• Title/Summary/Keyword: D(X)

Search Result 6,323, Processing Time 0.038 seconds

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.347-375
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R, and let $D:R{\rightarrow}R$ be a Jordan derivation. If [D(x), x]D(x) = 0 for all $x{\in}U$, then D(x)[D(x), x]y - yD(x)[D(x), x] = 0 for all $x,y{\in}U$. And also, if D(x)[D(x), x] = 0 for all $x{\in}U$, then [D(x), x]D(x)y - y[D(x), x]D(x) = 0 for all $x,y{\in}U$. And we shall give their applications in Banach algebras.

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

ALGEBRAIC CONSTRUCTIONS OF GROUPOIDS FOR METRIC SPACES

  • Se Won Min;Hee Sik Kim;Choonkil Park
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.533-544
    • /
    • 2024
  • Given a groupoid (X, *) and a real-valued function d : X → R, a new (derived) function Φ(X, *)(d) is defined as [Φ(X, *)(d)](x, y) := d(x * y) + d(y * x) and thus Φ(X, *) : RX → RX2 as well, where R is the set of real numbers. The mapping Φ(X, *) is an R-linear transformation also. Properties of groupoids (X, *), functions d : X → R, and linear transformations Φ(X, *) interact in interesting ways as explored in this paper. Because of the great number of such possible interactions the results obtained are of necessity limited. Nevertheless, interesting results are obtained. E.g., if (X, *, 0) is a groupoid such that x * y = 0 = y * x if and only if x = y, which includes the class of all d/BCK-algebras, then (X, *) is *-metrizable, i.e., Φ(X, *)(d) : X2 → X is a metric on X for some d : X → R.

STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1905-1914
    • /
    • 2013
  • Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v=\{f{\in}D[X]|c(f)_v=D\}$. Let $q(M)=M{\otimes}_D\;K$ and $M_{w_D}$={$x{\in}q(M)|xJ{\subseteq}M$ for a nonzero finitely generated ideal J of D with $J_v$ = D}. In this paper, we show that $M_{w_D}=M[X]_{N_v}{\cap}q(M)$ and $(M[X])_{w_{D[X]}}{\cap}q(M)[X]=M_{w_D}[X]=M[X]_{N_v}{\cap}q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$-module. This is a generalization of the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

*-NOETHERIAN DOMAINS AND THE RING D[X]N*, II

  • Chang, Gyu-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.49-61
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be a nonempty set of indeterminates over D, * be a star operation on D, $N_*$={f $\in$ D[X]|c(f)$^*$= D}, $*_w$ be the star operation on D defined by $I^{*_w}$ = ID[X]${_N}_*$ $\cap$ K, and [*] be the star operation on D[X] canonically associated to * as in Theorem 2.1. Let $A^g$ (resp., $A^{[*]g}$, $A^{[*]g}$) be the global (resp.,*-global, [*]-global) transform of a ring A. We show that D is a $*_w$-Noetherian domain if and only if D[X] is a [*]-Noetherian domain. We prove that $D^{*g}$[X]${_N}_*$ = (D[X]${_N}_*$)$^g$ = (D[X])$^{[*]g}$; hence if D is a $*_w$-Noetherian domain, then each ring between D[X]${_N}_*$ and $D^{*g}$[X]${_N}_*$ is a Noetherian domain. Let $\tilde{D}$ = $\cap${$D_P$|P $\in$ $*_w$-Max(D) and htP $\geq$2}. We show that $D\;\subseteq\;\tilde{D}\;\subseteq\;D^{*g}$ and study some properties of $\tilde{D}$ and $D^{*g}$.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS

  • Barzanouni, Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.951-965
    • /
    • 2019
  • Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.

WHEN THE NAGATA RING D(X) IS A SHARP DOMAIN

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.537-543
    • /
    • 2016
  • Let D be an integral domain, X be an indeterminate over D, D[X] be the polynomial ring over D, and D(X) be the Nagata ring of D. Let [d] be the star operation on D[X], which is an extension of the d-operation on D as in [5, Theorem 2.3]. In this paper, we show that D is a sharp domain if and only if D[X] is a [d]-sharp domain, if and only if D(X) is a sharp domain.

On Skew Centralizing Traces of Permuting n-Additive Mappings

  • Ashraf, Mohammad;Parveen, Nazia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Let R be a ring and $D:R^n{\longrightarrow}R$ be n-additive mapping. A map $d:R{\longrightarrow}R$ is said to be the trace of D if $d(x)=D(x,x,{\ldots}x)$ for all $x{\in}R$. Suppose that ${\alpha},{\beta}$ are endomorphisms of R. For any $a,b{\in}R$, let < a, b > $_{({\alpha},{\beta})}=a{\alpha}(b)+{\beta}(b)a$. In the present paper under certain suitable torsion restrictions it is shown that D = 0 if R satisfies either < d(x), $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$ or ${\ll}$ d(x), x > $_{({\alpha},{\beta})}$, $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$. Further, if < d(x), x > ${\in}Z(R)$, the center of R, for all $x{\in}R$ or < d(x)x - xd(x), x >= 0, for all $x{\in}R$, then it is proved that d is commuting on R. Some more related results are also obtained for additive mapping on R.

THE RESULTS CONCERNING JORDAN DERIVATIONS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.523-530
    • /
    • 2016
  • Let R be a 3!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. In this case, we show that [D(x), x]D(x) = 0 if and only if D(x)[D(x), x] = 0 for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A). If D is a continuous linear Jordan derivation on A, then we see that $[D(x),x]D(x){\in}rad(A)$ if and only if $[D(x),x]D(x){\in}rad(A)$ for all $x{\in}A$.