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JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME
RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

Byung-Do Kim

Abstract. Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie
ideal of R, and let D : R → R be a Jordan derivation. If [D(x), x]D(x) = 0 for
all x ∈ U, then D(x)[D(x), x]y − yD(x)[D(x), x] = 0 for all x, y ∈ U. And also, if
D(x)[D(x), x] = 0 for all x ∈ U, then [D(x), x]D(x)y − y[D(x), x]D(x) = 0 for all
x, y ∈ U. And we shall give their applications in Banach algebras.

1. Introduction

Throughout, R represents an associative ring and A will be a complex Banach
algebra. We write [x, y] for the commutator xy − yx for x, y in a ring. Let rad(R)
denote the (Jacobson) radical of a ring R. And a ring R is said to be semisimple if
its Jacobson radical rad(R) is zero.

A ring R is called n-torsion free if nx = 0 implies x = 0. Recall that R is prime if
aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0) implies
a = 0. On the other hand, let X be an element of a normed algebra. Then for every
a ∈ X the spectral radius of a, denoted by r(a), is defined by r(a) = inf{||an|| 1n :
n ∈ N}. It is well-known that the following theorem holds: if a is an element of a
normed algebra, then r(a) = lim

n→∞ ||a
n|| 1n (see F.F. Bonsall and J. Duncan[1]).

An additive mapping D from R to R is called a derivation if D(xy) = D(x)y +
xD(y) holds for all x, y ∈ R. And an additive mapping D from R to R is called a
Jordan derivation if D(x2) = D(x)x + xD(x) holds for all x ∈ R.

B.E. Johnson and A.M. Sinclair[12] proved that any linear derivation on a semisim-
ple Banach algebra is continuous. A result of I.M. Singer and J. Wermer[13] states
that every continuous linear derivation on a commutative Banach algebra maps the
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algebra into its radical. From these two results, we can conclude that there are no
nonzero linear derivations on a commutative semisimple Banach algebra.
M.P. Thomas[14] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.

J. Vukman[15] proved the following: let R be a 2-torsion free prime ring. If
D : R −→ R is a derivation such that [D(x), x]D(x) = 0 for all x ∈ R, then D = 0.

Moreover, using the above result, he proved that the following holds: let A be a
noncommutative semisimple Banach algebra. Suppose that [D(x), x]D(x) = 0 holds
for all x ∈ A. In this case, D = 0.

B.D. Kim [6] showed the following: let R be a 3!-torsion free semiprime ring.
Suppose there exists a Jordan derivation D : R → R such that

[D(x), x]D(x)[D(x), x] = 0

for all x ∈ R. In this case, we have [D(x), x]5 = 0 for all x ∈ R.

And, B.D. Kim[7] showed the following:let A be a noncommutative Banach alge-
bra. Suppose there exists a continuous linear Jordan derivation D : A → A such that
D(x)[D(x), x]D(x) ∈ rad(A) for all x ∈ A. In this case, we have D(A) ⊆ rad(A).

In this paper, our first aim is to prove the following results in the ring theory in
order to apply it to the Banach algebra theory:

Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R.

And let D : R −→ R be a Jordan derivation on R and U a Lie ideal of R. In this
case, we show that if [D(x), x]D(x) = 0 holds for all x ∈ U, then D(x)[D(x), x]y −
yD(x)[D(x), x] = 0 for all x, y ∈ U, and also, if D(x)[D(x), x] = 0 holds for all x ∈ U,

then [D(x), x]D(x)y−y[D(x), x]D(x) = 0 for all x, y ∈ U. In particular, when U = R,

then we conclude that [D(x), x]D(x) = 0 is equivalent to D(x)[D(x), x] = 0 for all
x ∈ R.

Moreover, using the above results, we shall give their applications in Banach
algebra as follows.

(i): Suppose there exists a continuous linear Jordan derivation D : A → A

and U a Lie ideal of A. Then

[D(x), x]D(x) ∈ rad(A) ⇐⇒ D(x)[D(x), x] ∈ rad(A)

for all x ∈ U.
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And also, we have their applications in Banach algebras as follows. Of course, the
following results are already well-known.

(ii): Suppose there exists a continuous linear Jordan derivation D on a non-
commutative Banach algebra A with a Lie ideal U such that

[D(x), x]D(x) ∈ rad(A)

for all x ∈ U.

Then we have D(x)[D(x), x]y− yD(x)[D(x), x] ∈ rad(A) for all x, y ∈ U.

And
(iii): Suppose there exists a continuous linear Jordan derivation D on a non-

commutative Banach algebra A with a Lie ideal U such that

D(x)[D(x), x] ∈ rad(A)

for all x ∈ U.

Then [D(x), x]D(x)y − y[D(x), x]D(x) ∈ rad(A) for all x, y ∈ U. In par-
ticular, when U = A, then we see that

[D(x), x]D(x) ∈ rad(A) ⇐⇒ D(x)[D(x), x] ∈ rad(A)

for all x ∈ A. Moreover, we have D(A) ⊆ rad(A).

The following lemma is due to L.O. Chung and J. Luh[4].

Lemma 1.1. Let R be a n!-torsion free ring. Suppose there exist elements y1, y2,

· · · , yn−1, yn in R such that
n∑

k=1

tkyk = 0 for all t = 1, 2, · · · , n. Then we have yk = 0

for every positive integer k with 1 ≤ k ≤ n.

The following theorem is due to M. Bres̆ar[3].

Theorem 1.2. Let R be a 2-torsion free semiprime ring and let D : R −→ R be a
Jordan derivation. In this case, D is a derivation.

We write Q(A) for the set of all quasinilpotent elements in A. M. Bres̆ar [2] has
proved the following theorem.

Theorem 1.3. Let D be a bounded derivation of a Banach algebra A. Suppose that
[D(x), x] ∈ Q(A) for every x ∈ A. Then D maps A into rad(A).

After this, by Sm we denote the set {k ∈ N | 1 ≤ k ≤ m} where m is a positive
integer.
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We need Theorems 2.4 and 2.5 to obtain the main theorems for Banach algebra
theory.

2. Main Results

Lemma 2.1. Let R be a noncommutative semiprime ring, and U a Lie ideal of R.

And suppose that aya = 0 for all y ∈ U and some a ∈ R. Then a = 0.

Proof. By the assumption, we have

aya = 0, y ∈ U(2.1)

Replacing [y, z] for y in (2.1), we obtain

a[y, z]a = 0, y ∈ U, z ∈ R.(2.2)

Writing zaw for z in (2.2), we get

a[y, z]awa + aza[y, w]a + az[y, a]wa = 0, y ∈ U,w, z ∈ R.(2.3)

Combining (2.2) with (2.3),

az[y, a]wa = 0, y ∈ U,w, z ∈ R.(2.4)

From (2.4), we have

[y, a]waz[y, a]wa = 0, y ∈ U,w, z ∈ R.(2.5)

Since R is semiprime, the relation (2.5) yields

[y, a]wa = 0, y ∈ U,w ∈ R.(2.6)

Substituting aw for w in (2.6),

ya2wa− ayawa = 0, y ∈ U,w ∈ R.(2.7)

From (2.1) and (2.7), we have

ya2wa = 0, y ∈ U,w ∈ R.(2.8)

From (2.8), we get

ya2wya2 = 0, y ∈ U,w ∈ R.(2.9)

Since R is semiprime, the relation (2.9) yields

ya2 = 0, y ∈ U.(2.10)

