacene deposition and the molecular packing inside a grain was not optimal for the charge transport.

Characteristics of Subthreshold Leakage Current in Symmetric/Asymmetric Double Gate SOI MOSFET (대칭/비대칭 double 게이트를 갖는 SOI MOSFET에서 subthreshold 누설 전류 특성 분석)

  • Lee, Ki-Am;Park, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1549-1551
    • /
    • 2002
  • 현재 게이트 길이가 100nm 이하의 MOSFET 소자를 구현할 때 가장 대두되는 문제인 short channel effect를 억제하는 방법으로 제안된 소자 중 하나가 double gate (DG) silicon-on-insulator (SOI) MOSFET이다. 그러나 DG SOI MOSFET는 두 게이트간의 align과 threshold voltage control 문제가 있다. 본 논문에서는 DG SOI MOSFET에서 이상적으로 게이트가 align된 구조와 back 게이트가 front 게이트보다 긴 non-align된 구조가 subthreshold 동작 영역에서 impact ionization에 미치는 영향에 대해 시뮬레이션을 통하여 비교 분석하였다. 그 결과 게이트가 이상적으로 align된 구조보다 back 게이트가 front 게이트보다 긴 non-align된 구조가 게이트와 드레인이 overlap된 영역에서 impact ionization이 증가하였으며 게이트가 각각 n+ 폴리실리콘과 p+ 폴리실리콘을 가진 소자에서 두 게이트가 같은 work function을 가진 소자보다 높은 impact generation rate을 가짐을 알 수 있었다.

  • PDF

Hot-Carrier Induced GIDL Characteristics of PMOSFETs under DC and Dynamic Stress (직류 및 교류스트레스 조건에서 발생된 Hot-Carrier가 PMOSFET의 누설전류에 미치는 영향)

  • 류동렬;이상돈;박종태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.77-87
    • /
    • 1993
  • PMOSFETs were studied on the effect of Hot-Carrier induced drain leakage current (Gate-Induced-Drain-Leakage). The result turned out that change in Vgl(drain voltage where 1pA/$\mu$m of drain leadage current flows) was largest in the Channel-Hot-Hole(CHH) injection condition and next was in dynamic stress and was smallest in electron trapping (Igmax) condition under various stress conditions. It was analyzed that if electron trapping occurrs in the overlap region of gate and drain(G/D), it reduces GIDL current due to increment of flat-band voltage(Vfb) and if CHH is injected, interface states(Nit) were generated and it increases GIDL current due to band-to-defect-tunneling(BTDT). Especially, under dynamic stress it was confirmed that increase in GIDL current will be high when electron injection was small and CHH injection was large. Therefore as applying to real circuit, low drain voltage GIDL(BTDT) was enhaced as large as CHH Region under various operating voltage, and it will affect the reliablity of the circuit.

  • PDF

Downscaling of self-aligned inkjet printed polymer thin film transistors

  • Noh, Yong-Young;Sirringhaus, Henning
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1564-1567
    • /
    • 2008
  • We demonstrate here a self-aligned printing approach that allows downscaling of printed organic thin-film transistors to channel lengths of 100 - 400 nm. A perfected down-scaled polymer transistors (L= 200 nm) showing high transition frequency over 1.5 Mhz were realized with thin polymer dielectrics, controlling contact resistance, and minimizing overlap capacitance via self-aligned gate configuration.

  • PDF