• Title/Summary/Keyword: Drain Bias

Search Result 204, Processing Time 0.031 seconds

1/f Noise Characteristics of N-MOSFETS fabricated by BiCMOS process (BiCMOS공정 N-MOSFET 소자의 1/f 잡음특성)

  • Koo, Hoe-Woo;Lee, Kie-Young
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.226-235
    • /
    • 1999
  • To investigate SPICE noise model and the behavior of its parameters, 1/f noise of NMOS devices fabricated by BiCMOS process is measured and compared to the various noise models and measured results. For the long channel devices, bias dependence of the drain current noise power spectral density $S_{Id}$ of NMOS is similar to the previous results. Equivalent gate noise power spectral density $S_{Vg}$ shows weak dependence on the gate and drain voltages in long channel NMOS as the previous results. However, it is shown that most of published noise models are difficult to apply to short channel devices. Therefore, in this study, with comparison of our experimental results, we have tried to find the model of 1/f noise, appropriate for our NMOS device fabricated by BiCMOS process.

  • PDF

Highly Manufacturable 65nm McFET (Multi-channel Field Effect Transistor) SRAM Cell with Extremely High Performance

  • Kim, Sung-Min;Yoon, Eun-Jung;Kim, Min-Sang;Li, Ming;Oh, Chang-Woo;Lee, Sung-Young;Yeo, Kyoung-Hwan;Kim, Sung-Hwan;Choe, Dong-Uk;Suk, Sung-Dae;Kim, Dong-Won;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • We demonstrate highly manufacturable Multi-channel Field Effect Transistor (McFET) on bulk Si wafer. McFET shows excellent transistor characteristics, such as $5{\sim}6 times higher drive current than planar MOSFET, ideal subthreshold swing, low drain induced barrier lowering (DIBL) without pocket implantation and negligible body bias dependency, maintaining the same source/drain resistance as that of a planar transistor due to the unique feature of McFET. And suitable threshold voltage ($V_T$) for SRAM operation and high static noise margin (SNM) are achieved by using TiN metal gate electrode.

A Novel External Resistance Method for Extraction of Accurate Effective Channel Carrier Mobility and Separated Parasitic Source/Drain Resistances in Submicron n-channel LDD MOSFET's (새로운 ERM-방법에 의한 미세구조 N-채널 MOSFET의 유효 캐리어 이동도와 소스 및 드레인 기생저항의 정확한 분리 추출)

  • Kim, Hyun-Chang;Cho, Su-Dong;Song, Sang-Jun;Kim, Dea-Jeong;Kim, Dong-Myong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.1-9
    • /
    • 2000
  • A new method, the external resistance method (ERM method), is proposed for accurate extraction of the gate bias-dependent effective channel carrier mobility (${\mu}_{eff}$) and separated parasitic source/drain resistances ($R_S$ and $R_D$) of n-channel MOSFET's. The proposed ERM method is applied to n-channel LDD MOSFETs with two different gate lengths ($W_m/L_m=30{\mu}m/0.6{\mu}m,\;30{\mu}m/1{\mu}m$) in the linear mode of current-voltage characteristics ($I_D-V_{GS},\;V_{DS}$). We also considered gate voltage dependence of separated $R_2$ and $R_D$ in the accurate modeling and extraction of effective channel carrier mobility. Good agreement of experimental data is observed in submicron n-channel LDD MOSFETs. Combining with capacitance-voltage characteristics, the ERM method is expected to be very useful for accurate and efficient extraction of ${\mu}_{eff},\;R_D,\;R_S$, and other characteristic parameters in both symmetric and asymmetric structure MOSFET's in which parasitic resistances are critical to the improvement of high speed performance and reliability.