Putting [x,w] instead of y in (2.10), we obtain

ywa2 − wya2, y ∈ U,w ∈ R.(2.11)
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Combining (2.10) with (2.11),

ywa2 = 0, x, y ∈ U,w ∈ R.(2.12)

From (2.12), we get

yw[a2, y] = 0, y ∈ U,w ∈ R.(2.13)

From (2.13), we have

[a2, y]w[a2, y] = 0, y ∈ U,w ∈ R.(2.14)

Thus by semiprimeness of R, it follows from (2.14) that

[a2, y] = 0, y ∈ U.(2.15)

¤

For simplicity, we shall denote the maps B : R × R −→ R, f, g : R −→ R by
B(x, y) ≡ [D(x), y] + [D(y), x], f(x) ≡ [D(x), x], g(x) ≡ [f(x), x] for all x, y ∈ R

respectively. Then we have the basic properties:

B(x, y) = B(y, x), B(x, yz) = B(x, y)z + yB(x, z) + D(y)[z, x] + [y, x]D(z),

B(x, x) = 2f(x), B(xy, z) = B(y, z)x + zB(y, x) + D(z)[x, y] + [z, y]D(x),

B(x, x2) = 2(f(x)x + xf(x)), x, y, z ∈ R.

After this, we use the above relations without specific reference.

Theorem 2.2. Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie
ideal of R with [R,U ] 6= {0}. Then Let D : R −→ R be a Jordan derivation on a
semiprime ring.

(i): If [D(x), x]D(x) = 0 holds for all x ∈ U, then

D(x)[D(x), x]y − yD(x)[D(x), x] = 0

for all x, y ∈ U. And
(ii): If D(x)[D(x), x] = 0 holds for all x ∈ U, then

[D(x), x]D(x)y − y[D(x), x]D(x) = 0

for all x, y ∈ U.

In particular, when U = R, we see that

[D(x), x]D(x) = 0, x ∈ R ⇐⇒ D(x)[D(x), x] = 0, x ∈ R.
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Proof. (i)(=⇒): By Theorem 1.2, we can see that D is a derivation on R. By the
assumption,

f(x)D(x) = 0, x ∈ U(2.16)

Replacing x + ty for x in (2.16), we have

[D(x + ty), x + ty]D(x + ty) ≡ +t{B(x, y)D(x) + f(x)D(y)}
+t2H(x, y) + t3[D(y), y]D(y) = 0, x, y ∈ U, t ∈ S3(2.17)

where H denotes the term satisfying the identity (2.17).
From (2.16) and (2.17), we obtain

t{B(x, y)D(x) + f(x)D(y)}+ t2H(x, y) = 0, x, y ∈ U, t ∈ S3.(2.18)

Since R is 2!-torsion free by assumption, by Lemma 2.1 the relation (2.18) yields

B(x, y)D(x) + f(x)D(y) = 0, x, y ∈ U.(2.19)

Let y = x2 in (2.19). Then using (2.16), we have

2(f(x)x + xf(x))D(x) + f(x)(D(x)x + xD(x)) = 0, x ∈ U.(2.20)

From (2.16) and (2.20) ,

3f(x)xD(x) + 2xf(x)D(x) + f(x)D(x)x = 3f(x)2 = 0, x ∈ U.(2.21)

Since R is 3!-torsion free, it follows from (2.21) that

f(x)2 = 0, x ∈ U.(2.22)

From (2.16), we obtain

0 = [f(x)D(x), x] = g(x)D(x) + f(x)2, x ∈ U.(2.23)

From (2.22) and (2.23), we have

g(x)D(x) = 0, x ∈ U.(2.24)

Writing yx for y in (2.19), we get

(B(x, y)x + 2yf(x) + [y, x]D(x))D(x) + f(x)(D(y)x + yD(x)) = 0, x, y ∈ U.(2.25)

Right multiplication of (2.19) by x leads to

B(x, y)D(x)x + f(x)D(y)x = 0, x ∈ U.(2.26)

Combining (2.25) with (2.26),

−B(x, y)f(x) + 2yf(x)D(x) + [y, x]D(x)2 + f(x)yD(x) = 0, x, y ∈ U.(2.27)
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From (2.16) and (2.27), we have

−B(x, y)f(x) + [y, x]D(x)2 + f(x)yD(x) = 0, x, y ∈ U.(2.28)

Substituting x2 for y in (2.28), we get

−2(f(x)x + xf(x))f(x) + f(x)x2D(x) = 0, x ∈ U.(2.29)

Comparing (2.22) and (2.24), we obtain

−2f(x)xf(x)− xf(x)2 − f(x)(f(x)x + xf(x))

= −3f(x)xf(x) = −3g(x)f(x) = 3f(x)g(x) = 0, x ∈ R.(2.30)

Since R is 3!-torsion free by assumption, the relation (2.30) yields

g(x)f(x) = f(x)g(x) = 0, x ∈ R.(2.31)

Right multiplication of (2.28) by D(x) leads to

−B(x, y)f(x)2 + [y, x]D(x)2f(x) + f(x)yD(x)f(x) = 0, x, y ∈ R.(2.32)

From (2.22) and (2.32), we have

[y, x]D(x)2f(x) + f(x)yD(x)f(x) = 0, x, y ∈ R.(2.33)

Substituting xy for y in (2.33), we get

x[y, x]D(x)2f(x) + f(x)xyD(x)f(x) = 0, x, y ∈ R.(2.34)

Left multiplication of (2.34) by D(x) leads to

−x[y, x]D(x)2f(x) + xf(x)yD(x)f(x) = 0, x, y ∈ R.(2.35)

From (2.34) and (2.35), we have

g(x)yD(x)f(x) = 0, x, y ∈ R.(2.36)

Replacing yx for y in (2.36), we obtain

g(x)yxD(x)f(x) = 0, x, y ∈ R.(2.37)

Right multiplication of (2.36) by x leads to

g(x)yD(x)f(x)x = 0, x, y ∈ R.(2.38)

From (2.22), (2.37) and (2.38), we have

g(x)yD(x)g(x) = 0, x, y ∈ R.(2.39)

Left multiplication of (2.39) by D(x) leads to

D(x)g(x)yD(x)g(x) = 0, x, y ∈ R.(2.40)
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Thus by semiprimeness of R, it is clear that

D(x)g(x) = 0, x ∈ R.(2.41)

Putting xy instead of y in (2.28), we get

−(xB(x, y) + 2f(x)y + D(x)[y, x])f(x) + x[y, x]D(x)2 + f(x)xyD(x)

= 0, x, y ∈ R.(2.42)

Left multiplication of (2.28) by x leads to

−xB(x, y)f(x) + x[y, x]D(x)2 + xf(x)yD(x) = 0, x ∈ R.(2.43)

Combining (2.42) with (2.43),

−2f(x)yf(x)−D(x)[y, x]f(x) + g(x)yD(x) = 0, x, y ∈ R.(2.44)

Right multiplication of (2.44) by D(x) yields

−2f(x)yf(x)D(x)−D(x)[y, x]f(x)D(x) + g(x)yD(x)2 = 0, x ∈ R.(2.45)

Combining (2.16) with (2.45),

g(x)yD(x)2 = 0, x, y ∈ R.(2.46)

Replacing yD(x) for y in (2.45), we get

−2f(x)yD(x)f(x)−D(x)[y, x]D(x)f(x)−D(x)yf(x)2

+g(x)yD(x)2 = 0, x ∈ R.(2.47)

