• Title/Summary/Keyword: Double Gate MOSFET

Search Result 177, Processing Time 0.028 seconds

Analysis of Anomalous Subthreshold Characteristics in Ligtly-Doped Asymmetric Double-Gate MOSFETs (Asymmetric Double-Gate MOSFET의 Subthreshold 특성 분석)

  • 이혜림;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.379-383
    • /
    • 2003
  • The subthreshold characteristics of Double-Gate MOSFETs are analyzed for various Tsi. In the lightly-doped asymmetric device, it is found that the subthreshold current dramatically increases as the Tsi increases and this phenomenon is due to the linear distribution of potential in the channel region with low depletion-charge. Further, we derived an analytical equation which can explain this phenomenon and verified the accuracy of analytical equation by comparing with the result of device simulation.

Design of Optical Receiver Using Independent-Gate-Mode Double-Gate MOSFETs (Independent-Gate-Mode Double-Gate MOSFET을 이용한 Optical Receiver 설계)

  • Kim, Yu-Jin;Jeong, Na-Rae;Park, Sung-Min;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.13-22
    • /
    • 2010
  • Independent-Gate-Mode Double-Gate(IGM-DG) MOSFET overcomes the limitation of bulk-MOSFET's channel controllability and enables to control the front and back-gate voltages independently. Therefore, circuit designs utilizing the IGM-DG MOSFETs provide the advantage of setting 4-terminal freely, hence achieving not only the performance improvement but also the larger scale integration. This paper presents a 15Gb/s optical receiver with a 1.0V power supply voltage, which consists of a transimpedance amplifier (TIA), a feedforward limiting amplifier (LA), and an output buffer. HSPICE simulations were conducted to confirm the circuit performance, and also to verify the circuit stability issues which may occur from the variations of process and supply voltage.

Double-Gate MOSFET Filled with Dielectric to Reduce Sub-threshold Leakage Current

  • Hur, Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.283-284
    • /
    • 2012
  • In this work, a special technique called dielectric filling was carried out in order to reduce sub-threshold leakage current inside double-gated n-channel MOSFET. This calibration was done by using SILVACO Atlas(TCAD), and the result showed quite a good performance compared to the conventional double-gate MOSFET.

  • PDF

Analysis of Subthreshold Swing Mechanism by Device Parameter of Asymmetric Double Gate MOSFET (소자 파라미터에 따른 비대칭 DGMOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.156-162
    • /
    • 2015
  • This paper has analyzed how conduction path and electron concentration for the device parameters such as oxide thickness, channel doping, and top and bottom gate voltage influence on subthreshold swing of asymmetric double gate MOSFET. Compared with symmetric and asymmetric double gate MOSFET, asymmetric double gate MOSFET has the advantage that the factors to be able to control the short channel effects increase since top and bottom gate oxide thickness and voltages can be set differently. Therefore the conduction path and electron concentration for top and bottom gate oxide thickness and voltages are investigated, and it is found the optimum conditions that the degradation of subthreshold swing, severe short channel effects, can reduce. To obtain the analytical subthreshold swing, the analytical potential distribution is derived from Possion's equation. As a result, conduction path and electron concentration are greatly changed for device parameters, and subthreshold swing is influenced by conduction path and electron concentration of top and bottom.

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-546
    • /
    • 2008
  • In this paper, conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gate oxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according doping concentration.