  • PDF

Improvement of Electronic Properties and Amplification of Electron Trapping/Recovery through Liquid Crystal(LC) Passivation on Amorphous InGaZnO Thin Film Transistors

  • Lee, Seung-Hyeon;Kim, Myeong-Eon;Heo, Yeong-U;Kim, Jeong-Ju;Lee, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.267.1-267.1
    • /
    • 2016
  • 본 연구에서는 nematic 액정의 종류 중 하나인 5CB (4-Cyano-4'-pentylbiphenyl) 물질을 박막 트랜지스터 (TFT)의 passivation 층으로 사용했을 때 그 전기적 특성향상을 확인하였다. RF-magnetron sputtering법으로 증착된 비정질 InGaZnO 박막을 활성층으로 사용한 TFT를 제작하여 그 활성층 위에 drop형식으로 passivation 하였다. 그 결과, drain current (I_DS)가 약 10배 정도 증가하고, linear region(V_D=0.5V)에서 mobility와 subthreshold slope(SS)이 각각 6.7에서 12.2, 0.3에서 0.2로 향상되는 것이 보였다. 이것은 gate bias가 인가되었을 때 freedericksz 전이를 통한 액정의 배향과 이때 형성된 dipole 형성에 의한 것으로 보이며, 이러한 LC의 배향은 편광현미경을 통하여 표면과 수직으로 배향한다는 사실을 확인 할 수 있었고 이 LC-passivation된 a-IGZO TFT의 전기적 특성의 향상에 대한 mechanism을 제시하였다. 그리고 배향한 LC가 가지는 dipole에 의해 bias stress 상황에서 독특한 electron trapping과 recovery의 증폭효과가 나타났다. V_G=+20V의 positive gate bias stress를 1000s동안 가했을 때, passivation되지 않은 a-IGZO TFT의 경우 +4V의 threshold voltage shift(${\Delta}V$_TH)가 발생되었고, 바로 -20V의 negative gate bias를 30s간 가해주었을 때 -2.5V의 ${\Delta}V$_TH가 발생하였다. 반면 LC-passivation된 a-IGZO TFT의 경우 각각 +5V와 -4V의 ${\Delta}V$_TH로 더 큰 변화를 가져왔다. 이러한 LC에 의한 electron trapping/recovery 증폭효과에 대한 model을 제시하였다.

  • PDF

Light and bias stability of c-IGO TFTs fabricated by rf magnetron sputtering

  • Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.265.2-265.2
    • /
    • 2016
  • Oxide thin film transistors (TFTs) have attracted considerable interest for gate diver and pixel switching devices of the active matrix (AM) liquid crystal display (LCD) and organic light emitting diode (OLED) display because of their high field effect mobility, transparency in visible light region, and low temperature processing below $300^{\circ}C$. Recently, oxide TFTs with polycrystalline In-Ga-O(IGO) channel layer reported by Ebata. et. al. showed a amazing field effect mobility of $39.1cm^2/Vs$. The reason having high field effect mobility of IGO TFTs is because $In_2O_3$ has a bixbyite structure in which linear chains of edge sharing InO6 octahedral are isotropic. In this work, we investigated the characteristics and the effects of oxygen partial pressure significantly changed the IGO thin-films and IGO TFTs transfer characteristics. IGO thin-film were fabricated by rf-magnetron sputtering with different oxygen partial pressure ($O_2/(Ar+O_2)$, $Po_2$)ratios. IGO thin film Varies depending on the oxygen partial pressure of 0.1%, 1%, 3%, 5%, 10% have been some significant changes in the electrical characteristics. Also the IGO TFTs VTH value conspicuously shifted in the positive direction, from -8 to 11V as the $Po_2$ increased from 1% to 10%. At $Po_2$ was 5%, IGO TFTs showed a high drain current on/off ratio of ${\sim}10^8$, a field-effect mobility of $84cm^2/Vs$, a threshold voltage of 1.5V, and a subthreshold slpe(SS) of 0.2V/decade from log(IDS) vs VGS.