From (2.22) and (2.47), we have

−2f(x)yD(x)f(x)−D(x)[y, x]D(x)f(x) + g(x)yD(x)2 = 0, x ∈ R.(2.48)

Comparing (2.46) and (2.48),

2f(x)yD(x)f(x) + D(x)[y, x]D(x)f(x) = 0, x ∈ R.(2.49)

Left multiplication of (2.49) by D(x) leads to

2D(x)f(x)yD(x)f(x) + D(x)2[y, x]D(x)f(x) = 0, x, y ∈ R.(2.50)

Substituting f(x)y for y in (2.49), we obtain

2f(x)2yD(x)f(x) + D(x)f(x)[y, x]D(x)f(x) + D(x)g(x)yD(x)f(x)

= 0, x ∈ R.(2.51)

Combining (2.22), (2.41) with (2.51), we obtain

D(x)f(x)[y, x]D(x)f(x) = 0, x ∈ R.(2.52)
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Substituting yD(x)2z for y in (2.52), we get

D(x)f(x)[y, x]D(x)2zD(x)f(x) + D(x)f(x)y[D(x)2, x]zD(x)f(x)

+D(x)f(x)yD(x)2[z, x]D(x)f(x) = 0, x, y ∈ R.(2.53)

From (2.16) and (2.53), we have

D(x)f(x)[y, x]D(x)2zD(x)f(x) + D(x)f(x)yD(x)f(x)zD(x)f(x)

+D(x)f(x)yD(x)2[z, x]D(x)f(x) = 0, x, y ∈ R.(2.54)

Comparing (2.50) and (2.54),

D(x)f(x)[y, x]D(x)2zD(x)f(x) + D(x)f(x)yD(x)f(x)zD(x)f(x)

−2D(x)f(x)yD(x)f(x)zD(x)f(x)

= D(x)f(x)[y, x]D(x)2zD(x)f(x)−D(x)f(x)yD(x)f(x)zD(x)f(x)

= (D(x)f(x)[y, x]D(x)2 −D(x)f(x)yD(x)f(x))zD(x)f(x) = 0, x, y ∈ R.(2.55)

From (2.55), we obtain

(D(x)f(x)[y, x]D(x)2 −D(x)f(x)yD(x)f(x))z(D(x)f(x)[y, x]D(x)2

−D(x)f(x)yD(x)f(x)) = 0, x, y ∈ R.(2.56)

Thus by semiprimeness of R, it is obvious that

D(x)f(x)[y, x]D(x)2 −D(x)f(x)yD(x)f(x) = 0, x, y ∈ R.(2.57)

Replacing x + tz for x in (2.46), we have

g(x + tz)yD(x + tz)2 ≡ g(x)yD(x)2 + t{([B(x, z), x] + [f(x), z])yD(x)2

+g(x)y(D(z)D(x) + D(x)D(z))}+ t2I1(x, y) + t3I2(x, y) + t4I3(x, y)

+t5g(z)yD(z)2 = 0, x, y, z ∈ R, t ∈ S4(2.58)

where Ii, 1 ≤ i ≤ 3, denotes the term satisfying the identity (2.58).
From (2.46) and (2.58), we obtain

t{([B(x, z), x] + [f(x), z])yD(x)2 + g(x)y(D(z)D(x) + D(x)D(z))}
+t2I1(x, y) + t3I2(x, y) + t4I3(x, y) = 0, x, y, z ∈ R, t ∈ S3.(2.59)

Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (2.59) yields

([B(x, z), x] + [f(x), z])yD(x)2 + g(x)y(D(z)D(x) + D(x)D(z))

= 0, x, y, z ∈ R.(2.60)
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Writing ug(x)y for y in (2.60), we get

([B(x, z), x] + [f(x), z])ug(x)yD(x)2

+g(x)ug(x)y(D(z)D(x) + D(x)D(z)) = 0, u, x, y, z ∈ R.(2.61)

Combining (2.46) with (2.61),

g(x)ug(x)y(D(z)D(x) + D(x)D(z)) = 0, u, x, y, z ∈ R.(2.62)

Replacing y(D(z)D(x) + D(x)D(z))u for u in (2.62), we get

g(x)y(D(z)D(x) + D(x)D(z))ug(x)y(D(z)D(x) + D(x)D(z))

= 0, u, x, y, z ∈ R.(2.63)

And so, by semiprimeness of R, it follows that

g(x)y(D(z)D(x) + D(x)D(z)) = 0, x, y, z ∈ R.(2.64)

Replacing x + tw for x in (2.64), we have

g(x + tw)y(D(z)D(x + tw) + D(x + tw)D(z) ≡ g(x)y(D(z)D(x)

+D(x)D(z)) + t{([B(x,w), x] + [f(x), w])y(D(z)D(x) + D(x)D(z))

+g(x)y(D(z)D(w) + D(w)D(z))}+ t2J1(x, y) + t3J2(x, y)

+t4g(w)y(D(z)D(w) + D(w)D(z)) = 0, w, x, y, z ∈ R, t ∈ S4(2.65)

where J1 and J2 denote the term satisfying the identity (2.65).
From (2.64) and (2.65), we obtain

t{([B(x,w), x] + [f(x), w])y(D(z)D(x) + D(x)D(z)) + g(x)y(D(z)D(w)

+D(w)D(z))}+ t2J1(x, y) + t3J2(x, y) = 0, w, x, y, z ∈ R, t ∈ S3.(2.66)

Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (2.66) yields

([B(x,w), x] + [f(x), w])y(D(z)D(x) + D(x)D(z)) + g(x)y(D(z)D(w)

+D(w)D(z)) = 0, w, x, y, z ∈ R.(2.67)

Replacing ug(x)y for y in (2.67), we get

([B(x,w), x] + [f(x), w])yg(x)ug(x)y(D(z)D(x) + D(x)D(z))

+g(x)ug(x)y(D(z)D(w) + D(w)D(z)) = 0, w, x, y, z ∈ R.(2.68)

Combining (2.64) with (2.68),

g(x)ug(x)y(D(z)D(w) + D(w)D(z)) = 0, w, x, y, z ∈ R.(2.69)
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Replacing y(D(z)D(w) + D(w)D(z))u for u in (2.69), we obtain

g(x)y(D(z)D(w) + D(w)D(z))ug(x)y(D(z)D(x) + D(x)D(z))

= 0, u, w, x, y, z ∈ R.(2.70)

And so, by semiprimeness of R, it follows from (2.70) that

g(x)y(D(z)D(w) + D(w)D(z)) = 0, x, y, z ∈ R.(2.71)

Let w = z in (2.71). Then we get

g(x)yD(z)2 = 0, x, y, z ∈ R.(2.72)

Replacing x + tw for x in (2.72), we have

g(x + tw)yD(z)2 ≡ g(x)yD(z)2 + t{([B(x,w), x] + [f(x), w])yD(z)2}
+t2K(x, y) + t3g(w)yD(z)2 = 0, w, x, y, z ∈ R, t ∈ S3(2.73)

where K denotes the term satisfying the identity (2.73).
From (2.72) and (2.73), we obtain

t{([B(x,w), x] + [f(x), w])yD(z)2}+ t2K(x, y)

= 0, w, x, y, z ∈ R, t ∈ S3.(2.74)

Since R is 2!-torsion free by assumption, by Lemma 2.1 the relation (2.74) yields

([B(x,w), x] + [f(x), w])yD(z)2 = 0, w, x, y, z ∈ R.(2.75)