Analysis of Threshold Voltage Roll-Off and Drain Induced Barrier Lowering in Junction-Based and Junctionless Double Gate MOSFET (접합 및 무접합 이중게이트 MOSFET에 대한 문턱전압 이동 및 드레인 유도 장벽 감소 분석)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.104-109
    • /
    • 2019
  • An analytical threshold voltage model is proposed to analyze the threshold voltage roll-off and drain-induced barrier lowering (DIBL) for a junction-based double-gate (JBDG) MOSFET and a junction-less double-gate (JLDG) MOSFET. We used the series-type potential distribution function derived from the Poisson equation, and observed that it is sufficient to use n=1 due to the drastic decrease in eigenvalues when increasing the n of the series-type potential function. The threshold voltage derived from this threshold voltage model was in good agreement with the result of TCAD simulation. The threshold voltage roll-off of the JBDG MOSFET was about 57% better than that of the JLDG MOSFET for a channel length of 25 nm, channel thickness of 10 nm, and oxide thickness of 2 nm. The DIBL of the JBDG MOSFET was about 12% better than that of the JLDG MOSFET, at a gate metal work-function of 5 eV. It was also found that decreasing the work-function of the gate metal significantly reduces the DIBL.

Dynamic characteristics for Double Gate MOSFET (더블게이트 MOSFET의 동적 특성)

  • Ko Suk-woong;Jung Hak-kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1749-1753
    • /
    • 2005
  • In this paper, we have investigated electrical characteristics by action temperature of double gate structure that have main gate and side gate. Could know current-voltage characteristic is superior in ultra low temperature (77 K) as well as in room temperature (300 K). Also, conditions of most suitable for get superior DG MOSFET's dynamic characteristics are main gate length of 50nm and side gate length of 70nm and could know that should be approved more than voltage 2V. Also, this DG MOSFET usefully use may as digital device because on-off characteristic is superior.

Relation of Oxide Thickness and DIBL for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에서 산화막 두께와 DIBL의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.799-804
    • /
    • 2016
  • To analyze the phenomenon of drain induced barrier lowering(DIBL) for top and bottom gate oxide thickness of asymmetric double gate MOSFET, the deviation of threshold voltage is investigated for drain voltage to have an effect on barrier height. The asymmetric double gate MOSFET has the characteristic to be able to fabricate differently top and bottom gate oxide thickness. DIBL is, therefore, analyzed for the change of top and bottom gate oxide thickness in this study, using the analytical potential distribution derived from Poisson equation. As a results, DIBL is greatly influenced by top and bottom gate oxide thickness. DIBL is linearly decreased in case top and bottom gate oxide thickness become smaller. The relation of channel length and DIBL is nonlinear. Top gate oxide thickness more influenced on DIBL than bottom gate oxide thickness in the case of high doping concentration in channel.

Analysis of Short-Channel Effect due to the 2D QM effect in the poly gate of Double-Gate MOSFETs (폴리게이트의 양자 효과에 따른 Double-Gate MOSFET의 단채널 효과 분석)

  • 박지선;신형순
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.691-694
    • /
    • 2003
  • Density gradient method is used to analyze the quantum effect in MOSFET, Quantization effect in the poly gate leads to a negative threshold voltage shift, which is opposed to the positive shift caused by quantization effect in the channel. Quantization effects in the poly gate are investigated using the density gradient method, and the impact on the short channel effect of double gate device is more significant.

  • PDF

Analytical Characterization of a Dual-Material Double-Gate Fully-Depleted SOI MOSFET with Pearson-IV type Doping Distribution

  • Kushwaha, Alok;Pandey, Manoj K.;Pandey, Sujata;Gupta, Anil K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.110-119
    • /
    • 2007
  • A new two-dimensional analytical model for dual-material double-gate fully-depleted SOI MOSFET with Pearson-IV type Doping Distribution is presented. An investigation of electrical MOSFET parameters i.e. drain current, transconductance, channel resistance and device capacitance in DM DG FD SOI MOSFET is carried out with Pearson-IV type doping distribution as it is essential to establish proper profiles to get the optimum performance of the device. These parameters are categorically derived keeping view of potential at the center (${\phi}_c$) of the double gate SOI MOSFET as it is more sensitive than the potential at the surface (${\phi}_s$). The proposed structure is such that the work function of the gate material (both sides) near the source is higher than the one near the drain. This work demonstrates the benefits of high performance proposed structure over their single material gate counterparts. The results predicted by the model are compared with those obtained by 2D device simulator ATLAS to verify the accuracy of the proposed model.