  • PDF

Linearity Enhancement of Partially Doped Channel GaAs-based Double Heterostructure Power FETs (부분 채널도핑된 GaAs계 이중이종접합 전력FET의 선형성 증가)

  • Kim, U-Seok;Kim, Sang-Seop;Jeong, Yun-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.83-88
    • /
    • 2002
  • To increase the device linearities and the breakdown-voltages of FETs, $Al_{0.25}$G $a_{0.75}$As/I $n_{0.25}$G $a_{0.75}$As/A $l_{0.25}$G $a_{0.75}$As partially doped channel FET(DCFET) structures are proposed. The metal insulator-semiconductor(MIS) like structures show the high gate-drain breakdown voltage(-20V) and high linearities. We propose a partially doped channel structure to enhance the device linearity to the homogeneously doped channel structure. The physics of partially doped channel structure is investigated with 2D device simulation. The devices showed the small ripple of the current cut-off frequency and the power cut-off frequency over the wide bias range. bias range.

Detection of SNPs using electrical biased method on diamond FETs (다이아몬드 FETs에서 전기적 바이어스 방법을 이용한 단일염기 다형성(SNPs) 검출)

  • Song, Kwang Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.190-195
    • /
    • 2015
  • The detection of single nucleotide polymorphisms (SNPs) caused of mutant or genetic diseases is important to diagnosis and medicine. There are many methods have been proposed to detect SNPs. However the detection of SNPs is difficulty, because the difference of energy between complementary DNA (cDMA) and SNPs is very small. In this work, we detect the SNPs using field-effect transistors (FETs) which based on the detection of negative charge of DNA. We bias -0.3 V on the drain-source electrode at the target DNA hybridization process. The efficiency of hybridization and the amplitude of signal decrease by repulsive force between negative charge of DNA and negative bias on the electrode. However, the sensitivity of SNPs increases about 5 times from 1.7 mV to 8.7 mV.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Sensitive Characteristics of Hot Carriers by Bias Stress in Hydrogenated n-chnnel Poly-silicon TFT (수소 처리시킨 N-채널 다결정 실리콘 TFT에서 스트레스인가에 의한 핫캐리어의 감지 특성)

  • Lee, Jong-Kuk;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.218-224
    • /
    • 2003
  • The devices of n-channel poly silicon thin film transistors(TFTs) hydrogenated by plasma, $H_2$ and $H_2$/plasma processes are fabricated. The carriers sensitivity characteristics are analyzed with voltage bias stress at the gate oxide. The parametric sensitivity characteristics caused by electrical stress conditions in hydrogenated devices are investigated by measuring the drain current, threshold voltage($V_{th}$), subthreshold slope(S) and maximum transconductance($G_m$) values. As a analyzed results, the degradation characteristics in hydrogenated n-channel polysilicon thin film transistors are mainly caused by the enhancement of dangling bonds at the poly-Si/$SiO_2$ interface and the poly-Si grain boundary due to dissolution of Si-H bonds. The generation of traps in gate oxide are mainly dued to hot electrons injection into the gate oxide from the channel region.

Low Temperature Characteristics of Schottky Barrier Single Electron and Single Hole Transistors

  • Jang, Moongyu;Jun, Myungsim;Zyung, Taehyoung
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.950-953
    • /
    • 2012
  • Schottky barrier single electron transistors (SB-SETs) and Schottky barrier single hole transistors (SB-SHTs) are fabricated on a 20-nm thin silicon-on-insulator substrate incorporating e-beam lithography and a conventional CMOS process technique. Erbium- and platinum-silicide are used as the source and drain material for the SB-SET and SB-SHT, respectively. The manufactured SB-SET and SB-SHT show typical transistor behavior at room temperature with a high drive current of $550{\mu}A/{\mu}m$ and $-376{\mu}A/{\mu}m$, respectively. At 7 K, these devices show SET and SHT characteristics. For the SB-SHT case, the oscillation period is 0.22 V, and the estimated quantum dot size is 16.8 nm. The transconductance is $0.05{\mu}S$ and $1.2{\mu}S$ for the SB-SET and SB-SHT, respectively. In the SB-SET and SB-SHT, a high transconductance can be easily achieved as the silicided electrode eliminates a parasitic resistance. Moreover, the SB-SET and SB-SHT can be operated as a conventional field-effect transistor (FET) and SET/SHT depending on the bias conditions, which is very promising for SET/FET hybrid applications. This work is the first report on the successful operations of SET/SHT in Schottky barrier devices.