Replacing wx for w in (2.75), we get

([B(x,w), x]x + 3[w, x]f(x) + 3wg(x) + [[w, x], x]D(x) + [f(x), w]x)yD(x)2

= 0, w, x, y, z ∈ R.(2.76)

From (2.72) and (2.76), we have

{[B(x, w), x]x + 3[w, x]f(x) + [[w, x], x]D(x) + [f(x), w]x}yD(x)2

= 0, w, x, y, z ∈ R.(2.77)

Substituting xy for y in (2.75), we get

([B(x, w), x]x + [f(x), w]x)yD(z)2 = 0, w, x, y, z ∈ R.(2.78)

Combining (2.77) with (2.78),

(3[w, x]f(x) + [[w, x], x]D(x))yD(z)2 = 0, w, x, y, z ∈ R.(2.79)
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Replacing D(x)w for w in (2.79), we obtain

{3f(x)wf(x) + 3D(x)[w, x]f(x) + g(x)wD(x) + 2f(x)[w, x]D(x)

+D(x)[[w, x], x]D(x)}yD(z)2 = 0, w, x, y, z ∈ R.(2.80)

Substituting D(x)y for y in (2.80), we have

{3f(x)wf(x)D(x) + 3D(x)[w, x]f(x)D(x) + g(x)wD(x)2 + 2f(x)[w, x]D(x)2

+D(x)[[w, x], x]D(x)2}yD(z)2 = 0, w, x, y, z ∈ R.(2.81)

Combining (2.16), (2.66) with (2.81),

(2f(x)[w, x]D(x)2 + D(x)[[w, x], x]D(x)2)yD(z)2

= 0, w, x, y, z ∈ R.(2.82)

Left multiplication of (2.82) by D(x) leads to

(2D(x)f(x)[w, x]D(x)2 + D(x)2[[w, x], x]D(x)2)yD(z)2

= 0, w, x, y, z ∈ R.(2.83)

Substituting yD(x)2w for y in (2.50), we get

2D(x)f(x)yD(x)2wD(x)f(x) + D(x)2[y, x]D(x)2wD(x)f(x)

+D(x)2yD(x)f(x)wD(x)f(x) + D(x)2yf(x)D(x)wD(x)f(x)

+D(x)2yD(x)2[w, x]D(x)f(x) = 0, w, x, y, z ∈ R.(2.84)

Combining (2.16) with (2.84), we obtain

2D(x)f(x)yD(x)2wD(x)f(x) + D(x)2[y, x]D(x)2wD(x)f(x)

+D(x)2yD(x)f(x)wD(x)f(x) + D(x)2yD(x)2[w, x]D(x)f(x)

= 0, w, x, y, z ∈ R.(2.85)

From (2.49) and (2.85), we have

(2D(x)f(x)yD(x)2 + D(x)2[y, x]D(x)2 −D(x)2yD(x)f(x))

×wD(x)f(x) = 0, w, x, y, z ∈ R.(2.86)

Replacing [y, x] for y in (2.86), we get

(2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2 −D(x)2yD(x)f(x))

wD(x)f(x) = 0, w, x, y, z ∈ R.(2.87)
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Combining (2.49), (2.57) with (2.87),

(4D(x)f(x)yD(x)f(x) + D(x)2[[y, x], x]D(x)2)wD(x)f(x)

= 0, w, x, y, z ∈ R.(2.88)

From (2.16) and (2.83), we arrive at

(2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2)w[D(z)2, z]

= (2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2)wD(z)f(z)

= 0, w, x, y, z ∈ R.(2.89)

Let z = x in (2.89). Then

(2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2)wD(x)f(x)

= 0, w, x, y, z ∈ R.(2.90)

Combining (2.88) with (2.90),

2(2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2)wD(x)f(x)

= 0, w, x, y, z ∈ R.(2.91)

Since R is 2!-torsion free by assumption, the relation (2.90) yields

(2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2)wD(x)f(x)

= 0, w, x, y, z ∈ R.(2.92)

From (2.92), we have

(2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2)w(2D(x)f(x)yD(x)f(x)

−D(x)f(x)[y, x]D(x)2) = 0, w, x, y, z ∈ R.(2.93)

And so, by semiprimeness of R, we get from (2.93)

2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2 = 0, x, y, z ∈ R.(2.94)

Combining (2.57) with (2.94),

D(x)f(x)yD(x)f(x) = 0, x, y ∈ R.(2.95)

And so, by semiprimeness of R, it follows from (2.95) that

D(x)f(x) = 0, x ∈ R.

(ii) (⇐=): Suppose that

D(x)f(x) = 0, x, y, z ∈ R.(2.96)
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Replacing x + ty for x in (2.96), we have

D(x + ty)[D(x + ty), x + ty] ≡ +t{D(y)f(x) + D(x)B(x, y)}
+t2P (x, y) + t3D(y)f(y) = 0, x, y ∈ R, t ∈ S3(2.97)

where P denotes the term satisfying the identity (2.97).
From (2.96) and (2.97), we obtain

t{D(y)f(x) + D(x)B(x, y)}+ t2P (x, y) = 0, x, y ∈ R, t ∈ S3.(2.98)

Since R is 2!-torsion free by assumption, by Lemma 2.1 the relation (2.98) yields

D(y)f(x) + D(x)B(x, y) = 0, x, y ∈ R.(2.99)

Let y = x2 in (2.213). Then using (2.96), we obtain from (2.99)

(D(x)x + xD(x))f(x) + 2D(x)(f(x)x + xf(x))

= 3D(x)xf(x) + xD(x)f(x) + 2D(x)f(x)x = 0, x ∈ R.(2.100)

From (2.96) and (2.100) , we get

3D(x)xf(x) = 3f(x)2 = −3D(x)g(x) = 0, x ∈ R.(2.101)

Since R is 3!-torsion free, it follows from (2.101) that

f(x)2 = 0, x ∈ R,(2.102)

and

D(x)g(x) = 0, x ∈ R.(2.103)

Writing xy for y in (2.99),

(xD(y)f(x) + D(x)yf(x) + D(x)(xB(x, y) + 2f(x)y + D(x)[y, x]

= 0, x, y ∈ R.(2.104)

Left multiplication of (2.104) by D(x) leads to

xD(y)f(x) + xD(x)B(x, y) = 0, x ∈ R.(2.105)

Combining (2.218) with (2.105),

D(x)yf(x) + f(x)B(x, y) + 2D(x)f(x)y + D(x)2[y, x] = 0, x, y ∈ R.(2.106)

From (2.96) and (2.106), we have

D(x)yf(x) + f(x)B(x, y) + D(x)2[y, x] = 0, x, y ∈ R.(2.107)
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Left multiplication of (2.107) by D(x) yields

D(x)2yf(x) + D(x)f(x)B(x, y) + D(x)3[y, x] = 0, x, y ∈ R.(2.108)

Comparing (2.96) and (2.108), we obtain

D(x)2yf(x) + D(x)3[y, x] = 0, x, y ∈ R.(2.109)

Putting yx instead of y in (2.99), we get

(D(y)x + yD(x))f(x) + D(x)(B(x, y)x + 2yf(x) + [y, x]D(x))

= 0, x, y ∈ R.(2.110)

Right multiplication of (2.110) by x leads to

D(y)f(x)x + D(x)B(x, y)x = 0, x ∈ R.(2.111)

Combining (2.110) with (2.111),

−D(y)g(x) + yD(x)f(x) + 2D(x)yf(x) + D(x)[y, x]D(x) = 0, x, y ∈ R.(2.112)

