Browse > Article
http://dx.doi.org/10.5573/ieie.2015.52.3.190

Detection of SNPs using electrical biased method on diamond FETs  

Song, Kwang Soup (Medical IT Convergence Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of the Institute of Electronics and Information Engineers / v.52, no.3, 2015 , pp. 190-195 More about this Journal
Abstract
The detection of single nucleotide polymorphisms (SNPs) caused of mutant or genetic diseases is important to diagnosis and medicine. There are many methods have been proposed to detect SNPs. However the detection of SNPs is difficulty, because the difference of energy between complementary DNA (cDMA) and SNPs is very small. In this work, we detect the SNPs using field-effect transistors (FETs) which based on the detection of negative charge of DNA. We bias -0.3 V on the drain-source electrode at the target DNA hybridization process. The efficiency of hybridization and the amplitude of signal decrease by repulsive force between negative charge of DNA and negative bias on the electrode. However, the sensitivity of SNPs increases about 5 times from 1.7 mV to 8.7 mV.
Keywords
FETs; DNA; SNPs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. B. Barreiro, R. Henriques and M. M. Mhlanga, "High-throughput SNP genotyping: combining tag SNPs and molecular beacons," Methods Mol. Biol., Vol. 578, pp. 255-276, Jun. 2009.   DOI   ScienceOn
2 L. Beaudet, J. Bedard, B. Breton, R. J. Mercuri and M. L. Budarf, "Homogeneous Assays for Single-Nucleotide Polymorphism Typing Using AlphaScreen," Genome Res., Vol. 11, no. 4, pp. 600-608, Mar. 2001.   DOI
3 W. Shen, H. Deng, Y. Ren and Z. Gao, "An electronic sensor array for label-free detection of single-nucleotide polymorphisms," Biosen. & Bioele., Vol. 42, pp. 165-172, Jan. 2013.
4 M. L. Ermini, S. Mariani, S. Scarano and M. Minunni, "Bioanalytical approaches for the detection of single nucleotide polymorphisms by surface plasmon resonance biosensors," Biosen. & Bioele., Vol. 61, pp. 28-37, May 2014.   DOI   ScienceOn
5 K. Chang, S. Deng and M. Chen, "Novel biosensing methodologies for improving the detection of single nucleotide polymorphism," Biosen. & Bioele., Vol. 66, pp. 297-307, Jan. 2015.   DOI   ScienceOn
6 K. S. Song, T. Hiraki, H. Umezawa and H. Kawarada, "Miniaturized diamond field-effect transistors for application in biosensors in electrolyte solution," Appl. Phys. Lett., Vol. 90, no. 6, pp. 063901-063903, Feb. 2007.   DOI   ScienceOn
7 K. S. Song, "Sensitivity of a charge-detecting label-free DNA sensor using field-effect transistors (FETs) depending on the Debye length," IEIE, Vol. 48 SC, no. 2, pp. 86-90, Mar. 2011.
8 H. I. Seo, B. K. Sohn "A signal process circuit for ISFET biosensor and a design for their one-chip integration " IEIE, Vol. 28 A, no. 1, pp. 46-51, Jan. 1991.
9 F. Uslu, S. Ingebrandt, D. Mayer, S. Bocker -Meffert, M. Odenthal and A. Offenhausser, "Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device," Biosen. & Bioele., Vol. 19, no. 12, pp. 1723-1731, Jul. 2004.   DOI   ScienceOn
10 A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Offenhausser and M. J. Schoning, "Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices," Sens. Actuators B, Vol. 111-112, no. 11, pp. 470-480, Nov. 2005.   DOI   ScienceOn
11 S. I. Lim, " Design technology of biomedical device" IEIE, Vol. 37, no. 10, pp. 48-62, Oct. 2010
12 K. S. Song, G. J. Zhang, Y. Nakamura, K. Furukawa, T. Hiraki, J. H. Yang, T. Funatsu, I. Ohodomari and H. Kawarada, "Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution," Phys. Rev. E, Vol. 74, no. 4, pp. 041919-041925, Oct. 2006.   DOI