From (2.96) and (2.112), we have

−D(y)g(x) + 2D(x)yf(x) + D(x)[y, x]D(x) = 0, x, y ∈ R.(2.113)

Writing xy for y in (2.113), we get

−xD(y)g(x)−D(x)yg(x) + 2D(x)xyf(x) + D(x)x[y, x]D(x)

= 0, x, y ∈ R.(2.114)

Left multiplication of (2.113) by x leads to

−xD(y)g(x) + 2xD(x)yf(x) + xD(x)[y, x]D(x) = 0, x, y ∈ R.(2.115)

Combining (2.114) with (2.115),

−D(x)yg(x) + 2f(x)yf(x) + f(x)[y, x]D(x) = 0, x, y ∈ R.(2.116)

Left multiplication of (2.116) by D(x) gives

−D(x)2yg(x) + 2D(x)f(x)yf(x) + D(x)f(x)[y, x]D(x) = 0, x, y ∈ R.(2.117)

Comparing (2.96) and (2.117), we obtain

D(x)2yg(x) = 0, x, y ∈ R.(2.118)

Let y = D(x) in (2.113). Then we get

−D2(x)g(x) + 2D(x)2f(x) + D(x)f(x)D(x) = 0, x, y ∈ R.(2.119)
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Combining (2.96) with (2.119),

D2(x)g(x) = 0, x ∈ R.(2.120)

Writing yD(x) for y in (2.113), we have

−D(y)D(x)g(x)− yD2(x)g(x) + 2D(x)yD(x)f(x) + D(x)[y, x]D(x)2

+D(x)yf(x)D(x) = 0, x, y ∈ R.(2.121)

Combining (2.96), (2.103), (2.120) with (2.121), we arrive at

D(x)[y, x]D(x)2 + D(x)yf(x)D(x) = 0, x, y ∈ R.(2.122)

Left multiplication of (2.122) by f(x) leads to

f(x)D(x)[y, x]D(x)2 + f(x)D(x)yf(x)D(x) = 0, x, y ∈ R.(2.123)

Writing yD(x) for y in (2.116), we get

−D(x)yD(x)g(x) + 2f(x)yD(x)f(x) + f(x)[y, x]D(x)2 + f(x)yf(x)D(x)

= 0, x, y ∈ R.(2.124)

Comparing (2.96) and (2.103), we obtain from (2.124)

f(x)[y, x]D(x)2 + f(x)yf(x)D(x) = 0, x, y ∈ R.(2.125)

Substituting D(x)y for y in (2.116),

−D(x)2yg(x) + 2f(x)D(x)yf(x) + f(x)D(x)[y, x]D(x) + f(x)2yD(x)

= 0, x, y ∈ R.(2.126)

Comparing (2.102) and (2.118) and (2.126), we obtain

2f(x)D(x)yf(x) + f(x)D(x)[y, x]D(x) = 0, x, y ∈ R.(2.127)

Right multiplication of (2.127) by D(x) leads to

2f(x)D(x)yf(x)D(x) + f(x)D(x)[y, x]D(x)2 = 0, x, y ∈ R.(2.128)

From (2.237) and (2.128), we have

f(x)D(x) = 0, x ∈ R.

¤

Corollary 2.3. Let R be a 3!-torsion free noncommutative semiprime ring and
D : R −→ R a Jordan derivation. Then

[D(x), x]D(x) = 0 ⇐⇒ D(x)[D(x), x] = 0
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for all x ∈ R.

Theorem 2.4. Let R be a 3!-torsion free noncommutative semiprime ring,U a Lie
ideal of R, and let D : R −→ R be a Jordan derivation on R. And suppose that
[D(x), x]D(x) = 0 for all x ∈ U. Then [D(x), x]2 = 0 for all x ∈ U.

Proof. By Theorem 2.2, we can see that D is a derivation on R. By assumption,

[D(x), x]D(x) = 0, x ∈ U(2.129)

Replacing x + ty for x in (2.129), we have

[D(x + ty), x + ty]D(x + ty) ≡ +t{B(x, y)D(x) + f(x)D(y)}
+t2H(x, y) + t3[D(y), y]D(y) = 0, x, y ∈ U, t ∈ S3(2.130)

where H denotes the term satisfying the identity (2.130).
From (2.129) and (2.130), we obtain

t{B(x, y)D(x) + f(x)D(y)}+ t2H(x, y) = 0, x, y ∈ U, t ∈ S3.(2.131)

Since R is 2!-torsion free by assumption, by Lemma 2.1 the relation (2.131) yields

B(x, y)D(x) + f(x)D(y) = 0, x, y ∈ U.(2.132)

Let y = x2 in (2.132). Then using (2.129), we get

2(f(x)x + xf(x))D(x) + f(x)(D(x)x + xD(x)) = 0, x ∈ U.(2.133)

From (2.129) and (2.133) , we arrive at

3f(x)xD(x) + 2xf(x)D(x) + f(x)D(x)x = 3f(x)2 = 0, x ∈ U.(2.134)

Since R is 3!-torsion free, it follows from (2.134) that

f(x)2 = 0, x ∈ U.(2.135)

From (2.129), we obtain

0 = [f(x)D(x), x] = g(x)D(x) + f(x)2, x ∈ U.(2.136)

From (2.135) and (2.136), we have

g(x)D(x) = 0, x ∈ R.(2.137)

Writing yx for y in (2.132), we get

(B(x, y)x + 2yf(x) + [y, x]D(x))D(x) + f(x)(D(y)x + yD(x))

= 0, x, y ∈ U.(2.138)
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Right multiplication of (2.132) by x leads to

B(x, y)D(x)x + f(x)D(y)x = 0, x, y ∈ U.(2.139)

Combining (2.138) with (2.139),

−B(x, y)f(x) + 2yf(x)D(x) + [y, x]D(x)2 + f(x)yD(x) = 0, x, y ∈ R.(2.140)

From (2.129) and (2.140), we have

−B(x, y)f(x) + [y, x]D(x)2 + f(x)yD(x) = 0, x, y ∈ U.(2.141)

Substituting x2 for y in (2.141), we get

−2(f(x)x + xf(x))f(x) + f(x)x2D(x) = 0, x ∈ R.(2.142)

Comparing (2.135) and (2.137), we obtain

−2f(x)xf(x)− xf(x)2 − f(x)(f(x)x + xf(x))

= −3f(x)xf(x) = −3g(x)f(x) = 3f(x)g(x) = 0, x ∈ R.(2.143)

Since R is 3!-torsion free by assumption, the relation (2.143) yields

g(x)f(x) = f(x)g(x) = 0, x ∈ U.(2.144)

Right multiplication of (2.141) by D(x) leads to

−B(x, y)f(x)2 + [y, x]D(x)2f(x) + f(x)yD(x)f(x) = 0, x, y ∈ U.(2.145)

From (2.135) and (2.145), we have

[y, x]D(x)2f(x) + f(x)yD(x)f(x) = 0, x, y ∈ U.(2.146)

Substituting xy for y in (2.146), we get

x[y, x]D(x)2f(x) + f(x)xyD(x)f(x) = 0, x, y ∈ U.(2.147)

Left multiplication of (2.147) by D(x) gives

−x[y, x]D(x)2f(x) + xf(x)yD(x)f(x) = 0, x, y ∈ U.(2.148)

From (2.147) and (2.148), we have

g(x)yD(x)f(x) = 0, x, y ∈ U.(2.149)

Replacing yx for y in (2.149), we get

g(x)yxD(x)f(x) = 0, x, y ∈ U.(2.150)

Right multiplication of (2.149) by x yields

g(x)yD(x)f(x)x = 0, x, y ∈ U.(2.151)
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From (2.135), (2.150) and (2.151), we have

g(x)yD(x)g(x) = 0, x, y ∈ U.(2.152)

Left multiplication of (2.152) by D(x) leads to

D(x)g(x)yD(x)g(x) = 0, x, y ∈ U.(2.153)

Thus by semiprimeness of R, it is clear that

D(x)g(x) = 0, x ∈ U.(2.154)

Putting xy instead of y in (2.141), we get

−(xB(x, y) + 2f(x)y + D(x)[y, x])f(x) + x[y, x]D(x)2 + f(x)xyD(x)

= 0, x, y ∈ U.(2.155)

Left multiplication of (2.141) by x yields

−xB(x, y)f(x) + x[y, x]D(x)2 + xf(x)yD(x) = 0, x, y ∈ U.(2.156)

Combining (2.155) with (2.156),

−2f(x)yf(x)−D(x)[y, x]f(x) + g(x)yD(x) = 0, x, y ∈ U.(2.157)

Right multiplication of (2.157) by D(x) leads to

−2f(x)yf(x)D(x)−D(x)[y, x]f(x)D(x) + g(x)yD(x)2 = 0, x ∈ U.(2.158)

Combining (2.129) with (2.158),

g(x)yD(x)2 = 0, x, y ∈ U.(2.159)

Replacing yD(x) for y in (2.158), we get

−2f(x)yD(x)f(x)−D(x)[y, x]D(x)f(x)−D(x)yf(x)2 + g(x)yD(x)2

= 0, x ∈ U.(2.160)

From (2.135) and (2.160), we have

−2f(x)yD(x)f(x)−D(x)[y, x]D(x)f(x) + g(x)yD(x)2 = 0, x, y ∈ U.(2.161)

Comparing (2.159) and (2.161),

2f(x)yD(x)f(x) + D(x)[y, x]D(x)f(x) = 0, x, y ∈ U.(2.162)

Left multiplication of (2.162) by D(x) gives

2D(x)f(x)yD(x)f(x) + D(x)2[y, x]D(x)f(x) = 0, x, y ∈ U.(2.163)
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Substituting f(x)y for y in (2.162), we get

2f(x)2yD(x)f(x) + D(x)f(x)[y, x]D(x)f(x) + D(x)g(x)yD(x)f(x)

= 0, x, y ∈ U.(2.164)

Combining (2.135), (2.154) with (2.164), we obtain

D(x)f(x)[y, x]D(x)f(x) = 0, x, y ∈ U.(2.165)

Substituting yD(x)2z for y in (2.165),

D(x)f(x)[y, x]D(x)2zD(x)f(x) + D(x)f(x)y[D(x)2, x]zD(x)f(x)

+D(x)f(x)yD(x)2[z, x]D(x)f(x) = 0, x, y ∈ U.(2.166)

From (2.129) and (2.166), we have

D(x)f(x)[y, x]D(x)2zD(x)f(x) + D(x)f(x)yD(x)f(x)zD(x)f(x)

+D(x)f(x)yD(x)2[z, x]D(x)f(x) = 0, x, y ∈ U.(2.167)

Comparing (2.163) and (2.167),

D(x)f(x)[y, x]D(x)2zD(x)f(x) + D(x)f(x)yD(x)f(x)zD(x)f(x)

−2D(x)f(x)yD(x)f(x)zD(x)f(x)

= D(x)f(x)[y, x]D(x)2zD(x)f(x)−D(x)f(x)yD(x)f(x)zD(x)f(x)

= {D(x)f(x)[y, x]D(x)2 −D(x)f(x)yD(x)f(x)}zD(x)f(x) = 0, x, y ∈ U.(2.168)

From (2.168), we obtain

{D(x)f(x)[y, x]D(x)2 −D(x)f(x)yD(x)f(x)}z(D(x)f(x)[y, x]D(x)2

−D(x)f(x)yD(x)f(x)) = 0, x, y ∈ U.(2.169)

Thus by semiprimeness of R, it is obvious that

D(x)f(x)[y, x]D(x)2 −D(x)f(x)yD(x)f(x) = 0, x, y ∈ U.(2.170)

Replacing x + tz for x in (2.159), we have

g(x + tz)yD(x + tz)2 ≡ g(x)yD(x)2 + t{([B(x, z), x] + [f(x), z])yD(x)2

+g(x)y(D(z)D(x) + D(x)D(z))}+ t2L1(x, y) + t3L2(x, y) + t4L3(x, y)

+t5g(z)yD(z)2 = 0, x, y, z ∈ U, t ∈ S4(2.171)
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where Li, 1 ≤ i ≤ 3, denotes the term satisfying the identity (2.171).
From (2.159) and (2.171), we obtain

t{([B(x, z), x] + [f(x), z])yD(x)2 + g(x)y(D(z)D(x) + D(x)D(z))}
+t2L1(x, y) + t3L2(x, y) + t4L3(x, y) = 0, x, y, z ∈ U, t ∈ S3.(2.172)

Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (2.172) yields

([B(x, z), x] + [f(x), z])yD(x)2 + g(x)y(D(z)D(x) + D(x)D(z))

= 0, x, y, z ∈ U.(2.173)

Writing ug(x)y for y in (2.173), we get

([B(x, z), x] + [f(x), z])ug(x)yD(x)2 + g(x)ug(x)y(D(z)D(x) + D(x)D(z))

= 0, u, x, y, z ∈ U.(2.174)

Combining (2.159) with (2.174),

g(x)ug(x)y(D(z)D(x) + D(x)D(z)) = 0, u, x, y, z ∈ U.(2.175)

Replacing y(D(z)D(x) + D(x)D(z))u for u in (2.175), we obtain

g(x)y(D(z)D(x) + D(x)D(z))ug(x)y(D(z)D(x) + D(x)D(z))

= 0, u, x, y, z ∈ U.(2.176)

And so, by semiprimeness of R, it follows that

g(x)y(D(z)D(x) + D(x)D(z)) = 0, x, y, z ∈ U.(2.177)

Replacing x + tw for x in (2.177), we have

g(x + tw)y(D(z)D(x + tw) + D(x + tw)D(z)

≡ g(x)y(D(z)D(x) + D(x)D(z)) + t{([B(x,w), x] + [f(x), w])y(D(z)D(x)

+D(x)D(z)) + g(x)y(D(z)D(w) + D(w)D(z))}+ t2M1(x, y) + t3M2(x, y)

+t4g(w)y(D(z)D(w) + D(w)D(z)) = 0, w, x, y, z ∈ U, t ∈ S4(2.178)

where M1 and M2 denote the term satisfying the identity (2.178).
From (2.177) and (2.178), we arrive at

t{([B(x,w), x] + [f(x), w])y(D(z)D(x) + D(x)D(z))

+g(x)y(D(z)D(w) + D(w)D(z))}+ t2M1(x, y) + t3M2(x, y)

= 0, w, x, y, z ∈ U, t ∈ S3.(2.179)
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Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (2.179) yields

([B(x,w), x] + [f(x), w])y(D(z)D(x) + D(x)D(z))

+g(x)y(D(z)D(w) + D(w)D(z)) = 0, w, x, y, z ∈ U.(2.180)

Replacing ug(x)y for y in (2.180), we get

([B(x,w), x] + [f(x), w])yg(x)ug(x)y(D(z)D(x) + D(x)D(z))

+g(x)ug(x)y(D(z)D(w) + D(w)D(z)) = 0, w, x, y, z ∈ U.(2.181)

Combining (2.177) with (2.181),

g(x)ug(x)y(D(z)D(w) + D(w)D(z)) = 0, w, x, y, z ∈ U.(2.182)

Replacing y(D(z)D(w) + D(w)D(z))u for u in (2.182), we obtain

g(x)y(D(z)D(w) + D(w)D(z))ug(x)y(D(z)D(x) + D(x)D(z))

= 0, u, w, x, y, z ∈ U.(2.183)

And so, by semiprimeness of R, it follows from (2.183) that

g(x)y(D(z)D(w) + D(w)D(z)) = 0, x, y, z ∈ U.(2.184)

Let w = z in (2.184). Then we get

g(x)yD(z)2 = 0, x, y, z ∈ U.(2.185)

Replacing x + tw for x in (2.185), we have

g(x + tw)yD(z)2 ≡ g(x)yD(z)2 + t{([B(x,w), x] + [f(x), w])yD(z)2}
+t2P (x, y) + t3g(w)yD(z)2 = 0, w, x, y, z ∈ U, t ∈ S3(2.186)

where P denotes the term satisfying the identity (2.186).
From (2.185) and (2.186), we obtain

t{([B(x, w), x] + [f(x), w])yD(z)2}+ t2P (x, y)

= 0, w, x, y, z ∈ U, t ∈ S3.(2.187)

Since R is 2!-torsion free by assumption, by Lemma 2.1 the relation (2.187) yields

([B(x,w), x] + [f(x), w])yD(z)2 = 0, w, x, y, z ∈ U.(2.188)

Replacing wx for w in (2.188), we get

([B(x,w), x]x + 3[w, x]f(x) + 3wg(x) + [[w, x], x]D(x) + [f(x), w]x)yD(x)2

= 0, w, x, y, z ∈ U.(2.189)
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From (2.185) and (2.189), we have

([B(x, w), x]x + 3[w, x]f(x) + [[w, x], x]D(x) + [f(x), w]x)yD(x)2

= 0, w, x, y, z ∈ U.(2.190)

Substituting xy for y in (2.188),

([B(x,w), x]x + [f(x), w]x)yD(z)2 = 0, w, x, y, z ∈ U.(2.191)

Combining (2.190) with (2.191),

(3[w, x]f(x) + [[w, x], x]D(x))yD(z)2 = 0, w, x, y, z ∈ U.(2.192)

Replacing D(x)w for w in (2.192), we obtain

(3f(x)wf(x) + 3D(x)[w, x]f(x) + g(x)wD(x) + 2f(x)[w, x]D(x)

+D(x)[[w, x], x]D(x))yD(z)2 = 0, w, x, y, z ∈ U.(2.193)

Substituting D(x)y for y in (2.193), we have

(3f(x)wf(x)D(x) + 3D(x)[w, x]f(x)D(x) + g(x)wD(x)2

+2f(x)[w, x]D(x)2 + D(x)[[w, x], x]D(x)2)yD(z)2 = 0, w, x, y, z ∈ U.(2.194)

Combining (2.129), (2.179) with (2.194),

(2f(x)[w, x]D(x)2 + D(x)[[w, x], x]D(x)2)yD(z)2 = 0, w, x, y, z ∈ U.(2.195)

Left multiplication of (2.195) by D(x) leads to

(2D(x)f(x)[w, x]D(x)2 + D(x)2[[w, x], x]D(x)2)yD(z)2

= 0, w, x, y, z ∈ U.(2.196)

Left multiplication of (2.162) by D(x) yields

2D(x)f(x)yD(x)f(x) + D(x)2[y, x]D(x)f(x) = 0, x, y ∈ U.(2.197)

Substituting yD(x)2w for y in (2.197), we get

2D(x)f(x)yD(x)2wD(x)f(x) + D(x)2[y, x]D(x)2wD(x)f(x)

+D(x)2y[D(x)2, x]wD(x)f(x) + D(x)2yD(x)2[w, x]D(x)f(x)

= 0, w, x, y, z ∈ U.(2.198)

Combining (2.129) with (2.198), we obtain

2D(x)f(x)yD(x)2wD(x)f(x) + D(x)2[y, x]D(x)2wD(x)f(x)

+D(x)2yD(x)f(x)wD(x)f(x) + D(x)2yD(x)2[w, x]D(x)f(x)

= 0, w, x, y, z ∈ U.(2.199)
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From (2.162) and (2.199),

(2D(x)f(x)yD(x)2 + D(x)2[y, x]D(x)2 −D(x)2yD(x)f(x))

wD(x)f(x) = 0, w, x, y, z ∈ U.(2.200)

Replacing [y, x] for y in (2.200), we have

(2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2 −D(x)2yD(x)f(x))

wD(x)f(x) = 0, w, x, y, z ∈ U.(2.201)

Combining (2.162), (2.170) with (2.201),

(4D(x)f(x)yD(x)f(x) + D(x)2[[y, x], x]D(x)2)wD(x)f(x)

= 0, w, x, y, z ∈ U.(2.202)

From (2.129) and (2.196),

(2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2w[D(z)2, z]

= (2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2wD(z)f(z)

= 0, w, x, y, z ∈ U.(2.203)

Let z = x in (2.203). Then

(2D(x)f(x)[y, x]D(x)2 + D(x)2[[y, x], x]D(x)2wD(x)f(x)

= 0, w, x, y, z ∈ U.(2.204)

Combining (2.203) with (2.204),

2(2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2wD(x)f(x)

= 0, w, x, y, z ∈ U.(2.205)

Since R is 2!-torsion free by assumption, the relation (2.204) yields

(2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2wD(x)f(x)

= 0, w, x, y, z ∈ U.(2.206)

From (2.206), we have

(2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2)w(2D(x)f(x)yD(x)f(x)

−D(x)f(x)[y, x]D(x)2) = 0, w, x, y, z ∈ U.(2.207)

And so, by semiprimeness of R, it follows from (2.207) that

2D(x)f(x)yD(x)f(x)−D(x)f(x)[y, x]D(x)2 = 0, x, y, z ∈ U.(2.208)
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Combining (2.170) with (2.208),

D(x)f(x)yD(x)f(x) = 0, x, y ∈ U.(2.209)

And so, by semiprimeness of R, obtain from (2.209)

D(x)f(x) = 0, x ∈ U.

(⇐=): Suppose that

D(x)f(x) = 0, x ∈ R.(2.210)

Replacing x + ty for x in (2.210), we have

D(x + ty)[D(x + ty), x + ty] ≡ +t{D(y)f(x) + D(x)B(x, y)}
+t2Q(x, y) + t3D(y)f(y) = 0, x, y ∈ R, t ∈ S3(2.211)

where Q denotes the term satisfying the identity (2.211).
From (2.210) and (2.211), we get

t{D(y)f(x) + D(x)B(x, y)}+ t2Q(x, y) = 0, x, y ∈ R, t ∈ S3.(2.212)

Since R is 2!-torsion free by assumption, by Lemma 2.1 the relation (2.212) yields

D(y)f(x) + D(x)B(x, y) = 0, x, y ∈ R.(2.213)

Let y = x2 in (2.213). Then using (2.210), we obtain from (2.213)

(D(x)x + xD(x))f(x) + 2D(x)(f(x)x + xf(x))

= 3D(x)xf(x) + xD(x)f(x) + 2D(x)f(x)x = 0, x ∈ R.(2.214)

From (2.210) and (2.214) , we get

3D(x)xf(x) = 3f(x)2 = −3D(x)g(x) = 0, x ∈ R.(2.215)

Since R is 3!-torsion free, it follows from (2.215) that

f(x)2 = 0, x ∈ R,(2.216)

and

D(x)g(x) = 0, x ∈ R.(2.217)

Writing xy for y in (2.213), we obtain

(xD(y)f(x) + D(x)yf(x) + D(x)(xB(x, y) + 2f(x)y + D(x)[y, x]

= 0, x, y ∈ R.(2.218)
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Left multiplication of (2.218) by D(x) leads to

xD(y)f(x) + xD(x)B(x, y) = 0, x ∈ R.(2.219)

Combining (2.218) with (2.219),

D(x)yf(x) + f(x)B(x, y) + 2D(x)f(x)y + D(x)2[y, x] = 0, x, y ∈ R.(2.220)

From (2.210) and (2.220), we have

D(x)yf(x) + f(x)B(x, y) + D(x)2[y, x] = 0, x, y ∈ R.(2.221)

Left multiplication of (2.221) by D(x) yields

D(x)2yf(x) + D(x)f(x)B(x, y) + D(x)3[y, x] = 0, x, y ∈ R.(2.222)

Comparing (2.210) and (2.222),

D(x)2yf(x) + D(x)3[y, x] = 0, x, y ∈ R.(2.223)

Putting yx instead of y in (2.213), we get

(D(y)x + yD(x))f(x) + D(x)(B(x, y)x + 2yf(x) + [y, x]D(x))

= 0, x, y ∈ R.(2.224)

Right multiplication of (2.224) by x gives

D(y)f(x)x + D(x)B(x, y)x = 0, x ∈ R.(2.225)

Combining (2.224) with (2.225),

−D(y)g(x) + yD(x)f(x) + 2D(x)yf(x) + D(x)[y, x]D(x) = 0, x, y ∈ R.(2.226)

From (2.210) and (2.226), we have

−D(y)g(x) + 2D(x)yf(x) + D(x)[y, x]D(x) = 0, x, y ∈ R.(2.227)

Writing xy for y in (2.227), we get

−xD(y)g(x)−D(x)yg(x) + 2D(x)xyf(x) + D(x)x[y, x]D(x)

= 0, x, y ∈ R.(2.228)

Left multiplication of (2.227) by x leads to

−xD(y)g(x) + 2xD(x)yf(x) + xD(x)[y, x]D(x) = 0, x, y ∈ R.(2.229)

Combining (2.228) with (2.229),

−D(x)yg(x) + 2f(x)yf(x) + f(x)[y, x]D(x) = 0, x, y ∈ R.(2.230)



JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING 373

Left multiplication of (2.230) by D(x) yields

−D(x)2yg(x) + 2D(x)f(x)yf(x) + D(x)f(x)[y, x]D(x) = 0, x, y ∈ R.(2.231)

Comparing (2.210) and (2.231), we obtain

D(x)2yg(x) = 0, x, y ∈ R.(2.232)

Let y = D(x) in (2.227). Then we get

−D2(x)g(x) + 2D(x)2f(x) + D(x)f(x)D(x) = 0, x, y ∈ R.(2.233)

Combining (2.210) with (2.233),

D2(x)g(x) = 0, x ∈ R.(2.234)

Writing yD(x) for y in (2.227), we have

−D(y)D(x)g(x)− yD2(x)g(x) + 2D(x)yD(x)f(x) + D(x)[y, x]D(x)2

+D(x)yf(x)D(x) = 0, x, y ∈ R.(2.235)

Combining (2.210), (2.217), (2.234) with (2.235),

D(x)[y, x]D(x)2 + D(x)yf(x)D(x) = 0, x, y ∈ R.(2.236)

Left multiplication of (2.236) by f(x) leads to

f(x)D(x)[y, x]D(x)2 + f(x)D(x)yf(x)D(x) = 0, x, y ∈ R.(2.237)

Writing yD(x) for y in (2.230), we get

−D(x)yD(x)g(x) + 2f(x)yD(x)f(x) + f(x)[y, x]D(x)2 + f(x)yf(x)D(x)

= 0, x, y ∈ R.(2.238)

Comparing (2.210) and (2.217), we obtain from (2.238)

f(x)[y, x]D(x)2 + f(x)yf(x)D(x) = 0, x, y ∈ R.(2.239)

Substituting D(x)y for y in (2.230), we have

−D(x)2yg(x) + 2f(x)D(x)yf(x) + f(x)D(x)[y, x]D(x) + f(x)2yD(x)

= 0, x, y ∈ R.(2.240)

From (2.216), (2.232) and (2.240), we obtain

2f(x)D(x)yf(x) + f(x)D(x)[y, x]D(x) = 0, x, y ∈ R.(2.241)

Right multiplication of (2.241) by D(x) leads to

2f(x)D(x)yf(x)D(x) + f(x)D(x)[y, x]D(x)2 = 0, x, y ∈ R.(2.242)
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From (2.237) and (2.242),

f(x)D(x) = 0, x ∈ R.

¤

Theorem 2.5. Let A be a noncommutative Banach algebra. Suppose there exists a
continuous linear Jordan derivation D : A −→ A. Then we have

[D(x), x]D(x) ∈ rad(A) ⇐⇒ D(x)[D(x), x] ∈ rad(A)

for all x ∈ A.

Proof. By the result of B.E. Johnson and A.M. Sinclair[5] any linear derivation on
a semisimple Banach algebra is continuous. Sinclair[12] proved that every contin-
uous linear Jordan derivation on a Banach algebra leaves the primitive ideals of A

invariant. Hence for any primitive ideal P ⊆ A one can introduce a linear Jordan
derivation DP : A/P −→ A/P, where A/P is a prime and factor Banach algebra, by
DP (x̂) = D(x) + P, x̂ = x + P. Then D is a derivation on A/P. By the assumption
that D(x)2f(x) ∈ rad(A), x ∈ A, we obtain (DP (x̂))2[DP (x̂), x̂] = 0, x̂ ∈ A/P, since
all the assumptions of Theorem 2.4 are fulfilled. And since the prime and factor alge-
bra A/P is noncommutative, from Theorem 2.4 we have [DP (x̂), x̂]7 = 0, x̂ ∈ A/P.

And for each P, by the elementary properties of the spectral radius rP in a Banach
algebra A/P, it follows that rP ([DP (x̂), x̂])7 = rP ([DP (x̂), x̂]7) = 0 for all x̂ ∈ A/P.

Hence we obtain rP ([DP (x̂), x̂]) = 0 for all x̂ ∈ A/P. Thus [DP (x̂), x̂] ∈ Q(A/P )
for all x̂ ∈ A/P. On the one hand, since D is continuous, we see that DP is also
continuous. Thus by Theorem 2.3, we obtain DP (A/P ) ⊆ rad(A/P ). But since
A/P is semisimple, DP (A/P ) = {0} for all primitive ideals of A. Hence we see that
D(A) ⊆ P for all primitive ideals of A. And so, D(A) ⊆ rad(A). On the other hand,
In case A/P is a commutative Banach algebra, one can conclude that DP = 0 as
well, since A/P is semisimple and since we know that there are no nonzero linear
derivations on a commutative semisimple Banach algebra. In other words, D(x) ∈ P

for all primitive ideals of A and all x ∈ A. i.e. we get D(A) ⊆ rad(A). Therefore in
any case we have D(A) ⊆ rad(A). ¤
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